Sections

The Future of Marketing – Adapt And Be Creative!

Michael Brenner

future of marketingIn our last Future of Marketing interview, Scott Brinker riffed off the Marketing and Big Data idea by asking if the future of marketing was all about “Big Testing?

Previous interviews covered customer experience, thought leadership, , creating a content culture, the roles of content and technologythe future of search, the science of marketing, the rise of Content Brands and we asked whether the customer or the content is king in the future of marketing.

Today’s interview is with Telus Communication’s Social Media Marketing Manager Paula Cusati. Please follow Paula  online on Twitter, LinkedIn and Google+.

Tell us about yourself?

paula_cusatiI am a digital marketing manager at TELUS Communications –a national telecommunications company in Canada.

I’ve spend my career (15+ years) at TELUS working primarily in a B2B environment with a strong focus on web, social media and digital activities. I love technology and the potential it represents for individuals and businesses of all size.

What are some tough marketing challenges you face?

Some of the marketing challenges I have  faced over the years are not unlike those of other large organizations – a diverse customer base with a variety of needs, the requirement to integrate complex systems, determining the best way to embrace technologies such as sales process automation and social media all while offering meaningful value to our current and future customers. The way we’ve addressed these challenges is by having a focus on the customer – trying to understand their needs and opportunities and how we can support them via our products and channels to market.

What is your prediction for the future of marketing?

The world of marketing has changed a great deal over the past decade with the influx of technology into all aspects of our lives.  There are no lack of predictions about how technology will continue to have a large impact on businesses and marketing.  My take on the future of marketing is that it will continue to be driven by the customer and technology but I believe the changes will be swifter and more profound than what we have seen to date.

Why will this change be more profound? As we know there are many technology trends in play including the shift to use of mobile technologies , BYOD in the workplace and  the impact of the Cloud to name a few. A couple of trends stand out to me that I think will really drive change and ultimately expectations that marketers will have to address:

  • The growth of Entrepreneurship and its influence in our economy.  In his article Trends for 2013: The Rise of the Entrepreneur, J.D. Meier tells us that 2013 is the Year of the Entrepreneur and due to economic pressures and competition, innovation to find new ways to do things more efficiently is in demand.  “With the power of the Cloud and social computing, smart people can spin up businesses that reach around the world in a more cost effective way than ever before,” Meier said. Take a look at Mashable’s Launchpad to see examples of innovative startups already in practice.
  • Increased use of technology in the classroom gives a comfort level to up-and-coming employees and customers that we’ve never seen before.   We hear a lot about millennials and their comfort with technology largely because of their personal use – but another trend I’ve observed is how technology is being used increasingly in the classroom.  As a result we’ll see collaboration, innovation, and crowd sourcing via the leveraging of technology done at all levels of education. These activities will become a natural part of the problem solving process by young millennials coming into the work force. Smart marketers may want to invest in the technical education of young students to guide and learn from this generation.

Innovation via technology is creating opportunities for savvy businesses while customers and employees are highly technically-literate and open to new ways of working and achieving objectives.  In this environment it’s likely that organizations will experience intense competition from sources we haven’t even thought of – perhaps from an emerging economy or from a small start-up that creates service that addresses a customer need in a new and innovative way.

Whatever this competition ends up looking like, marketers need to understand how customers think, what their challenges are and to be open to supporting customers in different ways. Perhaps by partnering with a startup or even with customers themselves.  Marketers must lead the way by staying current with trends and anticipating how these trends can be translated into value for our customers and ourselves.

If we aren’t open to adapt and be creative in how we address our customers’ needs, someone else will.

Thanks to Paula for sharing her thoughts. Now tell me what you think in the comments below? And please follow along on TwitterLinkedInFacebook and Google+ or Subscribe to the B2B Marketing Insider Blog for regular updates.

Comments

About Michael Brenner

Michael Brenner is the CEO of Marketing Insider Group, former Head of Strategy at NewsCred, and the former VP of Global Content Marketing here at SAP. Michael is also the co-author of the book The Content Formula, a contributor to leading publications like The Economist, Inc Magazine, The Guardian, and Forbes and a frequent speaker at industry events covering topics such as marketing strategy, social business, content marketing, digital marketing, social media and personal branding.  Follow Michael on Twitter (@BrennerMichael)LinkedInFacebook and Google+ and Subscribe to the Marketing Insider.

