Are You Ready For The AI Revolution?

Alicia Rudolph

Chatbots, artificial intelligence (AI), and natural language user interfaces (NLUIs) are making it increasingly feasible for humans to have realistic conversations with software applications. For example, chatbot developer Kore, Inc., is working with the SAP Co-Innovation Lab to create solutions that suggest possible actions to users when a sales opportunity has changed, an order is delayed, or an expense needs approval.

While these solutions are not self-aware, experts are working to create networks that emulate the way information traverses the brain. Such groundbreaking research may eventually result in AI that is able to learn, improve, and converse naturally with users.

Kris Hammond, founder of the University of Chicago’s AI laboratory, envisions a type of applied AI that will enable this type of seamless dialogue between humans and machines. He says: “Conversation as an interface is the best way for machines to interact with us using the human tool we already know exceptionally well – language!”

A new computing era is already here

The technologies for enabling AI conversation are evolving faster than ever, and the future will be defined by how quickly business leaders incorporate these solutions into their operations.

Success is being shaped by many factors, including more digitally demanding employees, customers, partners, resource scarcity, and data abundance. And technology is helping companies run better and improve people’s lives by revolutionizing how they experience computing.

Machines are getting better at understanding language

Personal assistants such as Amazon Alexa and Google Home have already established a beachhead in the consumer market and are beginning to find applications in the business world. Soon, AI conversation will become the default for making experiences more seamless, simple, and efficient – whether controlling a robot or ordering a ride.

As AI becomes better at understanding what conversation is, it will play an increasing role in enabling life experiences.

But the nuance of language is still a challenge

Of course, challenges remain. Language is full of idiomatic phrases, dialects, and regionalisms. Machines must be able to understand these nuances for ongoing innovation to occur. The ultimate goal for many AI experts is to create a user experience that does not require a screen-based user interface.

The complexity of language means that style, tone, and sentiment have a direct impact on the value and effectiveness of devices such as chatbots and their underlying AI systems. Developers have to anticipate numerous variables, program rules, and defined inputs to anticipate what users will say to machines and what machines may say (or do) in response.

Consequently, AI conversation will not thrive until it can understand not just the words a person is using but also their underlying meaning. For example, someone speaking a dialect of southern U.S. English might ask a friend to “carry” her to the store. Any native speaker would know that this person is asking for a ride in the friend’s vehicle. Someone not familiar with this expression would certainly request a clarification. An effective AI system needs to possess enough awareness to be able to understand the intent of a question or a command or, at least, when to ask for clarification that will result in the desired action or outcome.

Predicting outcomes is one of the most promising applications for AI

Companies are starting to integrate these technologies with sensors in Internet of Things (IoT) applications. For example, SAP is combining a cloud platform with Kore chatbots to create rules-based alerts for vending machines, coolers, power tools, and other connected devices. Instead of waiting for a failure or making unnecessary trips for preventative maintenance or restocking, programming, rules, and mathematics will help users make statistically valid decisions while saving resources and improving outcomes.

The trend for these technologies is integrated systems capable of independent learning and thought and autonomous actions. Some AI developers are eager to realize this technological singularity. Whether or not that goal is achieved, chat bots, AI, and NRLIs seem poised to fundamentally change how humans interact with and relate to the technology that underpins much of the modern world.

Interested in learning more? Check out the SAPRadio show “AI and the Conversational Era: Connecting People to Technology” and @SAPPartnerBuild on Twitter.

Comments

Alicia Rudolph

About Alicia Rudolph

Alicia Rudolph is presently part of the Strategic Ecosystem Marketing at SAP. She is passionate about leveraging Social Media as a way to drive business for partners and customers alike.

Transforming Life Sciences To Reduce Costs, Increase Value, And Improve Outcomes

Joseph Miles

Recently, a business trip through Asia took me through Japan, Hong Kong, and Western China. The timing was perfect as spring had arrived in all the cities I visited, and I enjoyed reconnecting with co-workers and customers while meeting numerous new people.

