Taking Flight With Aerospace: The Power Of Digital

Torsten Welte

Market experts predict the world’s fleet of commercial aircraft will double in size over the next 20 years. This is due to increasing demand from growing markets like China. Industry leaders can secure their market share if they use an integrated approach to innovation and technology.

Faced with growing market demand, aviation companies are under pressure to speed delivery of new aircraft while implementing digital technologies to improve productivity and reduce manufacturing delays. The aerospace firms that are successful in these efforts will be able to stay within schedules and budgets, focus more intently on global expansion, and attract the best industry talent. But the road ahead is full of challenges.

The complexity of aerospace

The global impact of the aerospace industry is quite impressive. Last year alone, it provided the infrastructure to transport over 3.7 billion passengers. Aviation companies also delivered more than 1,800 new commercial aircraft, and launched 85 orbital space missions. Many of today’s innovations depend on technology coming out of the aerospace world. As an example, imagine smartphones without GPS capabilities, a technology developed in aerospace.

The digitalization of aerospace will drive innovation to produce smarter, more efficient aircraft. Already, modern planes can create over 0.5 TB of data for each flight, as input for next-generation services and groundbreaking 3D printing advances – targeting both primary and replacement parts – are enabling equipment manufacturers to better meet service-level agreements and increase uptime. More than ever, success depends on strong engineering to meet the highest quality and safety standards and a strong focus on the integrated approach to innovation.

Challenging traditional paradigms

Aerospace is one of the most regulated and controlled industries in the world and traditionally has not been made up of “rule breakers.” But innovation in this industry does happen when key players challenge their own business processes, then redefine those processes using an array of new technologies.

Two strong examples of this approach come from commercial aerospace manufacturing. Emerging player SpaceX has redefined the rules of space travel and transformed how payloads are sent into space, delivering an operational model with significantly reduced costs. In contrast, the well-established Lockheed Martin is relying heavily on technology, in the form of the Internet of Things (IoT) and machine learning, to protect people and products. The company is also using a blockchain strategy to speed the discovery and solution of cybersecurity problems and has relied on 3D modeling for many years.

The economics of innovation

The aerospace industry has seen tremendous benefits from technological innovation. 3D printing, for example, has helped redefine the process and cost of manufacturing components. Recently, GE produced a 3D-printed 1,300HP advanced turboprop engine. But while 3D printing an entire engine is impressive, aircraft parts will gain the most from this technology.

With fleets always on the go, it’s difficult to anticipate what parts a plane will need and the optimal service location to store them. A grounded airplane can quickly become an expensive problem, with the estimated cost of a typical “B check” maintenance issue near $60,000 USD. 3D printed parts help avoid that scenario and improve fleet uptime and reduce costs.

The industry has also been an early adopter and innovator of IoT technology. Maintenance, repair, and overhaul (MRO) is the daily task of managing the upkeep of aircraft. Checking working systems and how they interconnect requires data gathering and analysis. Technicians, OEM parts manufacturers, and carriers tend to take a more reactive approach to maintenance. This leads to downtime, delayed flights, and aircraft on the ground (AOG) issues during busy airport hours.

IoT enables companies to launch predictive maintenance initiatives. Maintenance technicians gain an understanding of current known issues through available data. They can also see the time remaining until equipment failure. The maintenance techs then have enough information and time to make repairs before major issues arise.

Soaring with a digital core

Technology modernization, including cloud computing, is a top priority for aerospace. Most aviation companies operate in a hybrid environment. In this situation, cloud-based systems interact with on-premises applications, enabling companies to secure intellectual property while enjoying cloud benefits for traditional business applications, HR, and other things.

Aerospace companies that capitalize on the following strategic priorities will succeed in the changing market:

  1. Customer-centricity. Putting the customer’s point of view at the center of every decision is vital for success in the digital age. Providing tailored benefits, improving product performance, and outcome-oriented service models are key.
  1. Digital business networks. Enabling collaboration and leveraging knowledge benefits all business partners. Scalable and secure, many-to-many networks distribute critical, real-time business information across the network.
  1. Innovation. With even more technology embedded, OEMs aim to make products smarter, more reliable, and affordable for customers.
  1. Agile manufacturing. Advanced automation and integration provide data for process improvement and proof of compliance.
  1. New business models. New digital technologies disrupt traditional business models. The results include process evolution, new market opportunities, and new revenue streams.

Learn how to bring new technologies and services together to power digital transformation by downloading The IoT Imperative for Discrete Manufacturers: Automotive, Aerospace and Defense, High Tech, and Industrial Machinery. Explore how to bring Industry 4.0 insights into your business today by reading Industry 4.0: What’s Next?


Torsten Welte

About Torsten Welte

Torsten Welte, the global vice president and head of aerospace & defense (A&D) at SAP, has over 25 years of experience in consulting, sales, IT, and program management. Under Torsten’s leadership, the A&D Team delivers industry solutions that help customers innovate and grow their businesses, operate safely, and develop their people. Torsten joined SAP Americas in 2004 and has held several key leadership roles within the North American Aerospace & Defense segment. Prior to his tenure with SAP, Torsten spent 12 years with Deloitte Consulting managing several large SAP implementations as well as strategy engagements across different manufacturing industries.