Amazing Digital Marketing Trends And Tips To Expand Your Business In 2015

Sunny Popali

Amazing Digital Marketing Trends & Tips To Expand Your Business In 2015The fast-paced world of digital marketing is changing too quickly for most companies to adapt. But staying up to date with the latest industry trends is imperative for anyone involved with expanding a business.

Here are five trends that have shaped the industry this year and that will become more important as we move forward:

  1. Email marketing will need to become smarter

Whether you like it or not, email is the most ubiquitous tool online. Everyone has it, and utilizing it properly can push your marketing ahead of your rivals. Because business use of email is still very widespread, you need to get smarter about email marketing in order to fully realize your business’s marketing strategy. Luckily, there are a number of tools that can help you market more effectively, such as Mailchimp.

  1. Content marketing will become integrated and more valuable

Content is king, and it seems to be getting more important every day. Google and other search engines are focusing more on the content you create as the potential of the online world as marketing tool becomes apparent. Now there seems to be a push for current, relevant content that you can use for your services and promote your business.

Staying fresh with the content you provide is almost as important as ensuring high-quality content. Customers will pay more attention if your content is relevant and timely.

  1. Mobile assets and paid social media are more important than ever

It’s no secret that mobile is key to your marketing efforts. More mobile devices are sold and more people are reading content on mobile screens than ever before, so it is crucial to your overall strategy to have mobile marketing expertise on your team. London-based Abacus Marketing agrees that mobile marketing could overtake desktop website marketing in just a few years.

  1. Big Data for personalization plays a key role

Marketers are increasingly using Big Data to get their brand message out to the public in a more personalized format. One obvious example is Google Trend analysis, a highly useful tool that marketing experts use to obtain the latest on what is trending around the world. You can — and should — use it in your business marketing efforts. Big Data will also let you offer specific content to buyers who are more likely to look for certain items, for example, and offer personalized deals to specific groups of within your customer base. Other tools, which until recently were the stuff of science fiction, are also available that let you do things like use predictive analysis to score leads.

  1. Visual media matters

A picture really is worth a thousand words, as the saying goes, and nobody can deny the effectiveness of a well-designed infographic. In fact, some studies suggest that Millennials are particularly attracted to content with great visuals. Animated gifs and colorful bar graphs have even found their way into heavy-duty financial reports, so why not give them a try in your business marketing efforts?

A few more tips:

  • Always keep your content relevant and current to attract the attention of your target audience.
  • Always keep all your social media and public accounts fresh. Don’t use old content or outdated pictures in any public forum.
  • Your reviews are a proxy for your online reputation, so pay careful attention to them.
  • Much online content is being consumed on mobile now, so focus specifically on the design and usability of your mobile apps.
  • Online marketing is essentially geared towards getting more traffic onto your site. The more people visit, the better your chances of increasing sales.

Want more insight on how digital marketing is evolving? See Shutterstock Report: The Face Of Marketing Is Changing — And It Doesn’t Include Vince Vaughn.

Comments

About Sunny Popali

Sunny Popali is SEO Director at www.tempocreative.com. Tempo Creative is a Phoenix inbound marketing company that has served over 700 clients since 2001. Tempos team specializes in digital and internet marketing services including web design, SEO, social media and strategy.

Social Media Matters: 6 Content And Social Media Trend Predictions For 2016 [INFOGRAPHIC]

Julie Ellis

As 2015 winds down, it’s time to look forward to 2016 and explore the social media and content marketing trends that will impact marketing strategies over the next 15 months or so.

Some of the upcoming trends simply indicate an intensification of current trends, however others indicate that there are new things that will have a big impact in 2016.

Take a look at a few trends that should definitely factor in your planning for 2016.

1. SEO will focus more on social media platforms and less on search engines

Clearly Google is going nowhere. In fact, in 2016 Google’s word will still essentially be law when it comes to search engine optimization.

