Sections

How Much Does It Cost To Build An App?

Jeff Francis, Co-Founder & COO

mobile app development testingOne of (if not) the most prohibitive hurdle to developing your own app is cost. First off, you have to make a concrete calculation weighing anticipated business gains against the cost outlay for development and support. According to many market research studies, including leading firms like Forrester, development costs are can represent only the tip of the iceberg. Once you take the time to spec out and build your dream app, you’ll find little things that you could have done better; or U/I updates that would make it more intuitive; or Google released a new update to Android; or Apple changed the resolution on the newest generation of iPads. Whatever the case may be, more than 80% of IT personnel polled in 2012 by AnyPresence found that their firms were updating their apps at least twice per year. A third of the respondents were pushing new updates every month. Forrester estimates that only 35% of any app’s lifetime cost is covered in initial development. This is a major stumbling block for many companies, and rightly so.

Apps are not an experiment that you can play around with and just see how the market responds. The future of enterprises is mobility and only companies that fully embrace and integrate mobile strategies effectively will thrive in this landscape in the months and years to come. So, swinging and missing on app development is unacceptable in the modern business atmosphere.

In addition to development representing but a portion of an app’s full cost, most companies looking to work with a mobile solutions partner (or even app developer if you want more of a vendor/client relationship) don’t know what type of cost ranges within which any given app could fall. There are a huge number of factors to consider, and every app is different in some way or another. As such, there are no perfect predictions to be had. However, we can provide you with some general cost brackets broken down by complexity and, therefore, required development effort.

At their most basic levels, apps come down to hours. Whatever feature you want, whatever U/I style you desire, whatever working relationship you want with your developer or parter will all affect the number of hours that a firm needs to complete the project. Some companies might quote their rates based on features you request, others might take your specifications and simply give you a flat cost amount, while others will just estimate the total number of hours required to complete the project, break that down by employee type, and give you a granular estimate that way. Regardless of the method employed, each company is making an internal calculation about how many hours they anticipate the project will require (based mostly on the feature requests and the complexity of any external hardware/software/API integration) and which resources that company will have to utilize to accomplish you goals. So, we can break down the cost buckets similarly.

Every feature your app incorporates equals a certain number of design, programming, project management, QA, and revision hours. The more features you request, the more hours required to deliver all of them, and the more the app will cost. The more complex the feature, the more hours required, and the more the app will cost. As such, the ideal working relationship with any vendor or partner is with someone willing and able to itemize each feature by the hours required to develop those features, cross referenced with the respective cost per resource hour. That way, you can obtain a granular overview of where the largest cost factors are. If your partner can do this for you, you can make informed decisions about which features are the most important or which features you might think about scrapping to save costs.

Most market research I’ve seen categorizes mobile app costs into three buckets:

  • Lower-level complexity, smaller feature list, generally one mobility platform: <$50,000
  • Medium-level complexity, medium-sized feature list, 1-2 mobility platform(s): $50,000 – $150,000
  • High-level complexity, large feature list, 3+ mobility platforms: $150,000+

The cutoff between the medium and high complexity buckets can vary some depending on the study at which you look, but it’s generally $100K+ or $150K+. Being more realistic for an enterprise context, high-complexity mobile solutions will generally run $150,000+. But, this categorization might not clear much up if you don’t know where your app falls in the spectrum to begin with.

For example, if you want to build an app that simply interfaces with your backend database, parses and analyzes that data, and then displays the information you want via a native tablet app on only one platform, that’s a relatively simple app (assuming your back end is well designed and any legacy hardware or software isn’t too hard to integrate into).

If you want to build a field sales application that supports offline data collection and caching, third-party hardware integration for a credit card reader, API support for payment and credit card security protocols, backend database integration, and social sharing? That’s going to fall into the second bucket and run you anywhere from $50,001 to $149,999 based on how many total features you deem necessary.