I always enjoy my trips to Asia, but this one seemed different. The life sciences industry continues to go through a period of tremendous volatility, and this trip would highlight the current reimbursement challenges across the globe. It started as I was departing the U.S., where the current administration had been talking about “astronomical drug prices” and how to reduce the level of reimbursements across the healthcare market. As a percentage of gross domestic product (GDP), the U.S. has the highest-priced healthcare in the world, but it is rated in the middle of the pack of mature markets on health metrics, and can no longer continue to spend at its current rate.

Arriving in Tokyo, I was greeted with the recent news of an approximate 50% reduction in the price of Bristol-Myers Squibb’s and Japan’s Ono Pharmaceutical’s cancer drug Opdivo while Gilead’s Hepatitis C cure Solvaldi had its price cut by 32%. Further, the drug pricing review board in Japan was transitioning to review all new therapies on a quarterly basis, and of all existing therapies on an annual basis to reduce spending across the world’s third-largest pharmaceutical market.

As I headed to China, the news was more positive as the pharmaceutical market is expanding, with approval by the Chinese government, to increase the number of drugs covered by the state-run medical insurance plans. The second-largest drug market in the world announced it would expand the number of products covered to include 2,535 western and traditional medicines, an increase of over 15%, even as the margins for those products would be reduced due to account for the increased volume.

Unfortunately, what’s happening in Asia is not an isolated incident. Governments across the globe are no longer able to pay for healthcare at current levels. Markets are reducing reimbursement levels significantly, requiring life sciences companies to reimagine their business models, processes, and work in ways that create incremental value for patients, physicians, payers, and providers while simultaneously reducing the cost of therapies, drugs, and devices.

Although this transformation is just beginning for many countries and companies, it’s exciting to see some of the ways organizations are transforming their current processes to improve the value of the products and therapies for patients across the globe:

  • Outcome-based reimbursement: Payers require greater certainty that their capital is having it intended impact rather than simply paying to have a patient consume a drug or product. Further, as patients become more accountable for their own health, they are increasingly more active in the evaluation and analysis of the therapies and treatments available. Today’s technology now provides the opportunity to create outcome-based reimbursements across many new drugs and products. For example, many of the new biological drugs provide tremendous innovations, but they also are very targeted to patients who have a specific biomarker. Oncology products like Merck’s Keytruda require a genomic test for a patient’s L-PD1 level as a prerequisite for taking the drug. Patients with higher levels of the L-PD1 protein are much more likely to have a positive outcome to the test.
  • Leveraging machine learning: Rapidly evolving technologies are providing the ability to leverage machines across a wide array of process areas. Machines can track a patient’s health metric from a wristband, wirelessly notify a diabetic patient of their glucose levels, or follow voice commands in a manufacturing clean room to read back standard operating procedures during a manufacturing process. Machine learning, along with adoption of connected patients and devices, is increasing at a remarkable rate and we will continue to see rapid growth in this area.
  • Enable operational excellence: Global regulatory agencies have established operational standards for the manufacture of drugs and devices, but many organizations have been reluctant to automate good manufacturing practices (GMP) for fear of non-compliance. That approach is no longer acceptable as organizations must look to improve their quality processes in ways that also reduce the cost of compliance. Electronic batch or history records, documents that capture every aspect of the manufacturing process, are still aspirational, but leading companies recognize the importance of transparency and auditability across the operational landscape and strive to improve in this area.   
  • Leverage an outsourced operational model: Reimbursement reductions have negatively impacted margins, so organizations have increased the use of third-party/contract organizations to reduce the cost of operations. This is a logical response to the margin erosion, but outsourcing in a highly regulated industry like life sciences is never simple. The life sciences manufacturer that owns a particular drug or device patent can outsource the process, but not the regulatory accountability for that process. For example, many life sciences companies manage their source to pay processes. This allows them to source and buy raw materials and manage the manufacturing of direct materials by third parties to incorporate work instructions, including serialized information to meet global pharmaceutical regulations, and most recently, monitor quality processes in real time in the cloud.

It is truly a remarkable time in life sciences, and I am excited about the innovations that are happening across the industry. Let me know your thoughts and some of the innovations you are seeing—I would love to hear about more exciting use cases.

For more on how technology is transforming the life sciences industry, see Business Process Digitization In Life Sciences.

Comments

Joseph Miles

About Joseph Miles

Joseph Miles is Global Vice President pf Life Sciences at SAP. He is passionate about helping organizations improve outcomes for their patients and enable innovation across the health sciences value chain.

