Sections

A Call For A Shared Connectivity Blueprint For Cities

Emily Porro

With 3.5 billion people currently living in cities and anticipated growth that will bring 70% of the world’s population to urban areas by 2055, making cities smarter isn’t just “cool,” it is necessary to ensuring employment, quality of life, safety, and resilience in the future. According to experts on the “Smart Cities Sustainability” panel held during the Mobile World Congress in Barcelona, four points will be critical to ensuring a smart city is not only successful in the short term, but also sustainable for the future:

  • Share knowledge, don’t reinvent the wheel. Cities like San Jose, New York, and others are creating models and identifying best practices that can be used as a foundation for other cities. Cities need to “work together on a global basis to develop a connectivity blueprint framework for developing smart cities,” said panelist Shrikant Shenwai, CEO Wireless Broadband Alliance.
  • Public/Private partnerships are paramount. According to Selina Lo, CEO of Ruckus Wireless, which has been working to help build the San Jose Smart City Network, private-public partnerships are the best way to approach a smart city network. “The private side can gain rights to city assets – such as right-of-way, power, and utility locations – from the public entity, trading for advertising and sharing costs.”

Ms. Lo illustrated this with an example: LinkNYC, the free public Wi-Fi network in New York City, which is replacing phone booths with advertising kiosks that provide community services to visitors and citizens.

  • Security is important, but it shouldn’t inhibit the consumer. According to Vijay Sammeta, CIO for the City of San Jose, CA, cities need to be good stewards of a consumer’s data without making the security so complex that it is prohibitive. “The industry has done a great job with next-generation hotspots and wifi, and implementation of standards at public access points.”

“Security is important,” Ms. Lo agreed. “But if you make it too painful and you secure it too much, citizens won’t use it.” She went on to emphasize the importance of mechanisms for single sign-on.

  • Start with sustainability in mind. Smart city infastructure should capture additional revenue and taxes for the city. “I know your demographics if you come to my conference, and I will be able to show you socially where like-minded people are hanging out, and incentivize you to do something you wouldn’t have otherwise done. In trade, I’m going to give you HD-quality Netflix streaming,” said Mr. Sammeta. “Google has made lots of money doing this – why can’t cities? It’s the premise behind a sustainable network.”

Montreal’s subway system (STM), the fourth-largest transit system in North America with 1.2 million riders per day, is an excellent example of using mobile connections to monetize public works. The system’s “Merci” precision marketing platform application has increased usage of the public transit system, helped riders discover new destinations, drove traffic to local businesses, and encouraged use of transit beyond commuting.

In a conversation after the event, Sean O’Brien, who leads the SAP Future Cities team, added, “Digital transformation is key to building more prosperous cities. It is how cities are transforming services, engaging with its citizens, and creating digital experiences for natives and tourists alike.”

 

Comments

Emily Porro

About Emily Porro

Emily Porro is a writer and blogger focusing on the people, products, services and technology driving global innovation across industries.

Transform Or Die: What Will You Do In The Digital Economy?

Scott Feldman and Puneet Suppal

By now, most executives are keenly aware that the digital economy can be either an opportunity or a threat. The question is not whether they should engage their business in it. Rather, it’s how to unleash the power of digital technology while maintaining a healthy business, leveraging existing IT investments, and innovating without disrupting themselves.

Yet most of those executives are shying away Businesspeople in a Meeting --- Image by © Monalyn Gracia/Corbisfrom such a challenge. According to a recent study by MIT Sloan and Capgemini, only 15% of CEOs are executing a digital strategy, even though 90% agree that the digital economy will impact their industry. As these businesses ignore this reality, early adopters of digital transformation are achieving 9% higher revenue creation, 26% greater impact on profitability, and 12% more market valuation.

Why aren’t more leaders willing to transform their business and seize the opportunity of our hyperconnected world? The answer is as simple as human nature. Innately, humans are uncomfortable with the notion of change. We even find comfort in stability and predictability. Unfortunately, the digital economy is none of these – it’s fast and always evolving.