If you decide to completely overhaul your CRM and you want to build a new solution from the ground up, including microphone and camera integration into the application, learning algorithms, backend integration, custom performance metric reporting, shareable and group editable files, individual device management, individual app management, individual logins, varying security protocol levels based on employee department, division, title and seniority, custom VPN requirements by device or by app, you’re looking at a very complex application. Many of these things are absolutely necessary for your ultimate app, but you have to know that every feature you add, and as each of those features requires more and more expertise to deliver on, the higher into zone three you’ll climb. That’s not a bad thing by any stretch, because you’re building a more comprehensive, safer and more useful solution. But as your solutions become better, it simply requires more to build them.

So long as you can find a mobile solutions partner with the discipline and forethought to forecast each feature by hour and resource on the front end, you’ll be able to choose the features you can’t live without and which features can wait for v2.

A word to the wise, though — even if you find such a firm and make the best choices for your business, always beware that support, updates and continual improvements often require far more capital than building the v1 of the app in the first place. Know that choosing to build a mobile app is a long-term investment to solidify your place within your target consumers’ digital lives and stick to that mindset. It’s not about the extra few dollars you spend now, but rather how can you build an integrated solution that will stand the test of time and generate business returns for years and years to come.

Comments

Why New Technology Has An Adoption Problem

Danielle Beurteaux

When 3D printing became a practical reality, in the sense that the actual printers became more efficient, less expensive, and more accessible to the average consumer, there was an assumption that the consumer 3D printing market was going to take off. We’d all have printers at home printing…. what? Our clothes? Toys? Spare organs?

That has yet to happen. 3D printing company MakerBot just went through its second employee layoff this year, driven by a market that’s developing much slower than predicted.

That same thinking is in play with a somewhat more prosaic technology – digital wallets. Apple Pay was released this year, as was Samsung Pay. There’s also Google’s Android Pay. During an earnings call, Apple CEO Tim Cook said: “We are more confident than ever that 2015 will be the year of Apple Pay.” But that expectation has yet to be realized, at least vis-à-vis consumers.

Consumers aren’t using any of the digital wallets en masse. According to Bloomberg, payments made via mobile wallets – all of them – make up a mere 1% of retail purchases in the U.S. The reason is that consumers just don’t see a compelling reason to use them. There’s no real reward for them to change from SOP.

Both these instances highlight a problem with assumptions about mass adoption for new technology – just because it’s cool, interesting, and accessible doesn’t mean a market-worthy mass of people will use it.

Who is more likely to use mobile wallets? Emerging economies without a stable financial and banking systems. In those environments, digital payments present a more secure and quicker method for purchasing. These are the same areas where mobile adoption leapfrogged older technologies because there was a lack of telecommunications infrastructure, i.e. many never had a landline phone to begin with, and they went directly to mobile. The value-add already exists. (But there are also security issues, to which consumers are becoming more sensitive. A hack of Samsung’s U.S. subsidiary LoopPay network was uncovered five months post-hack. Although one was expert quoted as saying the hackers may not have been interested in selling consumer financial info but instead in tracking individuals.)

Here’s some interesting data and a good point made: mobile payments are most popular in situations where the buyer already has his or her phone in hand and the transaction is made even quicker than swiping plastic. For example, purchases made for London Transit rides are responsible for a good portion of the U.K.’s mobile payments.

Mass technology adoption is no longer driven simply by the release of a new product. There are too many products released constantly now, the market is too diverse, and the products often lack a true raison d’être.

Learn more about how creative and innovative companies are finding their customers. Read Compelling Shopping Moments: 4 Creative Ways Stores Connect With Their Customers.

Comments

Mobile Marketing Continues To Explode

Daniel Newman

If your brand isn’t among those planning a significant spend on mobile marketing in 2016, you need to stop treating it like a fad and step up to meet your competition. Usage statistics show that today people live and work while on the move, and the astronomical rise of mobile ad spending proves it.

According to eMarketer, ad spending experienced triple-digit growth in 2013 and 2014. While it’s slowed in 2015, don’t let that fool you: Mobile ad spending was $19.2 billion in 2013, and eMarketer’s forecast for next year is $101.37 billion—51 percent of the digital market.