Digitalist Flash Briefing: An AI-Driven Organizational Shake-Up May be Next

Peter Johnson

Today, we will discuss how artificial intelligence might change the structure of organizations.

Tune in Monday through Friday for more Digitalist Flash Briefings on disruptive technologies and trends on your favorite device or app.

  • Amazon Echo or Dot: Enable the “Digitalist” flash briefing skill, and ask Alexa to “play my flash briefings” on every business day.
  • Alexa on a mobile device:
    • Download the Amazon Alexa app: Select Skills, and search “Digitalist”. Then, select Digitalist, and click on the Enable button.
    • Download the Amazon app: Click on the microphone icon and say “Play my flash briefing.”

Find and listen to previous Flash Briefings on Digitalistmag.com.

Read more on today’s topic

Comments

Peter Johnson

About Peter Johnson

Peter Johnson is a Senior Director of Marketing Strategy and Thought Leadership at SAP, responsible for developing easy to understand corporate level and cross solution messaging. Peter has proven experience leading innovative programs to accelerate and scale Go-To-Market activities, and drive operational efficiencies at industry leading solution providers and global manufactures respectively.

Primed: Prompting Customers to Buy

Volker Hildebrand, Sam Yen, and Fawn Fitter

When it comes to buying things—even big-ticket items—the way we make decisions makes no sense. One person makes an impulsive offer on a house because of the way the light comes in through the kitchen windows. Another gleefully drives a high-end sports car off the lot even though it will probably never approach the limits it was designed to push.

We can (and usually do) rationalize these decisions after the fact by talking about needing more closet space or wanting to out-accelerate an 18-wheeler as we merge onto the highway, but years of study have arrived at a clear conclusion:

When it comes to the customer experience, human beings are fundamentally irrational.

In the brick-and-mortar past, companies could leverage that irrationality in time-tested ways. They relied heavily on physical context, such as an inviting retail space, to make products and services as psychologically appealing as possible. They used well-trained salespeople and employees to maximize positive interactions and rescue negative ones. They carefully sequenced customer experiences, such as having a captain’s dinner on the final night of a cruise, to play on our hard-wired craving to end experiences on a high note.

Today, though, customer interactions are increasingly moving online. Fortune reports that on 2016’s Black Friday, the day after Thanksgiving that is so crucial to holiday retail results, 108.5 million Americans shopped online, while only 99.1 million visited brick-and-mortar stores. The 9.4% gap between the two was a dramatic change from just one year prior, when on- and offline Black Friday shopping were more or less equal.

When people browse in a store for a few minutes, an astute salesperson can read the telltale signs that they’re losing interest and heading for the exit. The salesperson can then intervene, answering questions and closing the sale.

Replicating that in a digital environment isn’t as easy, however. Despite all the investments companies have made to counteract e-shopping cart abandonment, they lack the data that would let them anticipate when a shopper is on the verge of opting out of a transaction, and the actions they take to lure someone back afterwards can easily come across as less helpful than intrusive.

In a digital environment, companies need to figure out how to use Big Data analysis and digital design to compensate for the absence of persuasive human communication and physical sights, sounds, and sensations. What’s more, a 2014 Gartner survey found that 89% of marketers expected customer experience to be their primary differentiator by 2016, and we’re already well into 2017.

As transactions continue to shift toward the digital and omnichannel, companies need to figure out new ways to gently push customers along the customer journey—and to do so without frustrating, offending, or otherwise alienating them.

The quest to understand online customers better in order to influence them more effectively is built on a decades-old foundation: behavioral psychology, the study of the connections between what people believe and what they actually do. All of marketing and advertising is based on changing people’s thoughts in order to influence their actions. However, it wasn’t until 2001 that a now-famous article in the Harvard Business Review formally introduced the idea of applying behavioral psychology to customer service in particular.