Digital transformation is no longer an option – it’s the imperative

At this moment, we are witnessing an explosion of connections, data, and innovations. And even though this hyperconnectivity has changed the game, customers are radically changing the rules – demanding simple, seamless, and personalized experiences at every touch point.

Billions of people are using social and digital communities to provide services, share insights, and engage in commerce. All the while, new channels for engaging with customers are created, and new ways for making better use of resources are emerging. It is these communities that allow companies to not only give customers what they want, but also align efforts across the business network to maximize value potential.

To seize the opportunities ahead, businesses must go beyond sensors, Big Data, analytics, and social media. More important, they need to reinvent themselves in a manner that is compatible with an increasingly digital world and its inhabitants (a.k.a. your consumers).

Here are a few companies that understand the importance of digital transformation – and are reaping the rewards:

  1. Under Armour:  No longer is this widely popular athletic brand just selling shoes and apparel. They are connecting 38 million people on a digital platform. By focusing on this services side of the business, Under Armour is poised to become a lifestyle advisor and health consultant, using his product side as the enabler.
  1. Port of Hamburg: Europe’s second-largest port is keeping carrier trucks and ships productive around the clock. By fusing facility, weather, and traffic conditions with vehicle availability and shipment schedules, the Port increased container handling capacity by 178% without expanding its physical space.
  1. Haier Asia: This top-ranking multinational consumer electronics and home appliances company decided to disrupt itself before someone else did. The company used a two-prong approach to digital transformation to create a service-based model to seize the potential of changing consumer behaviors and accelerate product development. 
  1. Uber: This startup darling is more than just a taxi service. It is transforming how urban logistics operates through a technology trifecta: Big Data, cloud, and mobile.
  1. American Society of Clinical Oncologists (ASCO): Even nonprofits can benefit from digital transformation. ASCO is transforming care for cancer patients worldwide by consolidating patient information with its CancerLinQ. By unlocking knowledge and value from the 97% of cancer patients who are not involved in clinical trials, healthcare providers can drive better, more data-driven decision making and outcomes.

It’s time to take action 

During the SAP Executive Technology Summit at SAP TechEd on October 19–20, an elite group of CIOs, CTOs, and corporate executives will gather to discuss the challenges of digital transformation and how they can solve them. With the freedom of open, candid, and interactive discussions led by SAP Board Members and senior technology leadership, delegates will exchange ideas on how to get on the right path while leveraging their existing technology infrastructure.

Stay tuned for exclusive insights from this invitation-only event in our next blog!
Scott Feldman is Global Head of the SAP HANA Customer Community at SAP. Connect with him on Twitter @sfeldman0.

Puneet Suppal drives Solution Strategy and Adoption (Customer Innovation & IoT) at SAP Labs. Connect with him on Twitter @puneetsuppal.

 

Comments

Scott Feldman and Puneet Suppal

About Scott Feldman and Puneet Suppal

Scott Feldman is the Head of SAP HANA International Customer Community. Puneet Suppal is the Customer Co-Innovation & Solution Adoption Executive at SAP.

What Is Digital Transformation?

Andreas Schmitz

Achieving quantum leaps through disruption and using data in new contexts, in ways designed for more than just Generation Y — indeed, the digital transformation affects us all. It’s time for a detailed look at its key aspects.

Data finding its way into new settings

Archiving all of a company’s internal information until the end of time is generally a good idea, as it gives the boss the security that nothing will be lost. Meanwhile, enabling him or her to create bar graphs and pie charts based on sales trends – preferably in real time, of course – is even better.

But the best scenario of all is when the boss can incorporate data from external sources. All of a sudden, information on factors as seemingly mundane as the weather start helping to improve interpretations of fluctuations in sales and to make precise modifications to the company’s offerings. When the gusts of autumn begin to blow, for example, energy providers scale back solar production and crank up their windmills. Here, external data provides a foundation for processes and decisions that were previously unattainable.