However, in 2016 there will be some changes in SEO. Many of these changes will be due to the fact that users are increasingly searching for products and services directly from websites such as Facebook, Pinterest, and YouTube.

There are two reasons for this shift in customer habits:

  • Customers are relying more and more on customer comments, feedback, and reviews before making purchasing decisions. This means that they are most likely to search directly on platforms where they can find that information.
  • Customers who are seeking information about products and services feel that video- and image-based content is more trustworthy.

2. The need to optimize for mobile and touchscreens will intensify

Consumers are using their mobile devices and tablets for the following tasks at a sharply increasing rate:

  • Sending and receiving emails and messages
  • Making purchases
  • Researching products and services
  • Watching videos
  • Reading or writing reviews and comments
  • Obtaining driving directions and using navigation apps
  • Visiting news and entertainment websites
  • Using social media

Most marketers would be hard-pressed to look at this list and see any case for continuing to avoid mobile and touchscreen optimization. Yet, for some reason many companies still see mobile optimization as something that is nice to do, but not urgent.

This lack of a sense of urgency seemingly ignores the fact that more than 80% of the highest growing group of consumers indicate that it is highly important that retailers provide mobile apps that work well. According to the same study, nearly 90% of Millennials believe that there are a large number of websites that have not done a very good job of optimizing for mobile.

3. Content marketing will move to edgier social media platforms

Platforms such as Instagram and Snapchat weren’t considered to be valid targets for mainstream content marketing efforts until now.

This is because they were considered to be too unproven and too “on the fringe” to warrant the time and marketing budget investments, when platforms such as Facebook and YouTube were so popular and had proven track records when it came to content marketing opportunity and success.

However, now that Instagram is enjoying such tremendous growth, and is opening up advertising opportunities to businesses beyond its brand partners, it (along with other platforms) will be seen as more and more viable in 2016.

4. Facebook will remain a strong player, but the demographic of the average user will age

In 2016, Facebook will likely remain the flagship social media website when it comes to sharing and promoting content, engaging with customers, and increasing Internet recognition.

However, it will become less and less possible to ignore the fact that younger consumers are moving away from the platform as their primary source of online social interaction and content consumption. Some companies may be able to maintain status quo for 2016 without feeling any negative impacts.

However, others may need to rethink their content marketing strategies for 2016 to take these shifts into account. Depending on their branding and the products or services that they offer, some companies may be able to profit from these changes by customizing the content that they promote on Facebook for an older demographic.

5. Content production must reflect quality and variety

  • Both B2B and B2C buyers value video based content over text based content.
  • While some curated content is a good thing, consumers believe that custom content is an indication that a company wishes to create a relationship with them.
  • The great majority of these same consumers report that customized content is useful for them.
  • B2B customers prefer learning about products and services through content as opposed to paid advertising.
  • Consumers believe that videos are more trustworthy forms of content than text.

Here is a great infographic depicting the importance of video in content marketing efforts:
Small Business Video infographic

A final, very important thing to note when considering content trends for 2016 is the decreasing value of the keyword as a way of optimizing content. In fact, in an effort to crack down on keyword stuffing, Google’s optimization rules have been updated to to kick offending sites out of prime SERP positions.

6. Oculus Rift will create significant changes in customer engagement

Oculus Rift is not likely to offer much to marketers in 2016. After all, it isn’t expected to ship to consumers until the first quarter. However, what Oculus Rift will do is influence the decisions that marketers make when it comes to creating customer interaction.

For example, companies that have not yet embraced storytelling may want to make 2016 the year that they do just that, because later in 2016 Oculus Rift may be the platform that their competitors will be using to tell stories while giving consumers a 360-degree vantage point.

For a deeper dive on engaging with customers through storytelling, see Brand Storytelling: Where Humanity Takes Center Stage.

Comments

About Julie Ellis

Julie Ellis – marketer and professional blogger, writes about social media, education, self-improvement, marketing and psychology. To contact Julie follow her on Twitter or LinkedIn.

How AI Can End Bias

Yvonne Baur, Brenda Reid, Steve Hunt, and Fawn Fitter

We humans make sense of the world by looking for patterns, filtering them through what we think we already know, and making decisions accordingly. When we talk about handing decisions off to artificial intelligence (AI), we expect it to do the same, only better.