The article’s authors, Richard B. Chase and Sriram Dasu, respectively a professor and assistant professor at the University of Southern California’s Marshall School of Business, describe how companies could apply fundamental tenets of behavioral psychology research to “optimize those extraordinarily important moments when the company touches its customers—for better and for worse.” Their five main points were simple but have proven effective across multiple industries:

  1. Finish strong. People evaluate experiences after the fact based on their high points and their endings, so the way a transaction ends is more important than how it begins.
  2. Front-load the negatives. To ensure a strong positive finish, get bad experiences out of the way early.
  3. Spread out the positives. Break up the pleasurable experiences into segments so they seem to last longer.
  4. Provide choices. People don’t like to be shoved toward an outcome; they prefer to feel in control. Giving them options within the boundaries of your ability to deliver builds their commitment.
  5. Be consistent. People like routine and predictability.

For example, McKinsey cites a major health insurance company that experimented with this framework in 2009 as part of its health management program. A test group of patients received regular coaching phone calls from nurses to help them meet health goals.

The front-loaded negative was inherent: the patients knew they had health problems that needed ongoing intervention, such as weight control or consistent use of medication. Nurses called each patient on a frequent, regular schedule to check their progress (consistency and spread-out positives), suggested next steps to keep them on track (choices), and cheered on their improvements (a strong finish).

McKinsey reports the patients in the test group were more satisfied with the health management program by seven percentage points, more satisfied with the insurance company by eight percentage points, and more likely to say the program motivated them to change their behavior by five percentage points.

The nurses who worked with the test group also reported increased job satisfaction. And these improvements all appeared in the first two weeks of the pilot program, without significantly affecting the company’s costs or tweaking key metrics, like the number and length of the calls.

Indeed, an ongoing body of research shows that positive reinforcements and indirect suggestions influence our decisions better and more subtly than blatant demands. This concept hit popular culture in 2008 with the bestselling book Nudge.

Written by University of Chicago economics professor Richard H. Thaler and Harvard Law School professor Cass R. Sunstein, Nudge first explains this principle, then explores it as a way to help people make decisions in their best interests, such as encouraging people to eat healthier by displaying fruits and vegetables at eye level or combatting credit card debt by placing a prominent notice on every credit card statement informing cardholders how much more they’ll spend over a year if they make only the minimum payment.

Whether they’re altruistic or commercial, nudges work because our decision-making is irrational in a predictable way. The question is how to apply that awareness to the digital economy.

In its early days, digital marketing assumed that online shopping would be purely rational, a tool that customers would use to help them zero in on the best product at the best price. The assumption was logical, but customer behavior remained irrational.

Our society is overloaded with information and short on time, says Brad Berens, Senior Fellow at the Center for the Digital Future at the University of Southern California, Annenberg, so it’s no surprise that the speed of the digital economy exacerbates our desire to make a fast decision rather than a perfect one, as well as increasing our tendency to make choices based on impulse rather than logic.

Buyers want what they want, but they don’t necessarily understand or care why they want it. They just want to get it and move on, with minimal friction, to the next thing. “Most of our decisions aren’t very important, and we only have so much time to interrogate and analyze them,” Berens points out.

But limited time and mental capacity for decision-making is only half the issue. The other half is that while our brains are both logical and emotional, the emotional side—also known as the limbic system or, more casually, the primitive lizard brain—is far older and more developed. It’s strong enough to override logic and drive our decisions, leaving rational thought to, well, rationalize our choices after the fact.

This is as true in the B2B realm as it is for consumers. The business purchasing process, governed as it is by requests for proposals, structured procurement processes, and permission gating, is designed to ensure that the people with spending authority make the most sensible deals possible. However, research shows that even in this supposedly rational process, the relationship with the seller is still more influential than product quality in driving customer commitment and loyalty.

Baba Shiv, a professor of marketing at Stanford University’s Graduate School of Business, studies how the emotional brain shapes decisions and experiences. In a popular TED Talk, he says that people in the process of making decisions fall into one of two mindsets: Type 1, which is stressed and wants to feel comforted and safe, and Type 2, which is bored or eager and wants to explore and take action.

People can move between these two mindsets, he says, but in both cases, the emotional brain is in control. Influencing it means first delivering a message that soothes or motivates, depending on the mindset the person happens to be in at the moment and only then presenting the logical argument to help rationalize the action.

In the digital economy, working with those tendencies means designing digital experiences with the full awareness that people will not evaluate them objectively, says Ravi Dhar, director of the Center for Customer Insights at the Yale School of Management. Since any experience’s greatest subjective impact in retrospect depends on what happens at the beginning, the end, and the peaks in between, companies need to design digital experiences to optimize those moments—to rationally design experiences for limited rationality.

