Sections

90% Of Businesses To Utilize The Private Cloud Network In The Next Decade

Andre Smith

Public clouds (e.g., Google Cloud, Amazon Cloud Drive) are financially efficient, easy to manage, pay-as-you-go cloud services available to all members of the public, either for free or for a small monthly cost. The public cloud has given individuals and businesses, big and small, resources for storing and sharing data.

PMC Telecom, trading since 1991, has noticed considerable demand for cloud-based services. Luke Cropper, head of hosted, says PMC Telecom’s customers have always required phone systems; but they are no longer happy with simple plug-and-play handsets. They want services available only through cloud-based services, such as the freedom to use any device to answer a call. New technology such as hosted VoIP enables customers to advance their telecom solutions in a way that traditional systems cannot rival.

The public cloud has paved the way for the future of telecommunications and data technology and has the benefit of being available to multiple businesses and members of the public, but it’s limited by being a one-size-fits-all model. As the cloud-based technology hype dies down and it is no longer seen as an exciting, innovative novelty, businesses are beginning to request more to suit the needs of their specific company.

The private cloud – much like the public cloud – offers numerous benefits, including scalability, flexibility, and security, with the added bonus of being solely dedicated to one specific company or business. This means that companies can take full advantage of a tailor-made cloud service.

Businesses can gain by utilizing the private cloud network through faster ROI, offsite backup, complete mobility, and higher data security.

A global survey conducted by cloud solutions provider QualiSystems revealed that 30% of workplace cloud data usage is managed through private cloud systems, with a further 10% predicted to switch from public to private in the next year.

The initial cost of using a private cloud network is higher than that of its public counterpart. However companies can save up to 50% on long-term costs by opting to go private, with operating expenses often significantly lower than public cloud costs (as seen in this case study in the International Journal of Computer Science & Information Technology).

The capital expenditure on switching to a private cloud service is high compared to the initial switch to public cloud, which is often free of charge. However, as the case study above shows, the operating expenses of a private cloud network over a three-year period are nearly a quarter of the costs of public cloud operating expenses, bringing the three-year total cost of using the private cloud to almost half of the cost of using the public cloud.

Cost is a huge influence when it comes to decision making for big businesses, however the leading drawback of using a public cloud service is the security risk potential that comes with a shared environment. Logically, a private network is far more security efficient that a shared public one. Therefore, more big businesses with sensitive data are making the switch to private in order to tighten security of their data.

The requirements of the ever-growing development and operations field are becoming greater all the time, with cloud providers struggling to keep up. The QualiSystems survey revealed that cloud service providers don’t have the ability to meet the demand of IaaS (infrastructure as a service) within an efficient timescale.

Seventy-five percent of those questioned fail to deliver IaaS within the same day that it is required; with the majority of companies needing almost a week to meet the requirements of their users.

Over 90% of businesses now use a type of cloud-based service for their company needs, an impressive statistic considering that the cloud only really became popular in 2002 thanks to Amazon Web Services and furthered by Amazon Elastic Compute Cloud in 2006. Its popularity is unsurprising since the technology comes with so many benefits that companies would be foolish not to adapt their systems to maximize business potential. The private cloud is simply the new wave of technology that is heavily weighted with numerous benefits.

From this, its predictable that (just like with the first generation of cloud-based services), 90% of businesses will be utilizing a private cloud network in the next decade.

IoT and Industry 4.0 may have more impact on the future of your business than anything else on earth. Learn what the experts this means for business in Myth-Busting: The Networked Economy.

Comments

About Andre Smith

An Internet, Marketing and E-Commerce specialist with several years of experience in the industry. He has watched as the world of online business has grown and adapted to new technologies, and he has made it his mission to help keep businesses informed and up to date.

How Artificial Intelligence Will Transform Tomorrow’s Digital Supply Chain

Alina Gross

Artificial intelligence (AI) may sound futuristic, but it’s a real-life breakthrough that exists in the present. Anyone who interacts with an online search engine, shops on Amazon, owns a self-parking car, or talks to voice-powered personal assistants like Siri or Alexa is using AI.

AI is a field of computer science in which a machine is equipped with the ability to mimic the cognitive functions of a human. An AI machine can make decisions or predictions based on its past experiences, or it can respond to entirely new scenarios. When given a goal, not only does it attempt to achieve its objective, it continuously tries to improve upon its past performance.