Machine learning does, in fact, have the potential to be a tremendous force for good. Humans are hindered by both their unconscious assumptions and their simple inability to process huge amounts of information. AI, on the other hand, can be taught to filter irrelevancies out of the decision-making process, pluck the most suitable candidates from a haystack of résumés, and guide us based on what it calculates is objectively best rather than simply what we’ve done in the past.

In other words, AI has the potential to help us avoid bias in hiring, operations, customer service, and the broader business and social communities—and doing so makes good business sense. For one thing, even the most unintentional discrimination can cost a company significantly, in both money and brand equity. The mere fact of having to defend against an accusation of bias can linger long after the issue itself is settled.

Beyond managing risk related to legal and regulatory issues, though, there’s a broader argument for tackling bias: in a relentlessly competitive and global economy, no organization can afford to shut itself off from broader input, more varied experiences, a wider range of talent, and larger potential markets.

That said, the algorithms that drive AI don’t reveal pure, objective truth just because they’re mathematical. Humans must tell AI what they consider suitable, teach it which information is relevant, and indicate that the outcomes they consider best—ethically, legally, and, of course, financially—are those that are free from bias, conscious or otherwise. That’s the only way AI can help us create systems that are fair, more productive, and ultimately better for both business and the broader society.

Bias: Bad for Business

When people talk about AI and machine learning, they usually mean algorithms that learn over time as they process large data sets. Organizations that have gathered vast amounts of data can use these algorithms to apply sophisticated mathematical modeling techniques to see if the results can predict future outcomes, such as fluctuations in the price of materials or traffic flows around a port facility. Computers are ideally suited to processing these massive data volumes to reveal patterns and interactions that might help organizations get ahead of their competitors. As we gather more types and sources of data with which to train increasingly complex algorithms, interest in AI will become even more intense.

Using AI for automated decision making is becoming more common, at least for simple tasks, such as recommending additional products at the point of sale based on a customer’s current and past purchases. The hope is that AI will be able to take on the process of making increasingly sophisticated decisions, such as suggesting entirely new markets where a company could be profitable, or finding the most qualified candidates for jobs by helping HR look beyond the expected demographics.

As AI takes on these increasingly complex decisions, it can help reduce bias, conscious or otherwise. By exposing a bias, algorithms allow us to lessen the impact of that bias on our decisions and actions. They enable us to make decisions that reflect objective data instead of untested assumptions; they reveal imbalances; and they alert people to their cognitive blind spots so they can make more accurate, unbiased decisions.

Imagine, for example, a major company that realizes that its past hiring practices were biased against women and that would benefit from having more women in its management pipeline. AI can help the company analyze its past job postings for gender-biased language, which might have discouraged some applicants. Future postings could be more gender neutral, increasing the number of female applicants who get past the initial screenings.

AI can also support people in making less-biased decisions. For example, a company is considering two candidates for an influential management position: one man and one woman. The final hiring decision lies with a hiring manager who, when they learn that the female candidate has a small child at home, assumes that she would prefer a part-time schedule.

That assumption may be well intentioned, but it runs counter to the outcome the company is looking for. An AI could apply corrective pressure by reminding the hiring manager that all qualifications being equal, the female candidate is an objectively good choice who meets the company’s criteria. The hope is that the hiring manager will realize their unfounded assumption and remove it from their decision-making process.

At the same time, by tracking the pattern of hiring decisions this manager makes, the AI could alert them—and other people in HR—that the company still has some remaining hidden biases against female candidates to address.

Look for Where Bias Already Exists

In other words, if we want AI to counter the effects of a biased world, we have to begin by acknowledging that the world is biased. And that starts in a surprisingly low-tech spot: identifying any biases baked into your own organization’s current processes. From there, you can determine how to address those biases and improve outcomes.

