Sections

The Retail Products With The Biggest Margins

Robert Cordray

In any retail business, margin is king. Margin, the difference between the wholesale cost of an item and the price your store sells it for, pays all your business’s expenses. The higher your store’s margin, the better your chances are of being profitable. The smaller your store’s margin, the more likely it is that you’ll just get by.

Of course, you can’t just mark up your products without paying attention to what the market will bear–because if you price too high, you won’t make any sales. One of the ways to help woman shoppingstrengthen your chances at creating a profitable business is to select items that have a low cost and will still sell at a high markup, creating that sweet spot for a high profit margin. This isn’t always easy to do in the land of retail, where department stores with a 3.2 percent profit margin (as reported by Fortune magazine) are considered highly profitable. But if you focus specifically on high mark-up items, you can give your online or brick-and-mortar store an edge.

6 products with high mark-ups

Let’s take a look at six products that retailers are able to mark up quite a lot without sacrificing sales. Some of the items may even surprise you.

  1. Diamonds. According to TheStreet.com, diamonds will still sell whether the markup is 50 percent or as high as 200 percent. Diamonds sell well both online and in local retail locations, giving sellers a lot of avenues to make sales.
  1. Eyeglass frames. Another product that does extremely well both online and off, eyeglass frames often have a markup of 800 to 1,000 percent according to Wisebread.com. While all frames can sell at a high markup, designer frames will generally absorb a much higher markup than non-designer. TR90 glasses are considered to be very strong, but truth is they don’t cost much at all. That’s why they make bank. You’ll notice they do a great job of selling the value.
  1. Designer lingerie. Lifehacker.com reports that designer lingerie sells at markups as high as 1,100 percent. While non-designer lingerie won’t sell at as high a markup, some handmade products can.
  1. Designer jeans. With a reported 650 percent markup, designer jeans are ever-popular, easy to store, and great for your profit margin.
  1. Cosmetics. While the markup on cosmetics, at 80 percent, is smaller than the other items on our list, it’s an especially good markup when you consider the ease of storing makeup, the fact that consumers need to constantly replace it, and how inexpensive it is to ship. Nu Skin sells very high-quality skin products and they’re able to do very well with their quarterly profits.
  1. Bottled water. With a 4,000 percent markup, bottled water is a no-brainer for many brick-and-mortar stores. Online vendors can still clean up with bottled water sales by giving customers free shipping or big discounts, while still maintaining a more than respectable markup. A few myths around the industry report that the margins can reach above 280,000 percent for the very high quality water companies.

Other factors to consider

It’s not always just about what the general retail market will bear with regard to the markup; it’s about what your market will bear.

That means it’s important to consider other factors, such as:

  • Your competitors: If you have competing retailers selling the same items for less, then you may want to get more competitive about your pricing.
  • The current economy: When the economy slumps, retail sales do too.
  • The convenience of shopping at your location: Retailers in small towns, or those without any competitors nearby, can get away with higher markups in exchange for their convenient location.

With careful planning and a strategy geared to maximize profit, you can create a retail business that goes the distance. Keep your eye on shifting trends and newer products with high markups and you’ll stay ahead of the curve and leave your competitors in the dust.

Comments

Compelling Shopping Moments: 4 Creative Ways Stores Connect With Their Customers

Ralf Kern

compelling shopping momentsOn a recent morning, as I was going through my usual routine, my coffeemaker broke. I cannot live without coffee in the morning, so I immediately looked up my coffeemaker on Amazon and had it shipped Prime in one day. My problem was solved within minutes. My Amazon app, and my loyalty account with that company, was there for me when I needed it most.

It was in this moment that I realized the importance of digital presence for retailers. There is a chance that the store 10 minutes from my house carries this very same coffeemaker; I could have had it in one hour, instead of one day. But the need for immediate access to information pushed me to the online store. My local retailer was not able to be there for me digitally like Amazon.

