Sections

Data Science: Buyer Beware

Ray Rivera

Any field of study followed by the word “science”, so goes the old wheeze, is not really a science, including computer science, climate science, police science, and investment science.

And then there is the saying, “when sex is used to pitch something besides sex, someone is trying to get in your back pocket rather than the front.”

If both of these are true, then Thomas Davenport and D.J. Patil’s rather hyperbolic declaration that the “data scientist is the sexiest job of the 21st century” deserves a double dose of skepticism.

Such skepticism is justified. Data science has much more in common with management fads than science, by its ordaining practitioners of obscure technical specialties with instant guru status, pitting them against the supposedly ignorant masses, and infusing the latter with itching uncertainty. An especially acute aspect of this uncertainty is captured in Louis Jordan‘s 1941 hit, “I’m Gonna Move To the Outskirts of Town”:

I don’t want no iceman
I’m gonna get me a Frigidaire …
I don’t want nobody
Who’s always hangin’ around.

Indeed, the bluesmen of prewar United States were right to be wary of a technology arrangement that caused their families and lovers to be dependent on persons coming regularly to the house to deliver necessary goods, whom the bluesmen feared would take advantage of women at home alone.

Remember the fad that forgot people? It’s back!

Data science has not just emerged out of the blue, but rather is the fresh-faced third generation offspring of the 1990’s management fad Business Process Reengineering (BPR). The reader might recall Davenport as one of the captains of BPR, which true to its rhetoric of “Don’t Automate, Obliterate” became an ignominiously destructive management fad. BPR’s effects were so pernicious that its three main proponents, including Davenport, issued public apologies, which consisted mainly of blame shifting, usually to vendors, consultants, and errant management gurus, while maintaining that BPR was a good idea that unfortunately fell into bad hands.

In contrast to other management ideas of the day, BPR was charmingly simple. Yet when implemented, BPR ended up producing the opposite, requiring enormous amounts of IT investment, bureaucratic overhead, and technical specialization in order to achieve even simple results.

All too frequently such results included downsizing by the thousands, with few survivors left to deal with even greater complexity, brought about by redesigned yet overengineered business processes. Like the gruesome medical practice of bloodletting, BPR left many businesses sicker than before, experiencing a 70 percent fail rate at the time of its height. To this date there is conflicting evidence as to whether BPR is truly cost-beneficial.

BPR’s demise left behind a lot of data and excess IT capacity, along with a sense of guilt over mismanagement of IT investments, giving birth to the field of knowledge management. During the next decade, knowledge management lived a modest life, supporting IT professionals wanting to sweep up all that data and store it, and management consultants trying to help companies turn complex processes into competitive advantage.

Data science is the spry third generation of BPR, responding to vastly increasing IT capacity, unprecedented ability of businesses to create data, widespread realization that data is a valuable resource, and the burdensome need to extract data from storage in order to realize business value.

Yet, data science belongs to a family tree of business practices that for over a century have been governed by technocrats who view organizations as machines, desiring to automate everything and eliminate people wherever possible. Data science is shaping up to be a redux of its grandfather BPR, with the same structural features (BPR was never really engineering, nor as we shall see is data science really science), and its propensity for sin and indulgence.

No science please, we’re skittish

Davenport and Patil declare that “Data scientists’ most basic, universal skill is the ability to write code.” With this pronouncement, data science fails the smell test at the very outset. For how many legitimate scientific fields is coding the most fundamental skill?

The most fundamental skill for any scientist is of course mastery of a canonical body of knowledge that includes laws, definitions, postulates, theorems, proofs, and descriptions of unsolved problems. Scientists are therefore characterized by mastery of a body of knowledge, not a collection of methods. What is this body of knowledge for data science? Davenport and Patil admit there is none.

The job of scientists is to conduct independent research, contribute to a body of knowledge, and improve professional practice, while adhering to a recognized standard of conduct.

Coding is a tool that facilitates some of these objectives, but is a substitute for none of them. Lacking a definitive course of study to assure minimum competency, or a professional society to check conduct, data scientists are classified properly as faddists rather than scientists.