Quantum leaps possible through disruption

While these advancements involve changes in existing workflows, there are also much more radical approaches that eschew conventional structures entirely.

“The aggressive use of data is transforming business models, facilitating new products and services, creating new processes, generating greater utility, and ushering in a new culture of management,” states Professor Walter Brenner of the University of St. Gallen in Switzerland, regarding the effects of digitalization.

Harnessing these benefits requires the application of innovative information and communication technology, especially the kind termed “disruptive.” A complete departure from existing structures may not necessarily be the actual goal, but it can occur as a consequence of this process.

Having had to contend with “only” one new technology at a time in the past, be it PCs, SAP software, SQL databases, or the Internet itself, companies are now facing an array of concurrent topics, such as the Internet of Things, social media, third-generation e-business, and tablets and smartphones. Professor Brenner thus believes that every good — and perhaps disruptive — idea can result in a “quantum leap in terms of data.”

Products and services shaped by customers

It has already been nearly seven years since the release of an app that enables customers to order and pay for taxis. Initially introduced in Berlin, Germany, mytaxi makes it possible to avoid waiting on hold for the next phone representative and pay by credit card while giving drivers greater independence from taxi dispatch centers. In addition, analyses of user data can lead to the creation of new services, such as for people who consistently order taxis at around the same time of day.

“Successful models focus on providing utility to the customer,” Professor Brenner explains. “In the beginning, at least, everything else is secondary.”

In this regard, the private taxi agency Uber is a fair bit more radical. It bypasses the entire taxi industry and hires private individuals interested in making themselves and their vehicles available for rides on the Uber platform. Similarly, Airbnb runs a platform travelers can use to book private accommodations instead of hotel rooms.

Long-established companies are also undergoing profound changes. The German publishing house Axel Springer SE, for instance, has acquired a number of startups, launched an online dating platform, and released an app with which users can collect points at retail. Chairman and CEO Matthias Döpfner also has an interest in getting the company’s newspapers and other periodicals back into the black based on payment models, of course, but these endeavors are somewhat at odds with the traditional notion of publishing houses being involved solely in publishing.

The impact of digitalization transcends Generation Y

Digitalization is effecting changes in nearly every industry. Retailers will likely have no choice but to integrate their sales channels into an omnichannel approach. Seeking to make their data services as attractive as possible, BMW, Mercedes, and Audi have joined forces to purchase the digital map service HERE. Mechanical engineering companies are outfitting their equipment with sensors to reduce downtime and achieve further product improvements.

“The specific potential and risks at hand determine how and by what means each individual company approaches the subject of digitalization,” Professor Brenner reveals. The resulting services will ultimately benefit every customer – not just those belonging to Generation Y, who present a certain basic affinity for digital methods.

“Think of cars that notify the service center when their brakes or drive belts need to be replaced, offer parking assistance, or even handle parking for you,” Brenner offers. “This can be a big help to elderly people in particular.”

Chief digital officers: team members, not miracle workers

Making the transition to the digital future is something that involves not only a CEO or a head of marketing or IT, but the entire company. Though these individuals do play an important role as proponents of digital models, it also takes more than just a chief digital officer alone.

For Professor Brenner, appointing a single person to the board of a DAX company to oversee digitalization is basically absurd. “Unless you’re talking about Da Vinci or Leibnitz born again, nobody could handle such a task,” he states.

In Brenner’s view, this is a topic for each and every department, and responsibilities should be assigned much like on a soccer field: “You’ve got a coach and the players – and the fans, as well, who are more or less what it’s all about.”

Here, the CIO neither competes with the CDO nor assumes an elevated position in the process of digital transformation. Implementing new databases like SAP HANA or Hadoop, leveraging sensor data in both technical and commercially viable ways, these are the tasks CIOs will face going forward.

“There are some fantastic jobs out there,” Brenner affirms.

Want more insight on managing digital transformation? See Three Keys To Winning In A World Of Disruption.