Revolutionizing the digital supply chain

Within five years, 50% of manufacturing supply chains will be robotically and digitally controlled and able to provide direct-to-consumer and home shipments, according to IDC Manufacturing Insights. Additionally, 47% of supply chain leaders believe AI is disruptive and important with respect to supply chain strategies, per a 2016 SCM World survey. With that in mind, 85% of organizations have already adopted or will adopt AI technology into their supply chains within one year, according to a 2016 Accenture report.

Supply chains need AI to aggregate their mass amounts of data. In the supply chain, AI can analyze large data sets and recommend customer service and operations improvements while supporting better working capital management. As corporate systems become more interconnected, providing access to a wider breadth of supply chain data, the opportunity to leverage AI increases.

Let’s look at the potential benefits of using AI to link transportation data with order data:

A logistics enterprise ensures the delivery of a product within two days. With AI, the carrier can view past performances from shipping a similar product on a specific day, using a particular route, which reveals there’s a 25% chance the order will arrive in four days, not two. This information supplies customer service and supply chain professionals with proactive alerts of potential fulfillment challenges.

To take this a step further, AI could also compare historical shipping data to the customer’s requested delivery date to provide recommendations on whether this particular carrier’s performance meets requirements, or if you need to consider a different logistics enterprise that is 15% more expensive, but 25% more likely to deliver the product on time.

Step by step to a more efficient supply chain with AI

There are many opportunities to use AI throughout the supply chain, from buying raw materials/components and converting them into finished products to selling and delivering items to customers. Supply chains can also use AI to end repetitive manual tasks and begin automating processes. This can enable companies to reallocate time and resources to their core business, and other high-value, judgment-based jobs, by using AI for low-value, high-frequency activities.

In an AI-driven selling platform, chatbots can manage many of the sales, customer service, and operations tasks traditionally handled by humans, including interacting with buyers, taking orders, and passing those orders through the supply chain. In warehouse operations, AI-capable robotics and sensors can enable organizations to enhance stacking and retrieval, order picking, stock-level management, and re-ordering processes.

Amazon is currently combining automation with human labor to increase productivity by using robots that can glide quickly across the floor to rearrange items on shelves into neatly organized rows, or alert human workers when they need to stack the shelves with new products or retrieve goods for packaging. And Logistics company DHL is using AI and automation to create self-sufficient forklifts that understand what products need to be moved, where they need to be moved, and when they need to be moved.

Supply chain companies see a path forward with AI

Leveraging AI is an important next step for supply chain companies looking to lower costs and improve productivity. It can enable your organization to spend less time on repetitive processes, such as planning, monitoring, and coordinating, and focus more on innovation and growth.

AI still needs careful monitoring, however, as well as experienced and knowledgeable logistics and operations professionals to ensure it’s being used to its maximum potential.

For more on how AI and advanced tech can help boost your business, see Next-Gen Technology Separates Digital Leaders From The Rest.

Comments

Alina Gross

About Alina Gross

Alina Gross is currently pursuing her BA in international business at Heilbronn University. She plans on deepening her knowledge by adding an MA in international marketing. During her six-month, full-time internship at SAP, she has focused on marketing and project management topics within the field of supply chain, especially around event management and social media.

The Intelligent Supply Chain: A Use Case For Artificial Intelligence

Dr. Ravi Prakash Mathur

The term artificial intelligence (AI) invokes images of robot uprisings, space missions to galaxies far, far away, and lab-created clones that make humans immortal. For years, thought-provoking talks by professors have entertained the notion of whether AI is—or ever will be—self-aware. The more adventurous among us may be drawn toward theosophical discussions on creationism or debates about the realities and influences of the quantum world.

Current thinking about AI may border on science vision (if not science fiction or philosophy)—perhaps for a good reason. Technologies once imagined only on the movie screen now bring convenience and value to our daily lives. Some examples include gestural interfaces, machine-aided purchases, facial recognition, autonomous cars, miniature drones, ubiquitous advertising, and electronic surveillance. Machines are now making predictions on trading stocks, customer purchases, traffic flows, and crime—much as we saw in the 2002 movie “Minority Report.”

From movie screen to real-world applications

Technology leaders have placed big bets on technologies such as brain-computer interfaces, AI in medicine, and deep learning and machine learning tools. AI is expected to lead the new economy, which is becoming known as the Fourth Industrial Revolution or the Second Machine Age. AI is at the forefront of business innovation, along with emerging technologies such as robotics, the Internet of Things3D printingquantum computing and nanotechnology.