There are many scenarios where humans can collaborate with AI to prevent or even reverse bias, says Jason Baldridge, a former associate professor of computational linguistics at the University of Texas at Austin and now co-founder of People Pattern, a startup for predictive demographics using social media analytics. In the highly regulated financial services industry, for example, Baldridge says banks are required to ensure that their algorithmic choices are not based on input variables that correlate with protected demographic variables (like race and gender). The banks also have to prove to regulators that their mathematical models don’t focus on patterns that disfavor specific demographic groups, he says. What’s more, they have to allow outside data scientists to assess their models for code or data that might have a discriminatory effect. As a result, banks are more evenhanded in their lending.

Code Is Only Human

The reason for these checks and balances is clear: the algorithms that drive AI are built by humans, and humans choose the data with which to shape and train the resulting models. Because humans are prone to bias, we have to be careful that we are neither simply confirming existing biases nor introducing new ones when we develop AI models and feed them data.

“From the perspective of a business leader who wants to do the right thing, it’s a design question,” says Cathy O’Neil, whose best-selling book Weapons of Math Destruction was long-listed for the 2016 National Book Award. “You wouldn’t let your company design a car and send it out in the world without knowing whether it’s safe. You have to design it with safety standards in mind,” she says. “By the same token, algorithms have to be designed with fairness and legality in mind, with standards that are understandable to everyone, from the business leader to the people being scored.” (To learn more from O’Neil about transparency in algorithms, read Thinkers in this issue.)

Don’t Do What You’ve Always Done

To eliminate bias, you must first make sure that the data you’re using to train the algorithm is itself free of bias, or, rather, that the algorithm can recognize bias in that data and bring the bias to a human’s attention.

SAP has been working on an initiative that tackles this issue directly by spotting and categorizing gendered terminology in old job postings. Nothing as overt as No women need apply, which everyone knows is discriminatory, but phrases like outspoken and aggressively pursuing opportunities, which are proven to attract male job applicants and repel female applicants, and words like caring and flexible, which do the opposite.

Once humans categorize this language and feed it into an algorithm, the AI can learn to flag words that imply bias and suggest gender-neutral alternatives. Unfortunately, this de-biasing process currently requires too much human intervention to scale easily, but as the amount of available de-biased data grows, this will become far less of a limitation in developing AI for HR.

Similarly, companies should look for specificity in how their algorithms search for new talent. According to O’Neil, there’s no one-size-fits-all definition of the best engineer; there’s only the best engineer for a particular role or project at a particular time. That’s the needle in the haystack that AI is well suited to find.

Look Beyond the Obvious

AI could be invaluable in radically reducing deliberate and unconscious discrimination in the workplace. However, the more data your company analyzes, the more likely it is that you will deal with stereotypes, O’Neil says. If you’re looking for math professors, for example, and you load your hiring algorithm with all the data you can find about math professors, your algorithm may give a lower score to a black female candidate living in Harlem simply because there are fewer black female mathematicians in your data set. But if that candidate has a PhD in math from Cornell, and if you’ve trained your AI to prioritize that criterion, the algorithm will bump her up the list of candidates rather than summarily ruling out a potentially high-value hire on the spurious basis of race and gender.

To further improve the odds that AI will be useful, companies have to go beyond spotting relationships between data and the outcomes they care about. It doesn’t take sophisticated predictive modeling to determine, for example, that women are disproportionately likely to jump off the corporate ladder at the halfway point because they’re struggling with work/life balance.

Many companies find it all too easy to conclude that women simply aren’t qualified for middle management. However, a company committed to smart talent management will instead ask what it is about these positions that makes them incompatible with women’s lives. It will then explore what it can change so that it doesn’t lose talent and institutional knowledge that will cost the company far more to replace than to retain.

That company may even apply a second layer of machine learning that looks at its own suggestions and makes further recommendations: “It looks like you’re trying to do X, so consider doing Y,” where X might be promoting more women, making the workforce more ethnically diverse, or improving retention statistics, and Y is redefining job responsibilities with greater flexibility, hosting recruiting events in communities of color, or redesigning benefits packages based on what similar companies offer.

Context Matters—and Context Changes

Even though AI learns—and maybe because it learns—it can never be considered “set it and forget it” technology. To remain both accurate and relevant, it has to be continually trained to account for changes in the market, your company’s needs, and the data itself.