Image via Shutterstock

Comments

Andreas Schmitz

About Andreas Schmitz

Andreas Schmitz is a Freelance Journalist for SAP, covering a wide range of topics from big data to Internet of Things, HR, business innovation and mobile.

Unlock Your Digital Super Powers: How Digitization Helps Companies Be Live Businesses

Erik Marcade and Fawn Fitter

The Port of Hamburg handles 9 million cargo containers a year, making it one of the world’s busiest container ports. According to the Hamburg Port Authority (HPA), that volume doubled in the last decade, and it’s expected to at least double again in the next decade—but there’s no room to build new roads in the center of Hamburg, one of Germany’s historic cities. The port needed a way to move more freight more efficiently with the physical infrastructure it already has.

sap_Q216_digital_double_feature1_images1The answer, according to an article on ZDNet, was to digitize the processes of managing traffic into, within, and back out of the port. By deploying a combination of sensors, telematics systems, smart algorithms, and cloud data processing, the Port of Hamburg now collects and analyzes a vast amount of data about ship arrivals and delays, parking availability, ground traffic, active roadwork, and more. It generates a continuously updated model of current port conditions, then pushes the results through mobile apps to truck drivers, letting them know exactly when ships are ready to drop off or receive containers and optimizing their routes. According to the HPA, they are now on track to handle 25 million cargo containers a year by 2025 without further congestion or construction, helping shipping companies bring more goods and raw materials in less time to businesses and consumers all across Europe.

In the past, the port could only have solved its problem with backhoes and building permits—which, given the physical constraints, means the problem would have been unsolvable. Today, though, software and sensors are allowing it to improve processes and operations to a previously impossible extent. Big Data analysis, data mining, machine learning, artificial intelligence (AI), and other technologies have finally become sophisticated enough to identify patterns not just in terabytes but in petabytes of data, make decisions accordingly, and learn from the results, all in seconds. These technologies make it possible to digitize all kinds of business processes, helping organizations become more responsive to changing market conditions and more able to customize interactions to individual customer needs. Digitization also streamlines and automates these processes, freeing employees to focus on tasks that require a human touch, like developing innovative strategies or navigating office politics.

In short, digitizing business processes is key to ensuring that the business can deliver relevant, personalized responses to the market in real time. And that, in turn, is the foundation of the Live Business—a business able to coordinate multiple functions in order to respond to and even anticipate customer demand at any moment.

Some industries and organizations are on the verge of discovering how business process digitization can help them go live. Others have already started putting it into action: fine-tuning operations to an unprecedented level across departments and at every point in the supply chain, cutting costs while turbocharging productivity, and spotting trends and making decisions at speeds that can only be called superhuman.

Balancing Insight and Action

sap_Q216_digital_double_feature1_images2Two kinds of algorithms drive process digitization, says Chandran Saravana, senior director of advanced analytics at SAP. Edge algorithms operate at the point where customers or other end users interact directly with a sensor, application, or Internet-enabled device. These algorithms, such as speech or image recognition, focus on simplicity and accuracy. They make decisions based primarily on their ability to interpret input with precision and then deliver a result in real time.

Edge algorithms work in tandem with, and sometimes mature into, server-level algorithms, which report on both the results of data analysis and the analytical process itself. For example, the complex systems that generate credit scores assess how creditworthy an individual is, but they also explain to both the lender and the credit applicant why a score is low or high, what factors went into calculating it, and what an applicant can do to raise the score in the future. These server-based algorithms gather data from edge algorithms, learn from their own results, and become more accurate through continuous feedback. The business can then track the results over time to understand how well the digitized process is performing and how to improve it.

sap_Q216_digital_double_feature1_images5From Data Scarcity to a Glut

To operate in real time, businesses need an accurate data model that compares what’s already known about a situation to what’s happened in similar situations in the past to reach a lightning-fast conclusion about what’s most likely to happen next. The greatest barrier to this level of responsiveness used to be a lack of data, but the exponential growth of data volumes in the last decade has flipped this problem on its head. Today, the big challenge for companies is having too much data and not enough time or power to process it, says Saravana.