Companies are still deciding how AI can be designed to fit into their processes. However, burning questions persist around whether self-learning machines will replace or assist humans in white-collar and blue-collar jobs:

  • Can machines learn common sense and empathy?
  • Who owns the insights that are generated by AI technology, and who owns the responsibility for an erroneous decision made by a machine?
  • Can you teach a machine how to make a decision when dealing with an ethical dilemma?

While these concerns still require much deliberation, most industries understand that the application of AI in businesses brings immense potential. Currently, the top 10 use cases for the technology are data security, personal privacy, financial trading, healthcare, marketing personalization, fraud detection, recommendations, online search, natural language processing (NLP), and smart cars.

Considering how quickly these new technologies are adopted and adapted to new use cases, it is only a matter of time before we start seeing AI capabilities become a part of the fabric of normal business processes. While routine transactions have already been automated, many companies that are higher on the learning curve use predictive and prescriptive analytics to guide their operations.

In the supply chain management function, people talk about degrees of autonomy in the planning process. From use of historical data for planning, it goes through use of automation that can be overridden and ends at nonoptional automation, where planners cannot review the recommendations of the algorithms. The algorithmic supply chain requires organizational maturity and cultural readiness to embed and regularly rely on systems. The concept of an intelligent supply chain goes a step further by incorporating self-learning capabilities of the machine to make better supply-chain decisions.

An opportunity to “learn” and improve–without disruption

Common wisdom tells us that organisations compete on the strength of their supply chain ecosystems. Future organisations would compete on the strength of intelligence embedded in their systems. Ultimately, the winner will be the supply chain that learns most quickly with greatest precision.

At a fundamental level, machine-learning algorithms are a teaching set of data. The machine then answers a question by adding every possible correct or incorrect answer to the teaching set. The algorithm keeps getting better and smarter over time.

Organisations learn in a similar fashion: Every organisation has its own embedded intelligence, which manifests itself through the behavior of its managers and their response to the environment. Supply-chain managers use it to review and modify machine-generated forecasts, production plans, or procurement plans.

Putting a self-learning loop into the system will allow a machine to analyse, for example, why a manual override was made to its recommendation, and it can then check for it during the next cycle. This capability is helpful with managing transactions such as fixing incorrect settings, changing norms, or addressing evolving market dynamics. Over a period of time, machines would learn how managers prioritize their plans based on emerging business scenarios, not just optimization algorithms.

For more on how advanced technology is transforming traditional business models, see Are You Joining The Machine Learning Revolution?

Comments

Dr. Ravi Prakash Mathur

About Dr. Ravi Prakash Mathur

Dr. Ravi Prakash Mathur is Senior Director of Supply Chain Management (SCM) and Head of Logistics and Central Planning at Dr. Reddy’s Laboratories Ltd. He heads the global logistics, central planning, and central sourcing for the pharmaceutical organization. Winner of the 2015 Top 25 Digitalist Thought Leaders of India award from SAP, Dr. Mathur is an author, coach, and supply chain professional with 23 years of experience and is based in Hyderabad. He is also actively involved in academic activities and is an internal trainer for DRL for negotiation skills and SCM. In 2014, he co-authored the book “Quality Assurance in Pharmaceuticals & Operations Management and Industrial Safety” for Dr. B. R. Ambedkar University, Hyderabad. He is also member of The Departmental Visiting Committee (DVC) for Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad. Professional recognitions include a citation from World Bank and International Finance Corporation for his contribution to their publication “Doing Business in 2006” and the winner of the Logistics-Week Young Achiever in Supply Chain Award for 2012.

Data Lakes: Deep Insights

Timo Elliott, John Schitka, Michael Eacrett, and Carolyn Marsan

Dan McCaffrey has an ambitious goal: solving the world’s looming food shortage.

As vice president of data and analytics at The Climate Corporation (Climate), which is a subsidiary of Monsanto, McCaffrey leads a team of data scientists and engineers who are building an information platform that collects massive amounts of agricultural data and applies machine-learning techniques to discover new patterns. These analyses are then used to help farmers optimize their planting.

“By 2050, the world is going to have too many people at the current rate of growth. And with shrinking amounts of farmland, we must find more efficient ways to feed them. So science is needed to help solve these things,” McCaffrey explains. “That’s what excites me.”