Sources for language analysis, for example, tend to be biased toward standard American English, so if you’re building models to analyze social media posts or conversational language input, Baldridge says, you have to make a deliberate effort to include and correct for slang and nonstandard dialects. Standard English applies the word sick to someone having health problems, but it’s also a popular slang term for something good or impressive, which could lead to an awkward experience if someone confuses the two meanings, to say the least. Correcting for that, or adding more rules to the algorithm, such as “The word sick appears in proximity to positive emoji,” takes human oversight.

Moving Forward with AI

Today, AI excels at making biased data obvious, but that isn’t the same as eliminating it. It’s up to human beings to pay attention to the existence of bias and enlist AI to help avoid it. That goes beyond simply implementing AI to insisting that it meet benchmarks for positive impact. The business benefits of taking this step are—or soon will be—obvious.

In IDC FutureScapes’ webcast “Worldwide Big Data, Business Analytics, and Cognitive Software 2017 Predictions,” research director David Schubmehl predicted that by 2020 perceived bias and lack of evidentiary transparency in cognitive/AI solutions will create an activist backlash movement, with up to 10% of users backing away from the technology. However, Schubmehl also speculated that consumer and enterprise users of machine learning will be far more likely to trust AI’s recommendations and decisions if they understand how those recommendations and decisions are made. That means knowing what goes into the algorithms, how they arrive at their conclusions, and whether they deliver desired outcomes that are also legally and ethically fair.

Clearly, organizations that can address this concern explicitly will have a competitive advantage, but simply stating their commitment to using AI for good may not be enough. They also may wish to support academic efforts to research AI and bias, such as the annual Fairness, Accountability, and Transparency in Machine Learning (FATML) workshop, which was held for the third time in November 2016.

O’Neil, who blogs about data science and founded the Lede Program for Data Journalism, an intensive certification program at Columbia University, is going one step further. She is attempting to create an entirely new industry dedicated to auditing and monitoring algorithms to ensure that they not only reveal bias but actively eliminate it. She proposes the formation of groups of data scientists that evaluate supply chains for signs of forced labor, connect children at risk of abuse with resources to support their families, or alert people through a smartphone app when their credit scores are used to evaluate eligibility for something other than a loan.

As we begin to entrust AI with more complex and consequential decisions, organizations may also want to be proactive about ensuring that their algorithms do good—so that their companies can use AI to do well. D!

Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.


About the Authors:

Yvonne Baur is Head of Predictive Analytics for Sap SuccessFactors solutions.

Brenda Reid is Vice President of Product Management for Sap SuccessFactors solutions.

Steve Hunt is Senior Vice President of Human Capital Management Research for Sap SuccessFactors solutions.

Fawn Fitter is a freelance writer specializing in business and technology.

Comments

Tags:

Big Data: Better Than Big Muscles at Kinduct

Stephanie Overby

Travis McDonough has always been looking for a competitive edge. As an amateur athlete “on the small side,” he sought other ways—exercise, nutrition, strategy—to get ahead.

Today McDonough is the of CEO of Kinduct, a provider of cloud-based software that analyzes data from wearables, electronic medical records, computer vision solutions, and more to assess and make recommendations about physical human performance. Kinduct provides 100 professional sports organizations, including the five major sports leagues in North America, with intelligence to make decisions about their athletes and training programs.

Digital Fills a Gap

A chiropractor by training, McDonough owned and operated a network of sports rehabilitation clinics, where he found that patients retained only a fraction of what they were instructed to do through text or conversation. “As we treated athletes, we realized there was a gaping hole in the industry for technology [to fill],” he says.

McDonough first launched a company to create 3D videos designed to help his athlete patients better understand their injuries and the resulting therapy. The videos, delivered by text or e-mail, would illustrate what happens inside the human body when it experiences whiplash, for example.

“We quickly realized we couldn’t just be a content company and push information without understanding more about the athlete,” he says. Athletes and their trainers collected a massive amount of individual health and performance data that was available to be tapped from electronic medical records, wearable devices, and computer vision-based tracking systems that measure and record information such as how fast an athlete is running or jumping. “We needed to be agnostic and aggressive consumers of all kinds of data sources in order to push more targeted programs to our clients,” he says. So McDonough recruited his brother’s brother-in-law (vice president of product, Dave Anderson) to develop software to make sense of it all.