Even the smartest human is incapable of gathering all the data about a given situation, never mind considering all the possible outcomes. Nor can a human mind reach conclusions at the speed necessary to drive Live Business. On the other hand, carefully crafted algorithms can process terabytes or even petabytes of data, analyze patterns and detect outliers, arrive at a decision in seconds or less—and even learn from their mistakes (see How to Train Your Algorithm).

How to Train Your Algorithm 

The data that feeds process digitization can’t just simmer.
It needs constant stirring.

Successfully digitizing a business process requires you to build a model of the business process based on existing data. For example, a bank creates a customer record that includes not just the customer’s name, address, and date of birth but also the amount and date of the first deposit, the type of account, and so forth. Over time, as the customer develops a history with the bank and the bank introduces new products and services, customer records expand to include more data. Predictive analytics can then extrapolate from these records to reach conclusions about new customers, such as calculating the likelihood that someone who just opened a money market account with a large balance will apply for a mortgage in the next year.

Germany --- Germany, Lower Bavaria, Man training English Springer Spaniel in grass field --- Image by © Roman M‰rzinger/Westend61/CorbisTo keep data models accurate, you have to have enough data to ensure that your models are complete—that is, that they account for every possible predictable outcome. The model also has to push outlying data and exceptions, which create unpredictable outcomes, to human beings who can address their special circumstances. For example, an algorithm may be able to determine that a delivery will fail to show up as scheduled and can point to the most likely reasons why, but it can only do that based on the data it can access. It may take a human to start the process of locating the misdirected shipment, expediting a replacement, and establishing what went wrong by using business knowledge not yet included in the data model.

Indeed, data models need to be monitored for relevance. Whenever the results of a predictive model start to drift significantly from expectations, it’s time to examine the model to determine whether you need to dump old data that no longer reflects your customer base, add a new product or subtract a defunct one, or include a new variable, such as marital status or length of customer relationship that further refines your results.

It’s also important to remember that data doesn’t need to be perfect—and, in fact, probably shouldn’t be, no matter what you might have heard about the difficulty of starting predictive analytics with lower-quality data. To train an optical character recognition system to recognize and read handwriting in real time, for example, your samples of block printing and cursive writing data stores also have to include a few sloppy scrawls so the system can learn to decode them.

On the other hand, in a fast-changing marketplace, all the products and services in your database need consistent and unchanging references, even though outside the database, names, SKUs, and other identifiers for a single item may vary from one month or one order to the next. Without consistency, your business process model won’t be accurate, nor will the results.

Finally, when you’re using algorithms to generate recommendations to drive your business process, the process needs to include opportunities to test new messages and products against existing successful ones as well as against random offerings, Saravana says. Otherwise, instead of responding to your customers’ needs, your automated system will actually control their choices by presenting them with only a limited group of options drawn from those that have already received the most
positive results.

Any process is only as good as it’s been designed to be. Digitizing business processes doesn’t eliminate the possibility of mistakes and problems; but it does ensure that the mistakes and problems that arise are easy to spot and fix.

From Waste to Gold

Organizations moving to digitize and streamline core processes are even discovering new business opportunities and building new digitized models around them. That’s what happened at Hopper, an airfare prediction app firm in Cambridge, Massachusetts, which discovered in 2013 that it could mine its archives of billions of itineraries to spot historical trends in airfare pricing—data that was previously considered “waste product,” according to Hopper’s chief data scientist, Patrick Surry.

Hopper developed AI algorithms to correlate those past trends with current fares and to predict whether and when the price of any given flight was likely to rise or fall. The results were so accurate that Hopper jettisoned its previous business model. “We check up to 3 billion itineraries live, in real time, each day, then compare them to the last three to four years of historical airfare data,” Surry says. “When consumers ask our smartphone app whether they should buy now or wait, we can tell them, ‘yes, that’s a good deal, buy it now,’ or ‘no, we think that fare is too expensive, we predict it will drop, and we’ll alert you when it does.’ And we can give them that answer in less than one second.”