“The deeper we can go into providing recommendations on farming practices, the more value we can offer the farmer,” McCaffrey adds.

But to deliver that insight, Climate needs data—and lots of it. That means using remote sensing and other techniques to map every field in the United States and then combining that information with climate data, soil observations, and weather data. Climate’s analysts can then produce a massive data store that they can query for insights.

Meanwhile, precision tractors stream data into Climate’s digital agriculture platform, which farmers can then access from iPads through easy data flow and visualizations. They gain insights that help them optimize their seeding rates, soil health, and fertility applications. The overall goal is to increase crop yields, which in turn boosts a farmer’s margins.

Climate is at the forefront of a push toward deriving valuable business insight from Big Data that isn’t just big, but vast. Companies of all types—from agriculture through transportation and financial services to retail—are tapping into massive repositories of data known as data lakes. They hope to discover correlations that they can exploit to expand product offerings, enhance efficiency, drive profitability, and discover new business models they never knew existed.

The internet democratized access to data and information for billions of people around the world. Ironically, however, access to data within businesses has traditionally been limited to a chosen few—until now. Today’s advances in memory, storage, and data tools make it possible for companies both large and small to cost effectively gather and retain a huge amount of data, both structured (such as data in fields in a spreadsheet or database) and unstructured (such as e-mails or social media posts). They can then allow anyone in the business to access this massive data lake and rapidly gather insights.

It’s not that companies couldn’t do this before; they just couldn’t do it cost effectively and without a lengthy development effort by the IT department. With today’s massive data stores, line-of-business executives can generate queries themselves and quickly churn out results—and they are increasingly doing so in real time. Data lakes have democratized both the access to data and its role in business strategy.

Indeed, data lakes move data from being a tactical tool for implementing a business strategy to being a foundation for developing that strategy through a scientific-style model of experimental thinking, queries, and correlations. In the past, companies’ curiosity was limited by the expense of storing data for the long term. Now companies can keep data for as long as it’s needed. And that means companies can continue to ask important questions as they arise, enabling them to future-proof their strategies.

Prescriptive Farming

Climate’s McCaffrey has many questions to answer on behalf of farmers. Climate provides several types of analytics to farmers including descriptive services, which are metrics about the farm and its operations, and predictive services related to weather and soil fertility. But eventually the company hopes to provide prescriptive services, helping farmers address all the many decisions they make each year to achieve the best outcome at the end of the season. Data lakes will provide the answers that enable Climate to follow through on its strategy.

Behind the scenes at Climate is a deep-science data lake that provides insights, such as predicting the fertility of a plot of land by combining many data sets to create accurate models. These models allow Climate to give farmers customized recommendations based on how their farm is performing.

“Machine learning really starts to work when you have the breadth of data sets from tillage to soil to weather, planting, harvest, and pesticide spray,” McCaffrey says. “The more data sets we can bring in, the better machine learning works.”

The deep-science infrastructure already has terabytes of data but is poised for significant growth as it handles a flood of measurements from field-based sensors.

“That’s really scaling up now, and that’s what’s also giving us an advantage in our ability to really personalize our advice to farmers at a deeper level because of the information we’re getting from sensor data,” McCaffrey says. “As we roll that out, our scale is going to increase by several magnitudes.”

Also on the horizon is more real-time data analytics. Currently, Climate receives real-time data from its application that streams data from the tractor’s cab, but most of its analytics applications are run nightly or even seasonally.

In August 2016, Climate expanded its platform to third-party developers so other innovators can also contribute data, such as drone-captured data or imagery, to the deep-science lake.

“That helps us in a lot of ways, in that we can get more data to help the grower,” McCaffrey says. “It’s the machine learning that allows us to find the insights in all of the data. Machine learning allows us to take mathematical shortcuts as long as you’ve got enough data and enough breadth of data.”

Predictive Maintenance

Growth is essential for U.S. railroads, which reinvest a significant portion of their revenues in maintenance and improvements to their track systems, locomotives, rail cars, terminals, and technology. With an eye on growing its business while also keeping its costs down, CSX, a transportation company based in Jacksonville, Florida, is adopting a strategy to make its freight trains more reliable.

In the past, CSX maintained its fleet of locomotives through regularly scheduled maintenance activities, which prevent failures in most locomotives as they transport freight from shipper to receiver. To achieve even higher reliability, CSX is tapping into a data lake to power predictive analytics applications that will improve maintenance activities and prevent more failures from occurring.