Retail is still about reading the minds of your customers in order to know what they need and create a flawless experience. But the days of the unconnected shopper in a monochannel world are over. I am not alone in my digital-first mindset; according to a recent MasterCard report, 80% of consumers use technology during the shopping process. I, and consumers like me, use mobile devices as a guide to the physical world.

We don’t need to have an academic discussion about multichannel, omnichannel, and omnicommerce and their meanings, because what it really comes down to for your consumers, or fans, is shopping. And shopping has everything to do with moments in your customers’ lives: celebration moments, in-a-hurry moments, I-want-to-be-entertained moments, and more. Most companies only look for and measure very few moments along the shopping journey, like the moment of coupon download or the moment of sales.

Anticipating these moments was easier when mom and pop stores knew their customers by name. They knew how to be there for their shoppers when, where, and how they wanted it. And shoppers didn’t have any other options. Now it is crucial for companies to understand all of these moments and even anticipate or trigger the right moments for their customers.

In today’s digital economy the way to achieve customer connection is with simple, enjoyable, and personalized front ends that are supported by sophisticated, digital back ends. Then you can use that system to support your customer outreach.

Companies around the world are using creative and innovative methods to find their customers in various moments. Being there for customers comes in many different shapes and forms. Consider these examples:

Chilli Beans

A Brazilian maker of fashion sunglasses, glasses, and watches, Chilli Beans has a loyal following online and at over 700 locations around the world. Chilli Beans keeps its customers engaged by releasing 10 limited-edition styles each week. If customers like what they see, they have to buy fast or risk missing out.

Bonobos

Online men’s fashion retailer Bonobos reaches its customers with its Guide Shops. While they look like traditional retail outlets, the shops don’t actually sell any clothes. Customers come in for one-on-one appointments with the staff, and if they like anything that they try on, the staff member orders it for them online and it is shipped to their house. The 20 Guide Shops currently open have proven very successful for the company.

Peak Performance

Peak Performance, a European maker of outdoor clothing, has added a little magic to its customer experience. It has created virtual pop-up shops that customers can track on their smartphones through CatchMagicHour.com, and they are only available at sunrise and sunset at exact GPS locations. Customers who go to the location, be it at a lighthouse or on top of a mountain, are rewarded with the ability to select free clothing from the virtual shop that they have unlocked on their phones.

Shoes of Prey

The customer experience is completely custom at Shoes of Prey, a website where women can design custom shoes. From fabric to color, the customer picks every element, and then her custom creation is sent directly to her house. Shoes of Prey has even shifted its business model based on customer feedback. Its customers wanted to get inspiration and advice in a physical store. So Shoes of Prey made the move from online-only to omnicommerce and has started to open stores around the world.

While the customer experience for each of these connections is relatively simple – a website, a smartphone, an online design studio – the back end that powers them has to be powerful and nimble at the same time. These sophisticated back ends – powering simple, enjoyable, and personalized front ends – will completely change the game in retail. They will allow companies to engage their customers in ways we can’t even begin to imagine.

Technology will help you be there in the shopping moment. The best technology won’t annoy your customers with irrelevant promotions or pop-up messages. Instead, like a good friend, it will know how to engage with customers and when to leave them alone – how to truly connect with customers instead of manage them. Consequently, customer relationship management as we know it is an outdated technology in the economy of today – and tomorrow. Technologies that go beyond CRM will help retailers to differentiate. Aligning your organization and those technologies will be the Holy Grail to creating true and sustainable customer loyalty.

Learn more ways that business will never be the same again. Learn 99 Mind-Blowing Ways The Digital Economy Is Changing The Future Of Business.

Find out how SAP can help you go beyond CRM and support your retail business.

Ralf Kern is Global Vice President Retail for SAP and a retail ambassador for SAP. Interested in your feedback. You can also get in touch on Twitter or LinkedIn

This blog also appeared on SAP Customer Network.