When consumers ask our smartphone app whether they should buy now or wait, we can tell them, ‘yes, that’s a good deal, buy it now’.

— Patrick Surry, chief data scientist, Hopper

While trying to predict airfare trends is nothing new, Hopper has told TechCrunch that it can not only save users up to 40% on airfares but it can also find them the lowest possible price 95% of the time. Surry says that’s all due to Hopper’s algorithms and data models.

The Hopper app launched on iOS in January 2015 and on Android eight months later. The company also switched in September 2015 from directing customers to external travel agencies to taking bookings directly through the app for a small fee. The Hopper app has already been downloaded to more than 2 million phones worldwide.

Surry predicts that we’ll soon see sophisticated chatbots that can start with vague requests from customers like “I want to go somewhere warm in February for less than $500,” proceed to ask questions that help users narrow their options, and finally book a trip that meets all their desired parameters. Eventually, he says, these chatbots will be able to handle millions of interactions simultaneously, allowing a wide variety of companies to reassign human call center agents to the handling of high-value transactions and exceptions to the rules built into the digitized booking process.

Port of Hamburg Lets the Machines Untangle Complexity

In early 2015, AI experts told Wired magazine that at least another 10 years would pass before a computer could best the top human players at Go, an ancient game that’s exponentially harder than chess. Yet before the end of that same year, Wired also reported that machine learning techniques drove Google’s AlphaGo AI to win four games out of five against one of the world’s top Go players. This feat proves just how good algorithms have become at managing extremely complex situations with multiple interdependent choices, Saravana points out.

The Port of Hamburg, which has digitized traffic management for an estimated 40,000 trucks a day, is a good example. In the past, truck drivers had to show up at the port to check traffic and parking message boards. If they arrived before their ships docked, they had to drive around or park in the neighboring residential area, contributing to congestion and air pollution while they waited to load or unload. Today, the HPA’s smartPORT mobile app tracks individual trucks using telematics. It customizes the information that drivers receive based on location and optimizes truck routes and parking in real time so drivers can make more stops a day with less wasted time and fuel.

The platform that drives the smartPORT app also uses sensor data in other ways: it tracks wind speed and direction and transmits the data to ship pilots so they can navigate in and out of the port more safely. It monitors emissions and their impact on air quality in various locations in order to adjust operations in real time for better control over environmental impact. It automatically activates streetlights for vehicle and pedestrian traffic, then switches them off again to save energy when the road is empty. This ability to coordinate and optimize multiple business functions on the fly makes the Port of Hamburg a textbook example of a Live Business.

Digitization Is Not Bounded by Industry

Other retail and B2B businesses of all types will inevitably join the Port of Hamburg in further digitizing processes, both in predictable ways and in those we can only begin to imagine.

sap_Q216_digital_double_feature1_images4Customer service, for example, is likely to be in the vanguard. Automated systems already feed information about customers to online and phone-based service representatives in real time, generate cross-selling and upselling opportunities based on past transactions, and answer customers’ frequently asked questions. Saravana foresees these systems becoming even more sophisticated, powered by AI algorithms that are virtually indistinguishable from human customer service agents in their ability to handle complex live interactions in real time.

In manufacturing and IT, Sven Bauszus, global vice president and general manager for predictive analytics at SAP, forecasts that sensors and predictive analysis will further automate the process of scheduling and performing maintenance, such as monitoring equipment for signs of failure in real time, predicting when parts or entire machines will need replacement, and even ordering replacements preemptively. Similarly, combining AI, sensors, data mining, and other technologies will enable factories to optimize workforce assignments in real time based on past trends, current orders, and changing market conditions.

Public health will be able to go live with technology that spots outbreaks of infectious disease, determines where medical professionals and support personnel are needed most and how many to send, and helps ensure that they arrive quickly with the right medication and equipment to treat patients and eradicate the root cause. It will also make it easier to track communicable illnesses, find people who are symptomatic, and recommend approaches to controlling the spread of the illness, Bauszus says.