Beyond improving customer satisfaction and raising revenue, CSX’s new strategy also has major cost implications. Trains are expensive assets, and it’s critical for railroads to drive up utilization, limit unplanned downtime, and prevent catastrophic failures to keep the costs of those assets down.

That’s why CSX is putting all the data related to the performance and maintenance of its locomotives into a massive data store.

“We are then applying predictive analytics—or, more specifically, machine-learning algorithms—on top of that information that we are collecting to look for failure signatures that can be used to predict failures and prescribe maintenance activities,” says Michael Hendrix, technical director for analytics at CSX. “We’re really looking to better manage our fleet and the maintenance activities that go into that so we can run a more efficient network and utilize our assets more effectively.”

“In the past we would have to buy a special storage device to store large quantities of data, and we’d have to determine cost benefits to see if it was worth it,” says Donna Crutchfield, assistant vice president of information architecture and strategy at CSX. “So we were either letting the data die naturally, or we were only storing the data that was determined to be the most important at the time. But today, with the new technologies like data lakes, we’re able to store and utilize more of this data.”

CSX can now combine many different data types, such as sensor data from across the rail network and other systems that measure movement of its cars, and it can look for correlations across information that wasn’t previously analyzed together.

One of the larger data sets that CSX is capturing comprises the findings of its “wheel health detectors” across the network. These devices capture different signals about the bearings in the wheels, as well as the health of the wheels in terms of impact, sound, and heat.

“That volume of data is pretty significant, and what we would typically do is just look for signals that told us whether the wheel was bad and if we needed to set the car aside for repair. We would only keep the raw data for 10 days because of the volume and then purge everything but the alerts,” Hendrix says.

With its data lake, CSX can keep the wheel data for as long as it likes. “Now we’re starting to capture that data on a daily basis so we can start applying more machine-learning algorithms and predictive models across a larger history,” Hendrix says. “By having the full data set, we can better look for trends and patterns that will tell us if something is going to fail.”

Another key ingredient in CSX’s data set is locomotive oil. By analyzing oil samples, CSX is developing better predictions of locomotive failure. “We’ve been able to determine when a locomotive would fail and predict it far enough in advance so we could send it down for maintenance and prevent it from failing while in use,” Crutchfield says.

“Between the locomotives, the tracks, and the freight cars, we will be looking at various ways to predict those failures and prevent them so we can improve our asset allocation. Then we won’t need as many assets,” she explains. “It’s like an airport. If a plane has a failure and it’s due to connect at another airport, all the passengers have to be reassigned. A failure affects the system like dominoes. It’s a similar case with a railroad. Any failure along the road affects our operations. Fewer failures mean more asset utilization. The more optimized the network is, the better we can service the customer.”

Detecting Fraud Through Correlations

Traditionally, business strategy has been a very conscious practice, presumed to emanate mainly from the minds of experienced executives, daring entrepreneurs, or high-priced consultants. But data lakes take strategy out of that rarefied realm and put it in the environment where just about everything in business seems to be going these days: math—specifically, the correlations that emerge from applying a mathematical algorithm to huge masses of data.

The Financial Industry Regulatory Authority (FINRA), a nonprofit group that regulates broker behavior in the United States, used to rely on the experience of its employees to come up with strategies for combating fraud and insider trading. It still does that, but now FINRA has added a data lake to find patterns that a human might never see.

Overall, FINRA processes over five petabytes of transaction data from multiple sources every day. By switching from traditional database and storage technology to a data lake, FINRA was able to set up a self-service process that allows analysts to query data themselves without involving the IT department; search times dropped from several hours to 90 seconds.

While traditional databases were good at defining relationships with data, such as tracking all the transactions from a particular customer, the new data lake configurations help users identify relationships that they didn’t know existed.

Leveraging its data lake, FINRA creates an environment for curiosity, empowering its data experts to search for suspicious patterns of fraud, marketing manipulation, and compliance. As a result, FINRA was able to hand out 373 fines totaling US$134.4 million in 2016, a new record for the agency, according to Law360.

Data Lakes Don’t End Complexity for IT

Though data lakes make access to data and analysis easier for the business, they don’t necessarily make the CIO’s life a bed of roses. Implementations can be complex, and companies rarely want to walk away from investments they’ve already made in data analysis technologies, such as data warehouses.