The principle of parsimony leads scientists to favor the theory that explains the most with the least amount of elaboration, that is, to simplify as much as possible. Coding does not simplify, but rather translates, abstracts, and sequentializes, often giving a false sense of concreteness to concepts that are poorly understood or articulated. Consequently, data science confuses the tool and the result, and the spurious science of data is confused with authentic science (an “-ology”) that drives business behavior.

That is not to deny coding is valuable if not crucial for persons conducting scientific inquiry, especially about business topics. Like many readers, much of my academic training and business career has involved demanding quantitative work, including merging databases, extensive data cleansing, giving dimensions to flat data, creating new variables, and performing analyses using numerous unconventional statistical methods. Coding certainly facilitated each of these steps. But invariably, the most valuable tool was my knowledge of the data and underlying phenomena I was studying, not coding. Scientists failing to master the former fool no one but themselves. Faddists mastering only the latter fool everyone, including themselves.

An economy of counterfeit goods

Businesses that adopted BPR were not stupid, though their opaque bureaucracies often made them feel that way. Part of the massive appeal of BPR was its approach of simplicity: begin with a blank sheet of paper, rethink key business processes, and then reduce them to as few steps as possible.

Indeed business transformation should strive for clarity and promote effective communication. It should behave similarly to a well-functioning market, with changes driven organically as knowledge is discovered and teams form around value-creating processes. It should not be dependent, like most management fads, on top-down, artificial organization changes, presided by self-defined experts and gurus posturing themselves as the only ones capable of dealing with complex organization mechanisms.

As BPR morphed into knowledge management, the virtue of simplicity was reversed, and complexity came to indicate merit. Data science promises to deliver value by unpacking some of that complexity. Yet like the two generations of fads that preceded it, data science tries to create value through an economy of counterfeits:

  • False elites, arising as persons are summarily promoted to high status (viz., “scientist”) without duly earning it or having prerequisite experiences or knowledge: functionaries become elevated to experts, and experts are regarded as gurus,
  • False roles, arising as gatekeepers and bureaucrats emerge in order to manage numerous newly created administrative processes associated with data science activities, yet whose contributions to core value, efficiency, or effectiveness are questionable,
  • False scarcity, arising as leaders and influencers define the data scientist role so narrowly as to consist of extremely rare, almost implausible combinations of skills, thereby assuring permanent scarcity and consequent overpricing of skills.

For many businesses, the data most likely to yield valuable insight may not even be contained in databases, but rather shabbily maintained spreadsheets and text files, distributed across multiple systems, and lacking a codebook.

Such data may not even be intelligible without context that is available only in the tacit knowledge of employees or the culture of the organizations. Those who manage under such conditions ought to reflect very carefully: should they trust counterfeit solutions to produce better analytics results than authentic experts who understand the deep psychological, sociological, and economic foundations of business behavior?

Nothing should come between you and your data

Real science discovers universal principles such as the gas laws, which yield many useful technologies, including refrigeration. Yet refrigeration creates value only when it is consumerized, not when it is hoarded. A refrigerator in every house is a sign of economic progression; an iceman delivering ice every day is a sign of economic retrogression.

People needed a Frigidaire in their kitchens, not dependence on icemen to come to the house every day, which the bluesmen of almost a century ago rightly identified as trouble. They were right to purchase technology that made the household self-sufficient and improved their family’s quality of life.

Analytics technology also belongs inside the house, making users independent consumers, and not requiring dubious experts to supervise a technology monopolization that creates value for mostly themselves, through false scarcity and fabricated expertise.

Rather than seeking out gurus to mollify big data anxieties, analytics users should demand that their vendors produce tools that can be used primarily by subject matter experts, in collaboration with analytics specialists, providing transparency and an appropriate level of functionality to both, and facilitating collaboration among business users.

Analytics has the potential to transform business like no technology that came before it. But if left to the sort of data science that Davenport and Patil describe, it will pursue the same life of debauchery as its grandfather BPR, becoming yet another business fad that forgets people, and probably just as destructive.