Comments

Ralf Kern

About Ralf Kern

Ralf Kern is the Global Vice President, Business Unit Retail, at SAP, responsible for the future direction of SAP’s solution and global Go-to-Market strategy for Omnicommerce Retail, leading them into today’s digital reality.

IoT Can Keep You Healthy — Even When You Sleep [VIDEO]

Christine Donato

Today the Internet of Things is revamping technology. IoT image from American Geniuses.jpg

Smart devices speak to each other and work together to provide the end user with a better product experience.

Coinciding with this change in technology is a change in people. We’ve transitioned from a world of people who love processed foods and french fries to people who eat kale chips and Greek yogurt…and actually like it.

People are taking ownership of their well-being, and preventative care is at the forefront of focus for both physicians and patients. Fitness trackers alert wearers of the exact number of calories burned from walking a certain number of steps. Mobile apps calculate our perfect nutritional balance. And even while we sleep, people are realizing that it’s important to monitor vitals.

According to research conducted at Harvard University, proper sleep patterns bolster healthy side effects such as improved immune function, a faster metabolism, preserved memory, and reduced stress and depression.

Conversely, the Harvard study determined that lack of sleep can negatively affect judgement, mood, and the ability retain information, as well as increase the risk of obesity, diabetes, cardiovascular disease, and even premature death.

Through the Internet of Things, researchers can now explore sleep patterns without the usual sleep labs and movement-restricting electrode wires. And with connected devices, individuals can now easily monitor and positively influence their own health.

EarlySense, a startup credited with the creation of continuous patient monitoring solutions focused on early detection of patient deterioration, mid-sleep falls, and pressure ulcers, began with a mission to prevent premature and preventable deaths.

Without constant monitoring, patients with unexpected clinical deterioration may be accidentally neglected, and their conditions can easily escalate into emergency situations.

Motivated by many instances of patients who died from preventable post-elective surgery complications, EarlySense founders created a product that constantly monitors patients when hospital nurses can’t, alerting the main nurse station when a patient leaves his or her bed and could potentially fall, or when a patient’s vital signs drop or rise unexpectedly.

Now EarlySense technology has expanded outside of the hospital realm. The EarlySense wellness sensor, a device connected via the Internet of Things, mobile solutions, and supported by SAP HANA Cloud Platform, monitors all vital signs while a person sleeps. The device is completely wireless and lies subtly underneath one’s mattress. The sensor collects all mechanical vibrations that the patient’s body emits while sleeping, continuously monitoring heart and respiratory rates.

Watch this short video to learn more about how the EarlySense wellness sensor works:

The result is faster diagnoses with better treatments and outcomes. Sleep issues can be identified and addressed; individuals can use the data collected to make adjustments in diet or exercise habits; and those on heavy pain medications can monitor the way their bodies react to the medication. In addition, physicians can use the data collected from the sensor to identify patient health problems before they escalate into an emergency situation.

Connected care is opening the door for a new way to practice health. Through connected care apps that link people with their doctors, fitness trackers that measure daily activity, and sensors like the EarlySense wellness sensor, today’s technology enables people and physicians to work together to prevent sickness and accidents before they occur. Technology is forever changing the way we live, and in turn we are living longer, healthier lives.

To learn how SAP HANA Cloud Platform can affect your business, visit It&Me.

For more stories, join me on Twitter.

Comments

About Christine Donato

Christine Donato is a Senior Integrated Marketing Specialist at SAP. She is an accomplished project manager and leader of multiple marketing and sales enablement campaigns and events, that supported a multi million euro business.

Primed: Prompting Customers to Buy

Volker Hildebrand, Sam Yen, and Fawn Fitter

When it comes to buying things—even big-ticket items—the way we make decisions makes no sense. One person makes an impulsive offer on a house because of the way the light comes in through the kitchen windows. Another gleefully drives a high-end sports car off the lot even though it will probably never approach the limits it was designed to push.