“There have been so many millions of dollars going to data warehousing over the last two decades. The idea that you’re just going to move it all into a data lake isn’t going to happen,” says Mike Ferguson, managing director of Intelligent Business Strategies, a UK analyst firm. “It’s just not compelling enough of a business case.” But Ferguson does see data lake efficiencies freeing up the capacity of data warehouses to enable more query, reporting, and analysis.

Data lakes also don’t free companies from the need to clean up and manage data as part of the process required to gain these useful insights. “The data comes in very raw, and it needs to be treated,” says James Curtis, senior analyst for data platforms and analytics at 451 Research. “It has to be prepped and cleaned and ready.”

Companies must have strong data governance processes, as well. Customers are increasingly concerned about privacy, and rules for data usage and compliance have become stricter in some areas of the globe, such as the European Union.

Companies must create data usage policies, then, that clearly define who can access, distribute, change, delete, or otherwise manipulate all that data. Companies must also make sure that the data they collect comes from a legitimate source.

Many companies are responding by hiring chief data officers (CDOs) to ensure that as more employees gain access to data, they use it effectively and responsibly. Indeed, research company Gartner predicts that 90% of large companies will have a CDO by 2019.

Data lakes can be configured in a variety of ways: centralized or distributed, with storage on premise or in the cloud or both. Some companies have more than one data lake implementation.

“A lot of my clients try their best to go centralized for obvious reasons. It’s much simpler to manage and to gather your data in one place,” says Ferguson. “But they’re often plagued somewhere down the line with much more added complexity and realize that in many cases the data lake has to be distributed to manage data across multiple data stores.”

Meanwhile, the massive capacities of data lakes mean that data that once flowed through a manageable spigot is now blasting at companies through a fire hose.

“We’re now dealing with data coming out at extreme velocity or in very large volumes,” Ferguson says. “The idea that people can manually keep pace with the number of data sources that are coming into the enterprise—it’s just not realistic any more. We have to find ways to take complexity away, and that tends to mean that we should automate. The expectation is that the information management software, like an information catalog for example, can help a company accelerate the onboarding of data and automatically classify it, profile it, organize it, and make it easy to find.”

Beyond the technical issues, IT and the business must also make important decisions about how data lakes will be managed and who will own the data, among other things (see How to Avoid Drowning in the Lake).

How to Avoid Drowning in the Lake

The benefits of data lakes can be squandered if you don’t manage the implementation and data ownership carefully.

Deploying and managing a massive data store is a big challenge. Here’s how to address some of the most common issues that companies face:

Determine the ROI. Developing a data lake is not a trivial undertaking. You need a good business case, and you need a measurable ROI. Most importantly, you need initial questions that can be answered by the data, which will prove its value.

Find data owners. As devices with sensors proliferate across the organization, the issue of data ownership becomes more important.

Have a plan for data retention. Companies used to have to cull data because it was too expensive to store. Now companies can become data hoarders. How long do you store it? Do you keep it forever?

Manage descriptive data. Software that allows you to tag all the data in one or multiple data lakes and keep it up-to-date is not mature yet. We still need tools to bring the metadata together to support self-service and to automate metadata to speed up the preparation, integration, and analysis of data.

Develop data curation skills. There is a huge skills gap for data repository development. But many people will jump at the chance to learn these new skills if companies are willing to pay for training and certification.

Be agile enough to take advantage of the findings. It used to be that you put in a request to the IT department for data and had to wait six months for an answer. Now, you get the answer immediately. Companies must be agile to take advantage of the insights.

Secure the data. Besides the perennial issues of hacking and breaches, a lot of data lakes software is open source and less secure than typical enterprise-class software.

Measure the quality of data. Different users can work with varying levels of quality in their data. For example, data scientists working with a huge number of data points might not need completely accurate data, because they can use machine learning to cluster data or discard outlying data as needed. However, a financial analyst might need the data to be completely correct.

Avoid creating new silos. Data lakes should work with existing data architectures, such as data warehouses and data marts.

From Data Queries to New Business Models

The ability of data lakes to uncover previously hidden data correlations can massively impact any part of the business. For example, in the past, a large soft drink maker used to stock its vending machines based on local bottlers’ and delivery people’s experience and gut instincts. Today, using vast amounts of data collected from sensors in the vending machines, the company can essentially treat each machine like a retail store, optimizing the drink selection by time of day, location, and other factors. Doing this kind of predictive analysis was possible before data lakes came along, but it wasn’t practical or economical at the individual machine level because the amount of data required for accurate predictions was simply too large.