Buyer beware.

This story originally appeared on SAP Business Trends.

Comments

Data Analysts And Scientists More Important Than Ever For The Enterprise

Daniel Newman

The business world is now firmly in the age of data. Not that data wasn’t relevant before; it was just nowhere close to the speed and volume that’s available to us today. Businesses are buckling under the deluge of petabytes, exabytes, and zettabytes. Within these bytes lie valuable information on customer behavior, key business insights, and revenue generation. However, all that data is practically useless for businesses without the ability to identify the right data. Plus, if they don’t have the talent and resources to capture the right data, organize it, dissect it, draw actionable insights from it and, finally, deliver those insights in a meaningful way, their data initiatives will fail.

Rise of the CDO

Companies of all sizes can easily find themselves drowning in data generated from websites, landing pages, social streams, emails, text messages, and many other sources. Additionally, there is data in their own repositories. With so much data at their disposal, companies are under mounting pressure to utilize it to generate insights. These insights are critical because they can (and should) drive the overall business strategy and help companies make better business decisions. To leverage the power of data analytics, businesses need more “top-management muscle” specialized in the field of data science. This specialized field has lead to the creation of roles like Chief Data Officer (CDO).

In addition, with more companies undertaking digital transformations, there’s greater impetus for the C-suite to make data-driven decisions. The CDO helps make data-driven decisions and also develops a digital business strategy around those decisions. As data grows at an unstoppable rate, becoming an inseparable part of key business functions, we will see the CDO act as a bridge between other C-suite execs.

Data skills an emerging business necessity

So far, only large enterprises with bigger data mining and management needs maintain in-house solutions. These in-house teams and technologies handle the growing sets of diverse and dispersed data. Others work with third-party service providers to develop and execute their big data strategies.

As the amount of data grows, the need to mine it for insights becomes a key business requirement. For both large and small businesses, data-centric roles will experience endless upward mobility. These roles include data anlysts and scientists. There is going to be a huge opportunity for critical thinkers to turn their analytical skills into rapidly growing roles in the field of data science. In fact, data skills are now a prized qualification for titles like IT project managers and computer systems analysts.

Forbes cited the McKinsey Global Institute’s prediction that by 2018 there could be a massive shortage of data-skilled professionals. This indicates a disruption at the demand-supply level with the needs for data skills at an all-time high. With an increasing number of companies adopting big data strategies, salaries for data jobs are going through the roof. This is turning the position into a highly coveted one.

According to Harvard Professor Gary King, “There is a big data revolution. The big data revolution is that now we can do something with the data.” The big problem is that most enterprises don’t know what to do with data. Data professionals are helping businesses figure that out. So if you’re casting about for where to apply your skills and want to take advantage of one of the best career paths in the job market today, focus on data science.

I’m compensated by University of Phoenix for this blog. As always, all thoughts and opinions are my own.

For more insight on our increasingly connected future, see The $19 Trillion Question: Are You Undervaluing The Internet Of Things?

The post Data Analysts and Scientists More Important Than Ever For the Enterprise appeared first on Millennial CEO.

Comments

About Daniel Newman

Daniel Newman serves as the Co-Founder and CEO of EC3, a quickly growing hosted IT and Communication service provider. Prior to this role Daniel has held several prominent leadership roles including serving as CEO of United Visual. Parent company to United Visual Systems, United Visual Productions, and United GlobalComm; a family of companies focused on Visual Communications and Audio Visual Technologies. Daniel is also widely published and active in the Social Media Community. He is the Author of Amazon Best Selling Business Book "The Millennial CEO." Daniel also Co-Founded the Global online Community 12 Most and was recognized by the Huffington Post as one of the 100 Business and Leadership Accounts to Follow on Twitter. Newman is an Adjunct Professor of Management at North Central College. He attained his undergraduate degree in Marketing at Northern Illinois University and an Executive MBA from North Central College in Naperville, IL. Newman currently resides in Aurora, Illinois with his wife (Lisa) and his two daughters (Hailey 9, Avery 5). A Chicago native all of his life, Newman is an avid golfer, a fitness fan, and a classically trained pianist

When Good Is Good Enough: Guiding Business Users On BI Practices

Ina Felsheim

Image_part2-300x200In Part One of this blog series, I talked about changing your IT culture to better support self-service BI and data discovery. Absolutely essential. However, your work is not done!