This often involves making multiple small changes in the way options are presented well before the final nudge into making a purchase. A paper that Dhar co-authored for McKinsey offers the example of a media company that puts most of its content behind a paywall but offers free access to a limited number of articles a month as an incentive to drive subscriptions.

Many nonsubscribers reached their limit of free articles in the morning, but they were least likely to respond to a subscription offer generated by the paywall at that hour, because they were reading just before rushing out the door for the day. When the company delayed offers until later in the day, when readers were less distracted, successful subscription conversions increased.

Pre-selecting default options for necessary choices is another way companies can design digital experiences to follow customers’ preference for the path of least resistance. “We know from a decade of research that…defaults are a de facto nudge,” Dhar says.

For example, many online retailers set a default shipping option because customers have to choose a way to receive their packages and are more likely to passively allow the default option than actively choose another one. Similarly, he says, customers are more likely to enroll in a program when the default choice is set to accept it rather than to opt out.

Another intriguing possibility lies in the way customers react differently to on-screen information based on how that information is presented. Even minor tweaks can have a disproportionate impact on the choices people make, as explained in depth by University of California, Los Angeles, behavioral economist Shlomo Benartzi in his 2015 book, The Smarter Screen.

A few of the conclusions Benartzi reached: items at the center of a laptop screen draw more attention than those at the edges. Those on the upper left of a screen split into quadrants attract more attention than those on the lower left. And intriguingly, demographics are important variables.

Benartzi cites research showing that people over 40 prefer more visually complicated, text-heavy screens than younger people, who are drawn to saturated colors and large images. Women like screens that use a lot of different colors, including pastels, while men prefer primary colors on a grey or white background. People in Malaysia like lots of color; people in Germany don’t.

This suggests companies need to design their online experiences very differently for middle-aged women than they do for teenage boys. And, as Benartzi writes, “it’s easy to imagine a future in which each Internet user has his or her own ‘aesthetic algorithm,’ customizing the appearance of every site they see.”

Applying behavioral psychology to the digital experience in more sophisticated ways will require additional formal research into recommendation algorithms, predictions, and other applications of customer data science, says Jim Guszcza, PhD, chief U.S. data scientist for Deloitte Consulting.

In fact, given customers’ tendency to make the fastest decisions, Guszcza believes that in some cases, companies may want to consider making choice environments more difficult to navigate— a process he calls “disfluencing”—in high-stakes situations, like making an important medical decision or an irreversible big-ticket purchase. Choosing a harder-to-read font and a layout that requires more time to navigate forces customers to work harder to process the information, sending a subtle signal that it deserves their close attention.

That said, a company can’t apply behavioral psychology to deliver a digital experience if customers don’t engage with its site or mobile app in the first place. Addressing this often means making the process as convenient as possible, itself a behavioral nudge.

A digital solution that’s easy to use and search, offers a variety of choices pre-screened for relevance, and provides a friction-free transaction process is the equivalent of putting a product at eye level—and that applies far beyond retail. Consider the Global Entry program, which streamlines border crossings into the U.S. for pre-approved international travelers. Members can skip long passport control lines in favor of scanning their passports and answering a few questions at a touchscreen kiosk. To date, 1.8 million people have decided this convenience far outweighs the slow pace of approvals.

The basics of influencing irrational customers are essentially the same whether they’re taking place in a store or on a screen. A business still needs to know who its customers are, understand their needs and motivations, and give them a reason to buy.

And despite the accelerating shift to digital commerce, we still live in a physical world. “There’s no divide between old-style analog retail and new-style digital retail,” Berens says. “Increasingly, the two are overlapping. One of the things we’ve seen for years is that people go into a store with their phones, shop for a better price, and buy online. Or vice versa: they shop online and then go to a store to negotiate for a better deal.”

Still, digital increases the number of touchpoints from which the business can gather, cluster, and filter more types of data to make great suggestions that delight and surprise customers. That’s why the hottest word in marketing today is omnichannel. Bringing behavioral psychology to bear on the right person in the right place in the right way at the right time requires companies to design customer experiences that bridge multiple channels, on- and offline.