The next step is for companies to use the insights gathered from their massive data stores not just to become more efficient and profitable in their existing lines of business but also to actually change their business models.

For example, product companies could shield themselves from the harsh light of comparison shopping by offering the use of their products as a service, with sensors on those products sending the company a constant stream of data about when they need to be repaired or replaced. Customers are spared the hassle of dealing with worn-out products, and companies are protected from competition as long as customers receive the features, price, and the level of service they expect. Further, companies can continuously gather and analyze data about customers’ usage patterns and equipment performance to find ways to lower costs and develop new services.

Data for All

Given the tremendous amount of hype that has surrounded Big Data for years now, it’s tempting to dismiss data lakes as a small step forward in an already familiar technology realm. But it’s not the technology that matters as much as what it enables organizations to do. By making data available to anyone who needs it, for as long as they need it, data lakes are a powerful lever for innovation and disruption across industries.

“Companies that do not actively invest in data lakes will truly be left behind,” says Anita Raj, principal growth hacker at DataRPM, which sells predictive maintenance applications to manufacturers that want to take advantage of these massive data stores. “So it’s just the option of disrupt or be disrupted.” D!

Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.


About the Authors:

Timo Elliott is Vice President, Global Innovation Evangelist, at SAP.

John Schitka is Senior Director, Solution Marketing, Big Data Analytics, at SAP.

Michael Eacrett is Vice President, Product Management, Big Data, Enterprise Information Management, and SAP Vora, at SAP.

Carolyn Marsan is a freelance writer who focuses on business and technology topics.

Comments

About Timo Elliott

Timo Elliott is an Innovation Evangelist for SAP and a passionate advocate of innovation, digital business, analytics, and artificial intelligence. He was the eighth employee of BusinessObjects and for the last 25 years he has worked closely with SAP customers around the world on new technology directions and their impact on real-world organizations. His articles have appeared in articles such as Harvard Business Review, Forbes, ZDNet, The Guardian, and Digitalist Magazine. He has worked in the UK, Hong Kong, New Zealand, and Silicon Valley, and currently lives in Paris, France. He has a degree in Econometrics and a patent in mobile analytics. 

Tags:

Artificial Intelligence: The Future Of Oil And Gas

Anoop Srivastava

Oil prices have fallen dramatically over last few years, forcing some major oil companies to take drastic actions such as layoffs, cutting investments and budgets, and more. Shell, for example, shelved its plan to invest in Qatar, Aramco put on hold its deep-water exploration in the Red Sea, Schlumberger fired a few thousand employees, and the list goes on…

In view of falling oil prices and the resulting squeeze on cash flows, the oil and gas industry has been challenged to adapt and optimize its performance to remain profitable while maintaining a long-term investment and operating outlook. Currently, oil and gas companies find it difficult to maintain the same level of investment in exploration and production as when crude prices were at their peak. Operations in the oil and gas industry today means balancing a dizzying array of trade-offs in the drive for competitive advantage while maximizing return on investment.

The result is a dire need to optimize performance and optimize the cost of production per barrel. Companies have many optimization opportunities once they start using the massive data being generated by oil fields. Oil and gas companies can turn this crisis into an opportunity by leveraging technological innovations like artificial intelligence to build a foundation for long-term success. If volatility in oil prices is the new norm, the push for “value over volume” is the key to success going forward.

Using AI tools, upstream oil and gas companies can shift their approach from production at all costs to producing in context. They will need to do profit and loss management at the well level to optimize the production cost per barrel. To do this, they must integrate all aspects of production management, collect the data for analysis and forecasting, and leverage artificial intelligence to optimize operations.

When remote sensors are connected to wireless networks, data can be collected and centrally analyzed from any location. According to the consulting firm McKinsey, the oil and gas supply chain stands to gain $50 billion in savings and increased profit by adopting AI. As an example, using AI algorithms to more accurately sift through signals and noise in seismic data can decrease dry wellhead development by 10 percent.

How oil and gas can leverage artificial intelligence

1. Planning and forecasting

On a macro scale, deep machine learning can help increase awareness of macroeconomic trends to drive investment decisions in exploration and production. Economic conditions and even weather patterns can be considered to determine where investments should take place as well as intensity of production.