We can (and usually do) rationalize these decisions after the fact by talking about needing more closet space or wanting to out-accelerate an 18-wheeler as we merge onto the highway, but years of study have arrived at a clear conclusion:

When it comes to the customer experience, human beings are fundamentally irrational.

In the brick-and-mortar past, companies could leverage that irrationality in time-tested ways. They relied heavily on physical context, such as an inviting retail space, to make products and services as psychologically appealing as possible. They used well-trained salespeople and employees to maximize positive interactions and rescue negative ones. They carefully sequenced customer experiences, such as having a captain’s dinner on the final night of a cruise, to play on our hard-wired craving to end experiences on a high note.

Today, though, customer interactions are increasingly moving online. Fortune reports that on 2016’s Black Friday, the day after Thanksgiving that is so crucial to holiday retail results, 108.5 million Americans shopped online, while only 99.1 million visited brick-and-mortar stores. The 9.4% gap between the two was a dramatic change from just one year prior, when on- and offline Black Friday shopping were more or less equal.

When people browse in a store for a few minutes, an astute salesperson can read the telltale signs that they’re losing interest and heading for the exit. The salesperson can then intervene, answering questions and closing the sale.

Replicating that in a digital environment isn’t as easy, however. Despite all the investments companies have made to counteract e-shopping cart abandonment, they lack the data that would let them anticipate when a shopper is on the verge of opting out of a transaction, and the actions they take to lure someone back afterwards can easily come across as less helpful than intrusive.

In a digital environment, companies need to figure out how to use Big Data analysis and digital design to compensate for the absence of persuasive human communication and physical sights, sounds, and sensations. What’s more, a 2014 Gartner survey found that 89% of marketers expected customer experience to be their primary differentiator by 2016, and we’re already well into 2017.

As transactions continue to shift toward the digital and omnichannel, companies need to figure out new ways to gently push customers along the customer journey—and to do so without frustrating, offending, or otherwise alienating them.

The quest to understand online customers better in order to influence them more effectively is built on a decades-old foundation: behavioral psychology, the study of the connections between what people believe and what they actually do. All of marketing and advertising is based on changing people’s thoughts in order to influence their actions. However, it wasn’t until 2001 that a now-famous article in the Harvard Business Review formally introduced the idea of applying behavioral psychology to customer service in particular.

The article’s authors, Richard B. Chase and Sriram Dasu, respectively a professor and assistant professor at the University of Southern California’s Marshall School of Business, describe how companies could apply fundamental tenets of behavioral psychology research to “optimize those extraordinarily important moments when the company touches its customers—for better and for worse.” Their five main points were simple but have proven effective across multiple industries:

  1. Finish strong. People evaluate experiences after the fact based on their high points and their endings, so the way a transaction ends is more important than how it begins.
  2. Front-load the negatives. To ensure a strong positive finish, get bad experiences out of the way early.
  3. Spread out the positives. Break up the pleasurable experiences into segments so they seem to last longer.
  4. Provide choices. People don’t like to be shoved toward an outcome; they prefer to feel in control. Giving them options within the boundaries of your ability to deliver builds their commitment.
  5. Be consistent. People like routine and predictability.

For example, McKinsey cites a major health insurance company that experimented with this framework in 2009 as part of its health management program. A test group of patients received regular coaching phone calls from nurses to help them meet health goals.

The front-loaded negative was inherent: the patients knew they had health problems that needed ongoing intervention, such as weight control or consistent use of medication. Nurses called each patient on a frequent, regular schedule to check their progress (consistency and spread-out positives), suggested next steps to keep them on track (choices), and cheered on their improvements (a strong finish).

McKinsey reports the patients in the test group were more satisfied with the health management program by seven percentage points, more satisfied with the insurance company by eight percentage points, and more likely to say the program motivated them to change their behavior by five percentage points.

The nurses who worked with the test group also reported increased job satisfaction. And these improvements all appeared in the first two weeks of the pilot program, without significantly affecting the company’s costs or tweaking key metrics, like the number and length of the calls.