  1. Marketers follow consumer behavior, and consumers rely on their mobile devices. The latest findings from show that two-third of Americans are now smartphone owners. Around the world, there are two billion smartphone users and, particularly in developing regions, eMarketer notes “many consumers are accessing the internet mobile-first and mobile-only.”
  2. The number of mobile users has already surpassed the number of desktop users, as has the number of hours people spend on mobile Internet use, and business practices are changing as a result. Even Google has taken notice; earlier this year the search giant rolled out what many referred to as “Mobilegeddon”—an algorithm update that prioritizes mobile-optimized sites.

The implications are crystal clear: To ignore mobile is to ignore your customers. If your customers can’t connect with you via mobile—whether through an ad, social, or an optimized web experience—they’ll move to a competitor they can connect with.

Consumers prefer mobile — and so should you

Some people think mobile marketing has made things harder for marketers. In some ways, it has: It’s easy to make missteps in a constantly changing landscape.

At the same time, however, modern brands can now reach customers at any time of the day, wherever they are, as more than 90 percent of users now have a mobile device within arm’s reach 24/7. This has changed marketing, allowing brands to build better and more personalized connections with their fans.

  • With that extra nudge from Google, beating your competition and showing up in search by having a website optimized for devices of any size is essential.
  • Search engine optimization (SEO) helps people find you online; SEO integration for mobile is even more personalized, hyper local, and targeted to an individual searcher.
  • In-app advertisements put your brand in front of an engaged audience.
  • Push messages keep customers “in the know” about offers, discounts, opportunities for loyalty points, and so much more.

And don’t forget about the power of apps, whose usage takes up 85 percent of the total time consumers spend on their smartphones. Brands like Nike and Starbucks are excellent examples of how to leverage the power of being carried around in someone’s pocket.

Personal computers have never been able to offer such a targeted level of reach. We’ve come to a point where marketing without mobile isn’t really marketing at all.

Mobile marketing tools are on the upswing too

As more mobile-empowered consumers themselves from their desks to the street, the rapid rise of mobile shows no signs of slowing down. This is driving more investment into mobile marketing solutions and programs.

According to VentureBeat’s Mobile Success Landscape, mobile engagement—which includes mobile marketing automation—is second only to app analytics in terms of investment. Mobile marketing has become a universe unto itself, one that businesses are eager to measure more effectively.

Every day, mobile marketing is becoming ever more critical for businesses. Brands that fail to incorporate mobile into their ad, content, and social campaigns will be left wondering where their customers have gone.

 

For more content like this, follow Samsung Business on InsightsTwitterLinkedIn , YouTube and SlideShare

The post Mobile Marketing Continues to Explode appeared first on Millennial CEO.

photo credit: Samsung Galaxy S3 via photopin (license)

Comments

About Daniel Newman

Daniel Newman serves as the Co-Founder and CEO of EC3, a quickly growing hosted IT and Communication service provider. Prior to this role Daniel has held several prominent leadership roles including serving as CEO of United Visual. Parent company to United Visual Systems, United Visual Productions, and United GlobalComm; a family of companies focused on Visual Communications and Audio Visual Technologies. Daniel is also widely published and active in the Social Media Community. He is the Author of Amazon Best Selling Business Book "The Millennial CEO." Daniel also Co-Founded the Global online Community 12 Most and was recognized by the Huffington Post as one of the 100 Business and Leadership Accounts to Follow on Twitter. Newman is an Adjunct Professor of Management at North Central College. He attained his undergraduate degree in Marketing at Northern Illinois University and an Executive MBA from North Central College in Naperville, IL. Newman currently resides in Aurora, Illinois with his wife (Lisa) and his two daughters (Hailey 9, Avery 5). A Chicago native all of his life, Newman is an avid golfer, a fitness fan, and a classically trained pianist

How Emotionally Aware Computing Can Bring Happiness to Your Organization

Christopher Koch


Do you feel me?