2. Eliminate costly risks in drilling

Drilling is an expensive and risky investment, and applying AI in the operational planning and execution stages can significantly improve well planning, real-time drilling optimization, frictional drag estimation, and well cleaning predictions. Additionally, geoscientists can better assess variables such as the rate of penetration (ROP) improvement, well integrity, operational troubleshooting, drilling equipment condition recognition, real-time drilling risk recognition, and operational decision-making.

When drilling, machine-learning software takes into consideration a plethora of factors, such as seismic vibrations, thermal gradients, and strata permeability, along with more traditional data such as pressure differentials. AI can help optimize drilling operations by driving decisions such as direction and speed in real time, and it can predict failure of equipment such as semi-submersible pumps (ESPs) to reduce unplanned downtime and equipment costs.

3. Well reservoir facility management

Wells, reservoirs, and facility management includes integration of multiple disciplines: reservoir engineering, geology, production technology, petro physics, operations, and seismic interpretation. AI can help to create tools that allow asset teams to build professional understanding and identify opportunities to improve operational performance.

AI techniques can also be applied in other activities such as reservoir characterization, modeling and     field surveillance. Fuzzy logic, artificial neural networks and expert systems are used extensively across the industry to accurately characterize reservoirs in order to attain optimum production level.

Today, AI systems form the backbone of digital oil field (DOF) concepts and implementations. However, there is still great potential for new ways to optimize field development and production costs, prolong field life, and increase the recovery factor.

4. Predictive maintenance

Today, artificial intelligence is taking the industry by storm. AI-powered software and sensor hardware enables us to use very large amounts of data to gain real-time responses on the best future course of action. With predictive analytics and cognitive security, for example, oil and gas companies can operate equipment safely and securely while receiving recommendations on how to avoid future equipment failure or mediate potential security breaches.

5. Oil and gas well surveying and inspections

Drones have been part of the oil and gas industry since 2013, when ConocoPhillips used the Boeing ScanEagle drone in trials in the Chukchi Sea.  In June 2014, the Federal Aviation Administration (FAA) issued the first commercial permit for drone use over United States soil to BP, allowing the company to survey pipelines, roads, and equipment in Prudhoe Bay, Alaska. In January, Sky-Futures completed the first drone inspection in the Gulf of Mexico.

While drones are primarily used in the midstream sector, they can be applied to almost every aspect of the industry, including land surveying and mapping, well and pipeline inspections, and security. Technology is being developed to enable drones to detect early methane leaks. In addition, one day, drones could be used to find oil and gas reservoirs underlying remote uninhabited regions, from the comfort of a warm office.

6. Remote logistics

As logistics to offshore locations is always a challenge, AI-enhanced drones can be used to deliver materials to remote offshore locations.

Current adoption of AI

Chevron is currently using AI to identify new well locations and simulation candidates in California. By using AI software to analyze the company’s large collection of historical well performance data, the company is drilling in better locations and has seen production rise 30% over conventional methods. Chevron is also using predictive models to analyze the performance of thousands of pieces of rotating equipment to detect failures before they occur. By addressing problems before they become critical, Chevron has avoided unplanned shutdowns and lowered repair expenses. Increased production and lower costs have translated to more profit per well.

Future journey

Today’s oil and gas industry has been transformed by two industry downturns in one decade. Although adoption of new hard technology such as directional drilling and hydraulic fracturing (fracking) has helped, the oil and gas industry needs to continue to innovate in today’s low-price market to survive. AI has the potential to differentiate companies that thrive and those that are left behind.

The promise of AI is already being realized in the oil and gas industry. Early adopters are taking advantage of their position  to get a head start on the competition and protect their assets. The industry has always leveraged technology to adapt to change, and early adopters have always benefited the most. As competition in the oil and gas industry continues to heat up, companies cannot afford to be left behind. For those that understand and seize the opportunities inherent in adopting cognitive technologies, the future looks bright.

For more insight on advanced technology in the energy sector, see How Digital Transformation Is Refueling The Energy Industry.

Comments

Anoop Srivastava

About Anoop Srivastava

Anoop Srivastava is Senior Director of the Energy and Natural Resources Industries at SAP Value Engineering in Middle East and North Africa. He advises clients on their digital transformation strategies and helps them align their business strategy with IT strategy leveraging digital technology innovations such as the Internet of Things, Big Data, Advanced Analytics, Cloud etc. He has 21+ years of work experience spanning across Oil& Gas Industry, Business Consulting, Industry Value Advisory and Digital Transformation.