Indeed, an ongoing body of research shows that positive reinforcements and indirect suggestions influence our decisions better and more subtly than blatant demands. This concept hit popular culture in 2008 with the bestselling book Nudge.

Written by University of Chicago economics professor Richard H. Thaler and Harvard Law School professor Cass R. Sunstein, Nudge first explains this principle, then explores it as a way to help people make decisions in their best interests, such as encouraging people to eat healthier by displaying fruits and vegetables at eye level or combatting credit card debt by placing a prominent notice on every credit card statement informing cardholders how much more they’ll spend over a year if they make only the minimum payment.

Whether they’re altruistic or commercial, nudges work because our decision-making is irrational in a predictable way. The question is how to apply that awareness to the digital economy.

In its early days, digital marketing assumed that online shopping would be purely rational, a tool that customers would use to help them zero in on the best product at the best price. The assumption was logical, but customer behavior remained irrational.

Our society is overloaded with information and short on time, says Brad Berens, Senior Fellow at the Center for the Digital Future at the University of Southern California, Annenberg, so it’s no surprise that the speed of the digital economy exacerbates our desire to make a fast decision rather than a perfect one, as well as increasing our tendency to make choices based on impulse rather than logic.

Buyers want what they want, but they don’t necessarily understand or care why they want it. They just want to get it and move on, with minimal friction, to the next thing. “Most of our decisions aren’t very important, and we only have so much time to interrogate and analyze them,” Berens points out.

But limited time and mental capacity for decision-making is only half the issue. The other half is that while our brains are both logical and emotional, the emotional side—also known as the limbic system or, more casually, the primitive lizard brain—is far older and more developed. It’s strong enough to override logic and drive our decisions, leaving rational thought to, well, rationalize our choices after the fact.

This is as true in the B2B realm as it is for consumers. The business purchasing process, governed as it is by requests for proposals, structured procurement processes, and permission gating, is designed to ensure that the people with spending authority make the most sensible deals possible. However, research shows that even in this supposedly rational process, the relationship with the seller is still more influential than product quality in driving customer commitment and loyalty.

Baba Shiv, a professor of marketing at Stanford University’s Graduate School of Business, studies how the emotional brain shapes decisions and experiences. In a popular TED Talk, he says that people in the process of making decisions fall into one of two mindsets: Type 1, which is stressed and wants to feel comforted and safe, and Type 2, which is bored or eager and wants to explore and take action.

People can move between these two mindsets, he says, but in both cases, the emotional brain is in control. Influencing it means first delivering a message that soothes or motivates, depending on the mindset the person happens to be in at the moment and only then presenting the logical argument to help rationalize the action.

In the digital economy, working with those tendencies means designing digital experiences with the full awareness that people will not evaluate them objectively, says Ravi Dhar, director of the Center for Customer Insights at the Yale School of Management. Since any experience’s greatest subjective impact in retrospect depends on what happens at the beginning, the end, and the peaks in between, companies need to design digital experiences to optimize those moments—to rationally design experiences for limited rationality.

This often involves making multiple small changes in the way options are presented well before the final nudge into making a purchase. A paper that Dhar co-authored for McKinsey offers the example of a media company that puts most of its content behind a paywall but offers free access to a limited number of articles a month as an incentive to drive subscriptions.

Many nonsubscribers reached their limit of free articles in the morning, but they were least likely to respond to a subscription offer generated by the paywall at that hour, because they were reading just before rushing out the door for the day. When the company delayed offers until later in the day, when readers were less distracted, successful subscription conversions increased.

Pre-selecting default options for necessary choices is another way companies can design digital experiences to follow customers’ preference for the path of least resistance. “We know from a decade of research that…defaults are a de facto nudge,” Dhar says.

For example, many online retailers set a default shipping option because customers have to choose a way to receive their packages and are more likely to passively allow the default option than actively choose another one. Similarly, he says, customers are more likely to enroll in a program when the default choice is set to accept it rather than to opt out.