Innovate a Better Athlete

The software is suited for healthcare and military applications: the Canadian Armed Forces uses it to deliver exercise, wellness, and nutrition programs to its troops. But McDonough knew that the world of professional sports would provide his most eager customers.

Professional sports teams use Kinduct’s analytics to reduce injury and win more games.

“The sports world is willing to embrace innovation more quickly than other markets, like healthcare, that are slower-moving. And that’s where our passion lives. Many of us are sports fanatics and have been athletes,” says McDonough of the company’s 70 employees. Kinduct’s first customers were National Hockey League (NHL) teams, followed in short order by the National Basketball Association (NBA).

For its professional sports clients, Kinduct has uncovered more than 100 novel correlations. Most are closely guarded secrets, but several have become public. The company found, for example, that when a basketball player’s sleep falls below a certain threshold, there is a strong correlation with reduced free throw percentages two days later. That discovery led one NBA team (McDonough won’t say which) to focus on getting players to bed on time and making travel schedule changes to enable the requisite rest.

Kinduct software also found correlations for hockey teams. It demonstrated to a leading hockey team that better grip strength was likely to lead to harder and faster shots on goal. Moreover, when the system ingested three years of historical computer vision information, it found that a player’s ability to slow down dramatically affects the chances of soft tissue injuries, which are costly to professional sports teams and athletes. The software can send an alert when it spots a trend that could predict the possibility of such an injury.

We’re in this to go big. That means carrying a burn rate, hiring aggressively, and investing in research.

The software “will never replace the experts in the trenches,” says McDonough. “But we are able to arm coaches and trainers with the intelligence necessary to make more informed decisions. Technology will never replace the power of a good relationship.”

Think a Few Plays Ahead

Kinduct is based in McDonough’s hometown of Halifax, Nova Scotia, which boasts five universities, strong government subsidies, a low cost of living, and, for Kinducts’s predominantly U.S.-based customers, a favorable currency exchange rate. Despite these advantages, Halifax isn’t widely known for its digital innovators. “We’ve got a huge chip on our shoulder,” says McDonough. “We want to prove that we’re just as capable of becoming a global success as companies elsewhere,” such as Silicon Valley or London.

The Kinduct platform can help athletes or medical patients improve their condition or performance.

Nevertheless, McDonough spends significant time in Silicon Valley meeting with investors and looking at potential U.S. expansion (Kinduct closed a US$9 million Series A investment led by Intel Capital in October). “There’s a huge benefit to growing in Nova Scotia,” he says, “but we also need to be in the epicenter of the tech space.”

McDonough has big ideas for Kinduct’s future, thanks to the explosion of health- and fitness-tracking devices. “We can pull all the data in and, when we see a negative pattern, provide the user with the exact roadmap they need to follow to improve their condition or performance,” he says. “That’s equally as useful to a professional football player or an Olympic athlete as it is to someone recovering from a knee replacement or living with type 2 diabetes.”

Kinduct has 16 projects underway to measure the impact of the platform in helping individuals manage conditions like peripheral vascular disease and cognitive decline. “We want to show how the platform can empower and engage patients,” says McDonough.

Go Big or Go Home

Meanwhile, however, McDonough intends “to dominate the sports space. That is our bubble wrap of credibility, and we can leverage that to do other things.”

Focus was never a strong suit for McDonough, who struggled with dyslexia and ADD as a kid. “Thank God for sport, which helped to channel my energy,” he says. But that wandering mind, he says, has also been an asset. “Like a lot of ADD sufferers, I have a lot of imagination,” he says. For balance, he’s hired a leadership team that keeps him grounded, and he has assembled a board of experienced business and technology leaders. “They have the institutional knowledge in how to scale,” he says.

McDonough is blunt: right now, he’d rather be innovative than profitable. “We’re in this to go big. That means carrying a burn rate, hiring aggressively, and investing in research,” he says. “We’re lucky enough to be in locker rooms with these teams and close to some of the best in the business in terms of medicine and training and data science. That’s helping us to produce our future roadmap.” D!

Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.

Comments