He also predicts that the insurance industry, which has already begun to digitize its claims-handling processes, will refine its ability to sort through more claims in less time with greater accuracy and higher customer satisfaction. Algorithms will be better and faster at flagging claims that have a high probability of being fraudulent and then pushing them to claims inspectors for investigation. Simultaneously, the same technology will be able to identify and resolve valid claims in real time, possibly even cutting a check or depositing money directly into the insured person’s bank account within minutes.

Financial services firms will be able to apply machine learning, data mining, and AI to accelerate the process of rating borrowers’ credit and detecting fraud. Instead of filling out a detailed application, consumers might be able to get on-the-spot approval for a credit card or loan after inputting only enough information to be identified. Similarly, banks will be able to alert customers to suspicious transactions by text message or phone call—not within a day or an hour, as is common now, but in a minute or less.

Pitfalls and Possibilities

As intelligent as business processes can be programmed to be, there will always be a point beyond which they have to be supervised. Indeed, Saravana forecasts increasing regulation around when business processes can and can’t be digitized. Especially in areas involving data security, physical security, and health and safety, it’s one thing to allow machines to parse data and arrive at decisions to drive a critical business process, but it’s another thing entirely to allow them to act on those decisions without human oversight.

Automated, impersonal decision making is fine for supply chain automation, demand forecasting, inventory management, and other processes that need faster-than-human response times. In human-facing interactions, though, Saravana insists that it’s still best to digitize the part of the process that generates decisions, but leave it to a human to finalize the decision and decide how to put it into action.

“Any time the interaction is machine-to-machine, you don’t need a human to slow the process down,” he says. “But when the interaction involves a person, it’s much more tricky, because people have preferences, tastes, the ability to try something different, the ability to get fatigued—people are only statistically predictable.”

For example, technology has made it entirely possible to build a corporate security system that can gather information from cameras, sensors, voice recognition technology, and other IP-enabled devices. The system can then feed that information in a steady stream to an algorithm designed to identify potentially suspicious activity and act in real time to prevent or stop it while alerting the authorities. But what happens when an executive stays in the office unusually late to work on a presentation and the security system misidentifies her as an unauthorized intruder? What if the algorithm decides to lock the emergency exits, shut down the executive’s network access, or disable her with a Taser instead of simply sending an alert to the head of security asking what to do while waiting for the police to come?

sap_Q216_digital_double_feature1_images6The Risk Is Doing Nothing

The greater, if less dramatic, risk associated with digitizing business processes is simply failing to pursue it. It’s true that taking advantage of new digital technologies can be costly in the short term. There’s no question that companies have to invest in hardware, software, and qualified staff in order to prepare enormous data volumes for storage and analysis. They also have to implement new data sources such as sensors or Internet-connected devices, develop data models, and create and test algorithms to drive business processes that are currently analog. But as with any new technology, Saravana advises, it’s better to start small with a key use case, rack up a quick win with high ROI, and expand gradually than to drag your heels out of a failure to grasp the long-term potential.

The economy is digitizing rapidly, but not evenly. According to the McKinsey Global Institute’s December 2015 Digital America report, “The race to keep up with technology and put it to the most effective business use is producing digital ‘haves’ and ‘have-mores’—and the large, persistent gap between them is becoming a decisive factor in competition across the economy.” Companies that want to be among the have-mores need to commit to Live Business today. Failing to explore it now will put them on the wrong side of the gap and, in the long run, rack up a high price tag in unrealized efficiencies and missed opportunities. D!

Comments

Erik Marcade

About Erik Marcade

Erik Marcade is vice president of Advanced Analytics Products at SAP.

Tags:

Why Manufacturers Must Run Live

Harry Blunt

Whether you label it digitization or digitalization, the digital economy is rewriting the rules of business. In this new environment, companies of all sizes must operate their businesses differently while freeing themselves from the constraints of the past.

