Sections

Dashing Through The Crowds To Find Social Sentiment

Ryan O'Neil

Another year of Black Friday and Cyber Monday sales has come and gone. The crowds have subsided, the makeshift campgrounds at retailers around the United States have vanished, and traffic, physical and online, is slowly coming back to normal.woman holding black friday purchases

New ways to monitor and analyze this annual shopping frenzy tell us more about the modern consumer than you may think. Technology has revealed a new breadth of social information that gives us the opportunity to dig deeper than the sales figures. To better react and create long-lasting effects, understanding consumer experience and sentiment is key.

How did shoppers feel about holiday shopping promotions creeping earlier into Thanksgiving? Did the Internet keeping them from door-busting? What, if anything, changed in their sentiment or behaviors from year to year?

SAP listened to the social chatter surrounding this year’s holiday shopping in order to gain a better understanding of shopper sentiment and its impact on the retail business.

Building a tradition out of social trends

In 2012, using a sophisticated social media analytics platform, SAP discovered interesting insight into the sentiment and trends that surround Black Friday and Cyber Monday events, including that consumers are placing more value on personal time and convenience. For the complete picture, have a look at our 2012 results.

We reprised this analysis in 2013 to see if there were any significant shifts or new trends emerging. It’s clear that the opportunity to share thoughts and opinions socially is now more available than ever before, and both consumers and companies took advantage of being able to connect in social conversations this year. We also discovered an uptick in positive social sentiment surrounding Black Friday this year, perhaps due to the fact that retailers were opening earlier on Thanksgiving. With more time to find the deals they wanted, consumers may be beginning to see Black Friday in a brighter light.

What does it all mean?

Using the power of consumer sentiment as a resource is rapidly increasing in importance for retailers. Understanding the social conversation enables retailers to better craft promotions and events, and to personalize the shopping experience based on consumers’ likes, pain points, and values.

With the use of the SAP Social Media Analytics application by NetBase, the goal of understanding the mind of your tech-savvy, outspoken consumer is more attainable than ever. The ability to follow a social conversation based on keywords, brands, or products enables retailers to react in real time to changing consumer sentiment and make better decisions as a result.

The effect of this realization is already showing itself on a number of in-store retailers. With online vendors now controlling 47% of the holiday retail market, according to an October report from Deloitte LLP, storeowners are using the power of Big Data analytics to manage key inventory, receipts, and customer databases in order to keep stores running smoothly for holiday shoppers. The hope is that in-store retailers can provide the convenience and speed that consumers desire in an effort to combat the Internet’s growing retail share.

Click the screenshot to view the full infographic:

social sentiment infographic

If you want even more holiday social analytics cheer, check out SAP’s interactive holiday dashboard, which dynamically analyzes the social sentiment around the Toys“R”Us Hot 15 Holiday Toy List in real time.

Join us at Retail’s BIG Show beginning January 12, 2014, in New York City to learn more about holiday analytics and why right now is the time to leverage a single real-time retail platform from SAP.

Comments

Ryan O'Neil

About Ryan O'Neil

Ryan O'Neil is the Head of SAP S/4HANA & IoT Marketing, North America, at SAP. He is responsible for the launch and market development of SAP’s next generation business application suite, SAP S/4HANA, as well as the SAP Internet of Things (IoT) solution portfolio into North America.

Compelling Shopping Moments: 4 Creative Ways Stores Connect With Their Customers

Ralf Kern

compelling shopping momentsOn a recent morning, as I was going through my usual routine, my coffeemaker broke. I cannot live without coffee in the morning, so I immediately looked up my coffeemaker on Amazon and had it shipped Prime in one day. My problem was solved within minutes. My Amazon app, and my loyalty account with that company, was there for me when I needed it most.

It was in this moment that I realized the importance of digital presence for retailers. There is a chance that the store 10 minutes from my house carries this very same coffeemaker; I could have had it in one hour, instead of one day. But the need for immediate access to information pushed me to the online store. My local retailer was not able to be there for me digitally like Amazon.

Retail is still about reading the minds of your customers in order to know what they need and create a flawless experience. But the days of the unconnected shopper in a monochannel world are over. I am not alone in my digital-first mindset; according to a recent MasterCard report, 80% of consumers use technology during the shopping process. I, and consumers like me, use mobile devices as a guide to the physical world.