Another intriguing possibility lies in the way customers react differently to on-screen information based on how that information is presented. Even minor tweaks can have a disproportionate impact on the choices people make, as explained in depth by University of California, Los Angeles, behavioral economist Shlomo Benartzi in his 2015 book, The Smarter Screen.

A few of the conclusions Benartzi reached: items at the center of a laptop screen draw more attention than those at the edges. Those on the upper left of a screen split into quadrants attract more attention than those on the lower left. And intriguingly, demographics are important variables.

Benartzi cites research showing that people over 40 prefer more visually complicated, text-heavy screens than younger people, who are drawn to saturated colors and large images. Women like screens that use a lot of different colors, including pastels, while men prefer primary colors on a grey or white background. People in Malaysia like lots of color; people in Germany don’t.

This suggests companies need to design their online experiences very differently for middle-aged women than they do for teenage boys. And, as Benartzi writes, “it’s easy to imagine a future in which each Internet user has his or her own ‘aesthetic algorithm,’ customizing the appearance of every site they see.”

Applying behavioral psychology to the digital experience in more sophisticated ways will require additional formal research into recommendation algorithms, predictions, and other applications of customer data science, says Jim Guszcza, PhD, chief U.S. data scientist for Deloitte Consulting.

In fact, given customers’ tendency to make the fastest decisions, Guszcza believes that in some cases, companies may want to consider making choice environments more difficult to navigate— a process he calls “disfluencing”—in high-stakes situations, like making an important medical decision or an irreversible big-ticket purchase. Choosing a harder-to-read font and a layout that requires more time to navigate forces customers to work harder to process the information, sending a subtle signal that it deserves their close attention.

That said, a company can’t apply behavioral psychology to deliver a digital experience if customers don’t engage with its site or mobile app in the first place. Addressing this often means making the process as convenient as possible, itself a behavioral nudge.

A digital solution that’s easy to use and search, offers a variety of choices pre-screened for relevance, and provides a friction-free transaction process is the equivalent of putting a product at eye level—and that applies far beyond retail. Consider the Global Entry program, which streamlines border crossings into the U.S. for pre-approved international travelers. Members can skip long passport control lines in favor of scanning their passports and answering a few questions at a touchscreen kiosk. To date, 1.8 million people have decided this convenience far outweighs the slow pace of approvals.

The basics of influencing irrational customers are essentially the same whether they’re taking place in a store or on a screen. A business still needs to know who its customers are, understand their needs and motivations, and give them a reason to buy.

And despite the accelerating shift to digital commerce, we still live in a physical world. “There’s no divide between old-style analog retail and new-style digital retail,” Berens says. “Increasingly, the two are overlapping. One of the things we’ve seen for years is that people go into a store with their phones, shop for a better price, and buy online. Or vice versa: they shop online and then go to a store to negotiate for a better deal.”

Still, digital increases the number of touchpoints from which the business can gather, cluster, and filter more types of data to make great suggestions that delight and surprise customers. That’s why the hottest word in marketing today is omnichannel. Bringing behavioral psychology to bear on the right person in the right place in the right way at the right time requires companies to design customer experiences that bridge multiple channels, on- and offline.

Amazon, for example, is known for its friction-free online purchasing. The company’s pilot store in Seattle has no lines or checkout counters, extending the brand experience into the physical world in a way that aligns with what customers already expect of it, Dhar says.

Omnichannel helps counter some people’s tendency to believe their purchasing decision isn’t truly well informed unless they can see, touch, hear, and in some cases taste and smell a product. Until we have ubiquitous access to virtual reality systems with full haptic feedback, the best way to address these concerns is by providing personalized, timely, relevant information and feedback in the moment through whatever channel is appropriate. That could be an automated call center that answers frequently asked questions, a video that shows a product from every angle, or a demonstration wizard built into the product. Any of these channels could also suggest the customer visit the nearest store to receive help from a human.