It’s a time in business where the consumer is king, and access to information and product choice is everywhere. Manufacturers will only survive and thrive if they can Run Live.

As a manufacturer, what can you achieve by running live?

When manufacturers Run Live, they can operate without boundaries, in the moment at speed, with unique and actionable business insights. Running a live manufacturing business restores the balance of sales influence between the manufacturer (seller) and the consumers (buyers) they service. Manufacturers that Run Live do so with more customer insight and less business complexity. They operate with far greater innovation, speed, and predictability, all of which is required to successfully compete in today’s highly disruptive digital economy.

While a digital business is filled with possibilities, it can be equally unsettling and chaotic. It is important that companies Run Live if for no other reason than to bring added order and control to a business environment that is largely characterized by business disruption.

When companies are able to run their operations live with predictable recurring revenues and costs, they are far more profitable and less susceptible to being victimized by market changes. Successful companies have historically always balanced the need to generate more recurring revenue with reduced operating costs. What is new is the demand for improved live business agility and an enhanced level of customer insight and business ecosystem interaction, which are now required to ensure companies can continue to run with predictable results at optimal operating costs.

A company’s focus toward innovation and improving operating efficiencies must become increasingly outwardly focused, starting first with the customer and then extending into the manufacturer’s business ecosystem. Trying to manage corporate innovation and operating efficiencies within department silos, or even within a company’s four walls, is a dated business operating model that won’t work to service an outwardly driven and customer-centric digital economy.

Put customers at the core of your live business

To meet the demands of innovating and operating cost-efficiently in the digital economy, manufacturers must begin with an external view of the world, and that view must always begin with the customer.

Manufacturers must service their customers and run their operations as live, digitized extended supply chains, because while the world has become more connected, it is also far more interdependent. How well a company manages its risks and opportunities around these live, digital interdependencies has a direct impact on the company’s ability to service its clients and on its potential recurring revenues and operating costs.

To achieve differentiated customer value and true operating efficiencies in managing these digital interdependencies, manufacturers must deliver superior customer experiences and operational excellence in four key areas:

  1. Customer-centricity: Mastering “end-to-end” omnichannel commerce from initial order engagement through demand response and same-day product delivery
  1. Individualized products: Having the flexibility to design and manufacture to a lot size of one at mass-production cost efficiencies
  1. Resource scarcity: Developing and safeguarding people talent and assets while ensuring sustainable and compliant products and operations
  1. Sharing economy: Leveraging business networks and digital connectivity to further empower innovation and operating efficiencies throughout the extended business ecosystem

Continue your education on live business and the extended supply chain

On June 14–15, over 500 attendees from small and large manufacturers will gather in Lombard, Illinois, to discuss how leading manufacturers are driving transformational change by leveraging a live and digitized extended supply chain.

Learn how 3D printing, the Internet of Things, cloud computing, business networks, and the SAP S/4HANA platform are providing manufacturers with the digital core and solutions they need to reinvent and reimagine their businesses.

With keynotes and presentations from leading industry analysts and SAP experts, customer case studies, and solution demonstrations, the forum will help you come away with the knowledge you require to build a customer-centric, live manufacturing business that delivers greater innovation and a more predictable and sustainable future.

The event is free is to customers. Learn more by visiting the event website: SAP Manufacturing Industries Forum 2016.

Comments

Harry Blunt

About Harry Blunt

Harry Blunt is the NA Marketing Director for the SAP Extended Supply Chain solution portfolio. The SAP extended supply chain portfolio helps companies run as "Live" digitized businesses while managing critical interdependent business processes from initial product ideas up through product deliveries and services. Incorporating innovations like the Internet of Things, Cloud Computing, and the SAP S/4HANA operating platform, coupled with tightly integrated mobile applications and business networks, we help our customers leverage the capabilities of their entire business ecosystem to obtain greater innovation, stakeholder collaboration, and improved business performance.