Self-service BI and data discovery will drive the number of users using the BI solutions to rapidly expand. Yet all of these more casual users will not be well versed in BI and visualization best practices.

When your user base rapidly expands to more casual users, you need to help educate them on what is important. For example, one IT manager told me that his casual BI users were making visualizations with very difficult-to-read charts and customizing color palettes to incredible degrees.

I had a similar experience when I was a technical writer. One of our lead writers was so concerned with readability of every sentence that he was going through the 300+ page manuals (yes, they were printed then) and manually adjusting all of the line breaks and page breaks. (!) Yes, readability was incrementally improved. But now any number of changes–technical capabilities, edits, inserting larger graphics—required re-adjusting all of those manual “optimizations.” The time it took just to do the additional optimization was incredible, much less the maintenance of these optimizations! Meanwhile, the technical writing team was falling behind on new deliverables.

The same scenario applies to your new casual BI users. This new group needs guidance to help them focus on the highest value practices:

  • Customization of color and appearance of visualizations: When is this customization necessary for a management deliverable, versus indulging an OCD tendency? I too have to stop myself from obsessing about the font, line spacing, and that a certain blue is just a bit different than another shade of blue. Yes, these options do matter. But help these casual users determine when that time is well spent.
  • Proper visualizations: When is a spinning 3D pie chart necessary to grab someone’s attention? BI professionals would firmly say “NEVER!” But these casual users do not have a lot of depth on BI best practices. Give them a few simple guidelines as to when “flash” needs to subsume understanding. Consider offering a monthly one-hour Lunch and Learn that shows them how to create impactful, polished visuals. Understanding if their visualizations are going to be viewed casually on the way to a meeting, or dissected at a laptop, also helps determine how much time to spend optimizing a visualization. No, you can’t just mandate that they all read Tufte.
  • Predictive: Provide advanced analytics capabilities like forecasting and regression directly in their casual BI tools. Using these capabilities will really help them wow their audience with substance instead of flash.
  • Feature requests: Make sure you understand the motivation and business value behind some of the casual users’ requests. These casual users are less likely to understand the implications of supporting specific requests across an enterprise, so make sure you are collaborating on use cases and priorities for substantive requests.

By working with your casual BI users on the above points, you will be able to collectively understand when the absolute exact request is critical (and supports good visualization practices), and when it is an “optimization” that may impact productivity. In many cases, “good” is good enough for the fast turnaround of data discovery.

Next week, I’ll wrap this series up with hints on getting your casual users to embrace the “we” not “me” mentality.

Read Part One of this series: Changing The IT Culture For Self-Service BI Success.

Follow me on Twitter: @InaSAP

Comments

Running Future Cities on Blockchain

Dan Wellers , Raimund Gross and Ulrich Scholl

Building on the Blockchain Framework

Some experts say these seemingly far-future speculations about the possibilities of combining technologies using blockchain are actually both inevitable and imminent:


Democratizing design and manufacturing by enabling individuals and small businesses to buy, sell, share, and digitally remix products affordably while protecting intellectual property rights.
Decentralizing warehousing and logistics by combining autonomous vehicles, 3D printers, and smart contracts to optimize delivery of products and materials, and even to create them on site as needed.
Distributing commerce by mixing virtual reality, 3D scanning and printing, self-driving vehicles, and artificial intelligence into immersive, personalized, on-demand shopping experiences that still protect buyers’ personal and proprietary data.

The City of the Future

Imagine that every agency, building, office, residence, and piece of infrastructure has an entry on a blockchain used as a city’s digital ledger. This “digital twin” could transform the delivery of city services.