The omnichannel approach gives businesses plenty of opportunities to apply subtle nudges across physical and digital channels. For example, a supermarket chain could use store-club card data to push personalized offers to customers’ smartphones while they shop. “If the data tells them that your goal is to feed a family while balancing nutrition and cost, they could send you an e-coupon offering a discount on a brand of breakfast cereal that tastes like what you usually buy but contains half the sugar,” Guszcza says.

Similarly, a car insurance company could provide periodic feedback to policyholders through an app or even the digital screens in their cars, he suggests. “Getting a warning that you’re more aggressive than 90% of comparable drivers and three tips to avoid risk and lower your rates would not only incentivize the driver to be more careful for financial reasons but reduce claims and make the road safer for everyone.”

Digital channels can also show shoppers what similar people or organizations are buying, let them solicit feedback from colleagues or friends, and read reviews from other people who have made the same purchases. This leverages one of the most familiar forms of behavioral psychology—reinforcement from peers—and reassures buyers with Shiv’s Type 1 mindset that they’re making a choice that meets their needs or encourages those with the Type 2 mindset to move forward with the purchase. The rational mind only has to ask at the end of the process “Am I getting the best deal?” And as Guszcza points out, “If you can create solutions that use behavioral design and digital technology to turn my personal data into insight to reach my goals, you’ve increased the value of your engagement with me so much that I might even be willing to pay you more.”

Many transactions take place through corporate procurement systems that allow a company to leverage not just its own purchasing patterns but all the data in a marketplace specifically designed to facilitate enterprise purchasing. Machine learning can leverage this vast database of information to provide the necessary nudge to optimize purchasing patterns, when to buy, how best to negotiate, and more. To some extent, this is an attempt to eliminate psychology and make choices more rational.

B2B spending is tied into financial systems and processes, logistics systems, transportation systems, and other operational requirements in a way no consumer spending can be. A B2B decision is less about making a purchase that satisfies a desire than it is about making a purchase that keeps the company functioning.

That said, the decision still isn’t entirely rational, Berens says. When organizations have to choose among vendors offering relatively similar products and services, they generally opt for the vendor whose salespeople they like the best.

This means B2B companies have to make sure they meet or exceed parity with competitors on product quality, pricing, and time to delivery to satisfy all the rational requirements of the decision process. Only then can they bring behavioral psychology to bear by delivering consistently superior customer service, starting as soon as the customer hits their app or website and spreading out positive interactions all the way through post-purchase support. Finishing strong with a satisfied customer reinforces the relationship with a business customer just as much as it does with a consumer.

The best nudges make the customer relationship easy and enjoyable by providing experiences that are effortless and fun to choose, on- or offline, Dhar says. What sets the digital nudge apart in accommodating irrational customers is its ability to turn data about them and their journey into more effective, personalized persuasion even in the absence of the human touch.

Yet the subtle art of influencing customers isn’t just about making a sale, and it certainly shouldn’t be about persuading people to act against their own best interests, as Nudge co-author Thaler reminds audiences by exhorting them to “nudge for good.”

Guszcza, who talks about influencing people to make the choices they would make if only they had unlimited rationality, says companies that leverage behavioral psychology in their digital experiences should do so with an eye to creating positive impact for the customer, the company, and, where appropriate, the society.

In keeping with that ethos, any customer experience designed along behavioral lines has to include the option of letting the customer make a different choice, such as presenting a confirmation screen at the end of the purchase process with the cold, hard numbers and letting them opt out of the transaction altogether.

“A nudge is directing people in a certain direction,” Dhar says. “But for an ethical vendor, the only right direction to nudge is the right direction as judged by the customers themselves.” D!

Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.


About the Authors:

Volker Hildebrand is Global Vice President for SAP Hybris solutions.

Sam Yen is Chief Design Officer and Managing Director at SAP.

Fawn Fitter is a freelance writer specializing in business and technology.