Amazon, for example, is known for its friction-free online purchasing. The company’s pilot store in Seattle has no lines or checkout counters, extending the brand experience into the physical world in a way that aligns with what customers already expect of it, Dhar says.

Omnichannel helps counter some people’s tendency to believe their purchasing decision isn’t truly well informed unless they can see, touch, hear, and in some cases taste and smell a product. Until we have ubiquitous access to virtual reality systems with full haptic feedback, the best way to address these concerns is by providing personalized, timely, relevant information and feedback in the moment through whatever channel is appropriate. That could be an automated call center that answers frequently asked questions, a video that shows a product from every angle, or a demonstration wizard built into the product. Any of these channels could also suggest the customer visit the nearest store to receive help from a human.

The omnichannel approach gives businesses plenty of opportunities to apply subtle nudges across physical and digital channels. For example, a supermarket chain could use store-club card data to push personalized offers to customers’ smartphones while they shop. “If the data tells them that your goal is to feed a family while balancing nutrition and cost, they could send you an e-coupon offering a discount on a brand of breakfast cereal that tastes like what you usually buy but contains half the sugar,” Guszcza says.

Similarly, a car insurance company could provide periodic feedback to policyholders through an app or even the digital screens in their cars, he suggests. “Getting a warning that you’re more aggressive than 90% of comparable drivers and three tips to avoid risk and lower your rates would not only incentivize the driver to be more careful for financial reasons but reduce claims and make the road safer for everyone.”

Digital channels can also show shoppers what similar people or organizations are buying, let them solicit feedback from colleagues or friends, and read reviews from other people who have made the same purchases. This leverages one of the most familiar forms of behavioral psychology—reinforcement from peers—and reassures buyers with Shiv’s Type 1 mindset that they’re making a choice that meets their needs or encourages those with the Type 2 mindset to move forward with the purchase. The rational mind only has to ask at the end of the process “Am I getting the best deal?” And as Guszcza points out, “If you can create solutions that use behavioral design and digital technology to turn my personal data into insight to reach my goals, you’ve increased the value of your engagement with me so much that I might even be willing to pay you more.”

Many transactions take place through corporate procurement systems that allow a company to leverage not just its own purchasing patterns but all the data in a marketplace specifically designed to facilitate enterprise purchasing. Machine learning can leverage this vast database of information to provide the necessary nudge to optimize purchasing patterns, when to buy, how best to negotiate, and more. To some extent, this is an attempt to eliminate psychology and make choices more rational.

B2B spending is tied into financial systems and processes, logistics systems, transportation systems, and other operational requirements in a way no consumer spending can be. A B2B decision is less about making a purchase that satisfies a desire than it is about making a purchase that keeps the company functioning.

That said, the decision still isn’t entirely rational, Berens says. When organizations have to choose among vendors offering relatively similar products and services, they generally opt for the vendor whose salespeople they like the best.

This means B2B companies have to make sure they meet or exceed parity with competitors on product quality, pricing, and time to delivery to satisfy all the rational requirements of the decision process. Only then can they bring behavioral psychology to bear by delivering consistently superior customer service, starting as soon as the customer hits their app or website and spreading out positive interactions all the way through post-purchase support. Finishing strong with a satisfied customer reinforces the relationship with a business customer just as much as it does with a consumer.

The best nudges make the customer relationship easy and enjoyable by providing experiences that are effortless and fun to choose, on- or offline, Dhar says. What sets the digital nudge apart in accommodating irrational customers is its ability to turn data about them and their journey into more effective, personalized persuasion even in the absence of the human touch.

Yet the subtle art of influencing customers isn’t just about making a sale, and it certainly shouldn’t be about persuading people to act against their own best interests, as Nudge co-author Thaler reminds audiences by exhorting them to “nudge for good.”

Guszcza, who talks about influencing people to make the choices they would make if only they had unlimited rationality, says companies that leverage behavioral psychology in their digital experiences should do so with an eye to creating positive impact for the customer, the company, and, where appropriate, the society.

In keeping with that ethos, any customer experience designed along behavioral lines has to include the option of letting the customer make a different choice, such as presenting a confirmation screen at the end of the purchase process with the cold, hard numbers and letting them opt out of the transaction altogether.