For example:

  • Property owners could easily monetize assets by renting rooms, selling solar power back to the grid, and more.
  • Utilities could use customer data and AIs to make energy-saving recommendations, and smart contracts to automatically adjust power usage for greater efficiency.
  • Embedded sensors could sense problems (like a water main break) and alert an AI to send a technician with the right parts, tools, and training.
  • Autonomous vehicles could route themselves to open parking spaces or charging stations, and pay for services safely and automatically.
  • Cities could improve traffic monitoring and routing, saving commuters’ time and fuel while increasing productivity.

Every interaction would be transparent and verifiable, providing more data to analyze for future improvements.


Welcome to the Next Industrial Revolution

When exponential technologies intersect and combine, transformation happens on a massive scale. It’s time to start thinking through outcomes in a disciplined, proactive way to prepare for a future we’re only just beginning to imagine.

Download the executive brief Running Future Cities on Blockchain.


Read the full article Pulling Cities Into The Future With Blockchain

Comments

About Dan Wellers

Dan Wellers is founder and leader of Digital Futures at SAP, a strategic insights and thought leadership discipline that explores how digital technologies drive exponential change in business and society.

Raimund Gross

About Raimund Gross

Raimund Gross is a solution architect and futurist at SAP Innovation Center Network, where he evaluates emerging technologies and trends to address the challenges of businesses arising from digitization. He is currently evaluating the impact of blockchain for SAP and our enterprise customers.

Ulrich Scholl

About Ulrich Scholl

Ulrich Scholl is Vice President of Industry Cloud and Custom Development at SAP. In this role, Ulrich discovers and implements best practices to help further the understanding and adoption of the SAP portfolio of industry cloud innovations.

Tags:

4 Traits Set Digital Leaders Apart From 97% Of The Competition

Vivek Bapat

Like the classic parable of the blind man and the elephant, it seems everyone has a unique take on digital transformation. Some equate digital transformation with emerging technologies, placing their bets on as the Internet of Things, machine learning, and artificial intelligence. Others see it as a way to increase efficiencies and change business processes to accelerate product to market. Some others think of it is a means of strategic differentiation, innovating new business models for serving and engaging their customers. Despite the range of viewpoints, many businesses are still challenged with pragmatically evolving digital in ways that are meaningful, industry-disruptive, and market-leading.

According to a recent study of more than 3,000 senior executives across 17 countries and regions, only a paltry three percent of businesses worldwide have successfully completed enterprise-wide digital transformation initiatives, even though 84% of C-level executives ranks such efforts as “critically important” to the fundamental sustenance of their business.

The most comprehensive global study of its kind, the SAP Center for Business Insight report “SAP Digital Transformation Executive Study: 4 Ways Leaders Set Themselves Apart,” in collaboration with Oxford Economics, identified the challenges, opportunities, value, and key technologies driving digital transformation. The findings specifically analyzed the performance of “digital leaders” – those who are connecting people, things, and businesses more intelligently, more effectively, and creating punctuated change faster than their less advanced rivals.

After analyzing the data, it was eye-opening to see that only three percent of companies (top 100) are successfully realizing their full potential through digital transformation. However, even more remarkable was that these leaders have four fundamental traits in common, regardless of their region of operation, their size, their organizational structure, or their industry.

We distilled these traits in the hope that others in the early stages of transformation or that are still struggling to find their bearings can embrace these principles in order to succeed. Ultimately I see these leaders as true ambidextrous organizations, managing evolutionary and revolutionary change simultaneously, willing to embrace innovation – not just on the edges of their business, but firmly into their core.

Here are the four traits that set these leaders apart from the rest:

Trait #1: They see digital transformation as truly transformational

An overwhelming majority (96%) of digital leaders view digital transformation as a core business goal that requires a unified digital mindset across the entire enterprise. But instead of allowing individual functions to change at their own pace, digital leaders prefer to evolve the organization to help ensure the success of their digital strategies.

The study found that 56% of these businesses regularly shift their organizational structure, which includes processes, partners, suppliers, and customers, compared to 10% of remaining companies. Plus, 70% actively bring lines of business together through cross-functional processes and technologies.