Just as once-novel voice recognition technology is now a ubiquitous part of human–machine relationships, so too could mood recognition technology (aka “affective computing”) soon pervade digital interactions.

Through the application of machine learning, Big Data inputs, image recognition, sensors, and in some cases robotics, artificially intelligent systems hunt for affective clues: widened eyes, quickened speech, and crossed arms, as well as heart rate or skin changes.




Emotions are big business

The global affective computing market is estimated to grow from just over US$9.3 billion a year in 2015 to more than $42.5 billion by 2020.

Source: “Affective Computing Market 2015 – Technology, Software, Hardware, Vertical, & Regional Forecasts to 2020 for the $42 Billion Industry” (Research and Markets, 2015)

Customer experience is the sweet spot

Forrester found that emotion was the number-one factor in determining customer loyalty in 17 out of the 18 industries it surveyed – far more important than the ease or effectiveness of customers’ interactions with a company.


Source: “You Can’t Afford to Overlook Your Customers’ Emotional Experience” (Forrester, 2015)


Humana gets an emotional clue

Source: “Artificial Intelligence Helps Humana Avoid Call Center Meltdowns” (The Wall Street Journal, October 27, 2016)

Insurer Humana uses artificial intelligence software that can detect conversational cues to guide call-center workers through difficult customer calls. The system recognizes that a steady rise in the pitch of a customer’s voice or instances of agent and customer talking over one another are causes for concern.

The system has led to hard results: Humana says it has seen an 28% improvement in customer satisfaction, a 63% improvement in agent engagement, and a 6% improvement in first-contact resolution.


Spread happiness across the organization

Source: “Happiness and Productivity” (University of Warwick, February 10, 2014)

Employers could monitor employee moods to make organizational adjustments that increase productivity, effectiveness, and satisfaction. Happy employees are around 12% more productive.




Walking on emotional eggshells

Whether customers and employees will be comfortable having their emotions logged and broadcast by companies is an open question. Customers may find some uses of affective computing creepy or, worse, predatory. Be sure to get their permission.


Other limiting factors

The availability of the data required to infer a person’s emotional state is still limited. Further, it can be difficult to capture all the physical cues that may be relevant to an interaction, such as facial expression, tone of voice, or posture.



Get a head start


Discover the data

Companies should determine what inferences about mental states they want the system to make and how accurately those inferences can be made using the inputs available.


Work with IT

Involve IT and engineering groups to figure out the challenges of integrating with existing systems for collecting, assimilating, and analyzing large volumes of emotional data.


Consider the complexity

Some emotions may be more difficult to discern or respond to. Context is also key. An emotionally aware machine would need to respond differently to frustration in a user in an educational setting than to frustration in a user in a vehicle.

 


 

download arrowTo learn more about how affective computing can help your organization, read the feature story Empathy: The Killer App for Artificial Intelligence.


Comments

About Christopher Koch

Christopher Koch is the Editorial Director of the SAP Center for Business Insight. He is an experienced publishing professional, researcher, editor, and writer in business, technology, and B2B marketing. Share your thoughts with Chris on Twitter @Ckochster.

Tags:

Enterprise Information Management: The Foundational Core Of Digital Transformation Success

Paul Lewis

The definition and implementation of digital transformation has become so muddled that no two organizations are focusing on the same strategies and initiatives. Many companies choose to engage in e-commerce and social media to extend their customer base with engaging, personalized, and round-the-clock shopping experiences. Some eye operational efficiencies through the Internet of Things (IoT) and artificial intelligence. And a growing segment is enticed by game-changing insights from analytics and social sentiments.

No matter the digital strategy, data is the foundation of all of these efforts. The customer experience is about understanding clients and offering services that answer their needs. Decision making requires stored knowledge that can be easily shared, secured, and applied. Operational excellence runs on meaningful insight that drives performance and keeps workers safe.

In digital transformation, every change relies on converting data into actionable decisions. According to Capgemini, companies that act on an enterprise information management (EIM) strategy outperform their rivals by as much as 26%.