“A nudge is directing people in a certain direction,” Dhar says. “But for an ethical vendor, the only right direction to nudge is the right direction as judged by the customers themselves.” D!

Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.


About the Authors:

Volker Hildebrand is Global Vice President for SAP Hybris solutions.

Sam Yen is Chief Design Officer and Managing Director at SAP.

Fawn Fitter is a freelance writer specializing in business and technology.

Comments

Tags:

How Artificial Intelligence Will Transform Tomorrow’s Digital Supply Chain

Alina Gross

Artificial intelligence (AI) may sound futuristic, but it’s a real-life breakthrough that exists in the present. Anyone who interacts with an online search engine, shops on Amazon, owns a self-parking car, or talks to voice-powered personal assistants like Siri or Alexa is using AI.

AI is a field of computer science in which a machine is equipped with the ability to mimic the cognitive functions of a human. An AI machine can make decisions or predictions based on its past experiences, or it can respond to entirely new scenarios. When given a goal, not only does it attempt to achieve its objective, it continuously tries to improve upon its past performance.

Revolutionizing the digital supply chain

Within five years, 50% of manufacturing supply chains will be robotically and digitally controlled and able to provide direct-to-consumer and home shipments, according to IDC Manufacturing Insights. Additionally, 47% of supply chain leaders believe AI is disruptive and important with respect to supply chain strategies, per a 2016 SCM World survey. With that in mind, 85% of organizations have already adopted or will adopt AI technology into their supply chains within one year, according to a 2016 Accenture report.

Supply chains need AI to aggregate their mass amounts of data. In the supply chain, AI can analyze large data sets and recommend customer service and operations improvements while supporting better working capital management. As corporate systems become more interconnected, providing access to a wider breadth of supply chain data, the opportunity to leverage AI increases.

Let’s look at the potential benefits of using AI to link transportation data with order data:

A logistics enterprise ensures the delivery of a product within two days. With AI, the carrier can view past performances from shipping a similar product on a specific day, using a particular route, which reveals there’s a 25% chance the order will arrive in four days, not two. This information supplies customer service and supply chain professionals with proactive alerts of potential fulfillment challenges.

To take this a step further, AI could also compare historical shipping data to the customer’s requested delivery date to provide recommendations on whether this particular carrier’s performance meets requirements, or if you need to consider a different logistics enterprise that is 15% more expensive, but 25% more likely to deliver the product on time.

Step by step to a more efficient supply chain with AI

There are many opportunities to use AI throughout the supply chain, from buying raw materials/components and converting them into finished products to selling and delivering items to customers. Supply chains can also use AI to end repetitive manual tasks and begin automating processes. This can enable companies to reallocate time and resources to their core business, and other high-value, judgment-based jobs, by using AI for low-value, high-frequency activities.

In an AI-driven selling platform, chatbots can manage many of the sales, customer service, and operations tasks traditionally handled by humans, including interacting with buyers, taking orders, and passing those orders through the supply chain. In warehouse operations, AI-capable robotics and sensors can enable organizations to enhance stacking and retrieval, order picking, stock-level management, and re-ordering processes.

Amazon is currently combining automation with human labor to increase productivity by using robots that can glide quickly across the floor to rearrange items on shelves into neatly organized rows, or alert human workers when they need to stack the shelves with new products or retrieve goods for packaging. And Logistics company DHL is using AI and automation to create self-sufficient forklifts that understand what products need to be moved, where they need to be moved, and when they need to be moved.

Supply chain companies see a path forward with AI

Leveraging AI is an important next step for supply chain companies looking to lower costs and improve productivity. It can enable your organization to spend less time on repetitive processes, such as planning, monitoring, and coordinating, and focus more on innovation and growth.

AI still needs careful monitoring, however, as well as experienced and knowledgeable logistics and operations professionals to ensure it’s being used to its maximum potential.

For more on how AI and advanced tech can help boost your business, see Next-Gen Technology Separates Digital Leaders From The Rest.

Comments

Alina Gross

About Alina Gross

Alina Gross is currently pursuing her BA in international business at Heilbronn University. She plans on deepening her knowledge by adding an MA in international marketing. During her six-month, full-time internship at SAP, she has focused on marketing and project management topics within the field of supply chain, especially around event management and social media.