By creating a firm foundation for transformation, digital leaders are further widening the gap between themselves and their less advanced competitors as they innovate business models that can mitigate emerging risks and seize new opportunities quickly.

Trait #2: They focus on transforming customer-facing functions first

Although most companies believe technology, the pace of change, and growing global competition are the key global trends that will affect everything for years to come, digital leaders are expanding their frame of mind to consider the influence of customer empowerment. Executives who build a momentum of breakthrough innovation and industry transformation are the ones that are moving beyond the high stakes of the market to the activation of complete, end-to-end customer experiences.

In fact, 92% of digital leaders have established sophisticated digital transformation strategies and processes to drive transformational change in customer satisfaction and engagement, compared to 22% of their less mature counterparts. As a result, 70% have realized significant or transformational value from these efforts.

Trait #3: They create a virtuous cycle of digital talent

There’s little doubt that the competition for qualified talent is fierce. But for nearly three-quarters of companies that demonstrate digital-transformation leadership, it is easier to attract and retain talent because they are five times more likely to leverage digitization to change their talent management efforts.

The impact of their efforts goes beyond empowering recruiters to identify best-fit candidates, highlight risk factors and hiring errors, and predict long-term talent needs. Nearly half (48%) of digital leaders understand that they must invest heavily in the development of digital skills and technology to drive revenue, retain productive employees, and create new roles to keep up with their digital maturity over the next two years, compared to 30% of all surveyed executives.

Trait #4: They invest in next-generation technology using a bimodal architecture

A couple years ago, Peter Sondergaard, senior vice president at Gartner and global head of research, observed that “CIOs can’t transform their old IT organization into a digital startup, but they can turn it into a bi-modal IT organization. Forty-five percent of CIOs state they currently have a fast mode of operation, and we predict that 75% of IT organizations will be bimodal in some way by 2017.”

Based on the results of the SAP Center for Business Insight study, Sondergaard’s prediction was spot on. As digital leaders dive into advanced technologies, 72% are using a digital twin of the conventional IT organization to operate efficiently without disruption while refining innovative scenarios to resolve business challenges and integrate them to stay ahead of the competition. Unfortunately, only 30% of less advanced businesses embrace this view.

Working within this bimodal architecture is emboldening digital leaders to take on incredibly progressive technology. For example, the study found that 50% of these firms are using artificial intelligence and machine learning, compared to seven percent of all respondents. They are also leading the adoption curve of Big Data solutions and analytics (94% vs. 60%) and the Internet of Things (76% vs. 52%).

Digital leadership is a practice of balance, not pure digitization

Most executives understand that digital transformation is a critical driver of revenue growth, profitability, and business expansion. However, as digital leaders are proving, digital strategies must deliver a balance of organizational flexibility, forward-looking technology adoption, and bold change. And clearly, this approach is paying dividends for them. They are growing market share, increasing customer satisfaction, improving employee engagement, and, perhaps more important, achieving more profitability than ever before.

For any company looking to catch up to digital leaders, the conversation around digital transformation needs to change immediately to combat three deadly sins: Stop investing in one-off, isolated projects hidden in a single organization. Stop viewing IT as an enabler instead of a strategic partner. Stop walling off the rest of the business from siloed digital successes.

As our study shows, companies that treat their digital transformation as an all-encompassing, all-sharing, and all-knowing business imperative will be the ones that disrupt the competitive landscape and stay ahead of a constantly evolving economy.

Follow me on twitter @vivek_bapat 

For more insight on digital leaders, check out the SAP Center for Business Insight report, conducted in collaboration with Oxford Economics,SAP Digital Transformation Executive Study: 4 Ways Leaders Set Themselves Apart.”

Comments

About Vivek Bapat

Vivek Bapat is the Senior Vice President, Global Head of Marketing Strategy and Thought Leadership, at SAP. He leads SAP's Global Marketing Strategy, Messaging, Positioning and related Thought Leadership initiatives.