The EIM difference in digital transformation

A data point by itself may seem unrelated and inconsequential. But when enterprise data is united and managed as one asset, decision makers finally have trusted, complete, and relevant information they need to seize opportunities and avoid risks that were previously hidden in the background.

One of my clients, Pravine Balkaran, global head of IT at Spin Master, one of the world’s largest toy and media entertainment companies, said it best: “It’s about being able to apply standardization and automation to the entire ecosystem to bring value and move the business forward.”

EIM derives new value by incorporating the traditional functions of data, including business intelligence, data science, analytics, data storage and archiving, data stewardship, and data mobility technology. The more data added, the more valuable the ecosystem becomes – without the complexity commonly experienced when searching for potentially valuable data across a diverse set of existing applications.

By applying EIM to the core of its digital strategy, companies like Spin Master are capturing and coalescing data from a variety of sources and turning it into actionable information to drive better decision making, innovate new products, enter new markets, and encourage a more responsive customer experience.

The EIM road map towards rapid creation of new value

Now for the hard part: Putting EIM into action and at the center of your digital transformation business strategy. There are five things you should do now before moving to a more digitalized and data-driven way of doing business.

1. Inventory available information

Most companies believe that their data resides in core databases and a data model of known entities such as claims, transactions, vendors, and suppliers. Although this is a widely used approach to determining the class of your information, it is only a small part of what you actually own. Structured, unstructured, and semi-structured data; log files; conversations; customer sentiment; and real-time information from suppliers and vendors, for example, should be integrated as part of the overall EIM philosophy.

2. Classify your inventory

Data typically can be classified with one or more of these six attributes:

  • Real-time, streaming data, which potentially comes from machines
  • Static data from production databases
  • Valuable data in real time once stored
  • Realizes value over time and as it changes
  • Relevant to a particular government mandate or legislative concern
  • Objective and relative importance to divisions of the overall enterprise, including customers and the business network

With this exercise, you can begin to understand the function that each data point serves and its usefulness in the future.

3. Encourage the business culture to appreciate the value of discovery

Data-driven decision making is not based on blind faith that data always tells the right story. Rather, it is asking the right questions, and knowing how to dig deep into the data helps us make the connections we need to get an accurate picture of the current situation. Once you discover those nuggets of insight gold, data science and advanced analytics can be applied to pinpoint the appropriate solution. Later, you can leverage data visualization tools to communicate findings and proposed action in a format that is quick and easy for all levels of the enterprise to consume.

4. Shift your focus from yesterday to today and beyond

Traditionally, data analysis is an exercise of looking backward to determine the how, what, when, and why an event happened. However, the pace of change in every aspect of the business has accelerated so much, that it’s rendered this retrospective approach to analytics nearly useless. Real-time access to data allows decision makers to know what’s happening in the moment and how it will impact the future to seize opportunities and mitigate risks.

The path to digital transformation is paved with data

The volume of data generated by people across the entire business network – from employee to consumer and everyone in between – represents a veritable trove of information, insights, and inspiration for innovation. But first, companies need to know where to find this data and how to best apply it to everyday decision making. With EIM, data can be broken down and reassembled into a manageable form that is meaningful, outcome-driven, and transformational.

Learn more about how to uncover Data – The Hidden Treasure Inside Your Business.

Comments

Paul Lewis

About Paul Lewis

Paul Lewis is the Chief Technology Officer in Hitachi for the Americas, responsible for the leading technology trend mastery and evangelism, client executive advocacy, and external delivery of the Hitachi vision and strategy especially related to digital transformation and social innovation. Additionally, Paul contributes to field enablement of data intelligence and analytics; interprets and translates complex technology trends including cloud, mobility, governance, and information management; and represents the Americas region in the Global Technology Office, the Hitachi LTD R&D division. In his role of trusted advisor to the CIO community, Paul’s explicit goal is to ensure clients’ problems are solved and opportunities realized. Paul can be found at his blog, on Twitter, and on LinkedIn.