Comments

Tags:

The Big (Data) Problem With Machine Learning

Dan Wellers

Historically, most of the data businesses have analyzed for decision-making has been of the structured variety—easily entered, stored, and queried. In the digital age, that universe of potentially valuable data keeps expanding exponentially. Most of it is unstructured data, coming from a wide variety of sources, from websites to wearable devices. As a recent McKinsey Global Institute report noted: “Much of this newly available data is in the form of clicks, images, text, or signals of various sorts, which is very different than the structured data that can be cleanly placed in rows and columns.”

At the same time, we have entered an era when machine learning can theoretically find patterns in vast amounts of data to enable enterprises to uncover insights that may not have been visible before. Machine learning trains itself on data, and for a time, that data was scarce. Today it is abundant. By 2025, the world will create 180 zettabytes of data per year (up from 4.4 zettabytes in 2013), according to IDC.

Big Data and machine learning would seem to be a perfect match, coming together at just the right time. But it’s not that simple.

The connected world is ever-widening, enabling the capture and storage of more—and more diverse—data sets than ever before. Nearly 5,000 devices are being connected to the Internet every minute today; within ten years, there will be 80 billion devices collecting and transmitting data in the world. Voice, facial recognition, chemical, biological, and 3D-imaging sensors are rapidly advancing. And the computing muscle that will be required to churn through all this data is more readily available today. There’s been a one trillion-fold increase in computing power over the past 60 years.

The importance of data prep

But having vast amounts of data and computing power isn’t enough. For machine learning tools to work, they need to be fed high-quality data, and they must also be guided by highly skilled humans.

It’s the age-old computing axiom writ large: garbage in, garbage out. Data must be clean, scrubbed of anomalies, and free of bias. In addition, it must be structured appropriately for the particular machine-learning tool being used as the required format varies by platform. Preparing data is likely the least sexy but most important part of a data scientist’s job—one that accounts for as much as 50 percent of his or her time, according to some estimates. It’s the unglamorous heavy lifting of advanced analytics, and it takes experience and skill to do it—qualities that are, and will continue to be, in short supply even as demand for data scientists is predicted to grow at double-digit rates for the foreseeable future.

It took one bank 150 people and two years of painstaking work to address all the data quality questions necessary to build an enterprise-wide data lake from which advanced analytics tools might drink. That’s the kind of data wrangling that has to be done before companies can even begin to test the value of machine-learning capabilities.

More data, more problems

There’s also the misperception that having access to all this new data will necessarily lead to greater insight. There’s great enthusiasm around data-driven decision-making and the promise of Big Data and machine learning in boardrooms and executive suites around the world. But in reality, says UC Berkeley professor and machine learning expert Michael I. Jordan, more data increases the likelihood of making spurious connections. “It’s like having billions of monkeys typing. One of them will write Shakespeare,” said Jordan, who noted that Big Data analysis can deliver inferences at certain levels of quality. But, he said, “we have to be clear about what levels of quality. We have to have error bars around all our predictions. That is something that’s missing in much of the current machine learning literature.”

Again, this is where the expertise of the data scientist is of critical value: deciding what questions machine learning might be able to answer, with what data and at what level of quality.

These problems are not insurmountable. Tools are being developed to help businesses deal with some of the data management blocking and tackling that stands in the way of advanced analytics. One company, for example, has developed a machine-learning tool for real estate and finance companies that it says can extract unstructured data in 20 different languages from contracts and other legal documents and transform it into a structured, query-ready format.

What is clear is that the business of combining Big Data and big computing power for new insight is harder than it looks. The benefits almost certainly will be huge. But companies are still at the early stages of experimenting with new data types and emerging machine-learning tools and discovering the drawbacks and complications we will need to work through over time.

This blog is the fifth in a six-part series on machine learning.

Comments

About Dan Wellers

Dan Wellers is the Global Lead of Digital Futures at SAP, which explores how organizations can anticipate the future impact of exponential technologies. Dan has extensive experience in technology marketing and business strategy, plus management, consulting, and sales.