We don’t need to have an academic discussion about multichannel, omnichannel, and omnicommerce and their meanings, because what it really comes down to for your consumers, or fans, is shopping. And shopping has everything to do with moments in your customers’ lives: celebration moments, in-a-hurry moments, I-want-to-be-entertained moments, and more. Most companies only look for and measure very few moments along the shopping journey, like the moment of coupon download or the moment of sales.

Anticipating these moments was easier when mom and pop stores knew their customers by name. They knew how to be there for their shoppers when, where, and how they wanted it. And shoppers didn’t have any other options. Now it is crucial for companies to understand all of these moments and even anticipate or trigger the right moments for their customers.

In today’s digital economy the way to achieve customer connection is with simple, enjoyable, and personalized front ends that are supported by sophisticated, digital back ends. Then you can use that system to support your customer outreach.

Companies around the world are using creative and innovative methods to find their customers in various moments. Being there for customers comes in many different shapes and forms. Consider these examples:

Chilli Beans

A Brazilian maker of fashion sunglasses, glasses, and watches, Chilli Beans has a loyal following online and at over 700 locations around the world. Chilli Beans keeps its customers engaged by releasing 10 limited-edition styles each week. If customers like what they see, they have to buy fast or risk missing out.

Bonobos

Online men’s fashion retailer Bonobos reaches its customers with its Guide Shops. While they look like traditional retail outlets, the shops don’t actually sell any clothes. Customers come in for one-on-one appointments with the staff, and if they like anything that they try on, the staff member orders it for them online and it is shipped to their house. The 20 Guide Shops currently open have proven very successful for the company.

Peak Performance

Peak Performance, a European maker of outdoor clothing, has added a little magic to its customer experience. It has created virtual pop-up shops that customers can track on their smartphones through CatchMagicHour.com, and they are only available at sunrise and sunset at exact GPS locations. Customers who go to the location, be it at a lighthouse or on top of a mountain, are rewarded with the ability to select free clothing from the virtual shop that they have unlocked on their phones.

Shoes of Prey

The customer experience is completely custom at Shoes of Prey, a website where women can design custom shoes. From fabric to color, the customer picks every element, and then her custom creation is sent directly to her house. Shoes of Prey has even shifted its business model based on customer feedback. Its customers wanted to get inspiration and advice in a physical store. So Shoes of Prey made the move from online-only to omnicommerce and has started to open stores around the world.

While the customer experience for each of these connections is relatively simple – a website, a smartphone, an online design studio – the back end that powers them has to be powerful and nimble at the same time. These sophisticated back ends – powering simple, enjoyable, and personalized front ends – will completely change the game in retail. They will allow companies to engage their customers in ways we can’t even begin to imagine.

Technology will help you be there in the shopping moment. The best technology won’t annoy your customers with irrelevant promotions or pop-up messages. Instead, like a good friend, it will know how to engage with customers and when to leave them alone – how to truly connect with customers instead of manage them. Consequently, customer relationship management as we know it is an outdated technology in the economy of today – and tomorrow. Technologies that go beyond CRM will help retailers to differentiate. Aligning your organization and those technologies will be the Holy Grail to creating true and sustainable customer loyalty.

Learn more ways that business will never be the same again. Learn 99 Mind-Blowing Ways The Digital Economy Is Changing The Future Of Business.

Find out how SAP can help you go beyond CRM and support your retail business.

Ralf Kern is Global Vice President Retail for SAP and a retail ambassador for SAP. Interested in your feedback. You can also get in touch on Twitter or LinkedIn

This blog also appeared on SAP Customer Network.

Comments

Ralf Kern

About Ralf Kern

Ralf Kern is the Global Vice President, Business Unit Retail, at SAP, responsible for the future direction of SAP’s solution and global Go-to-Market strategy for Omnicommerce Retail, leading them into today’s digital reality.

IoT Can Keep You Healthy — Even When You Sleep [VIDEO]

Christine Donato

Today the Internet of Things is revamping technology. IoT image from American Geniuses.jpg

Smart devices speak to each other and work together to provide the end user with a better product experience.

Coinciding with this change in technology is a change in people. We’ve transitioned from a world of people who love processed foods and french fries to people who eat kale chips and Greek yogurt…and actually like it.

People are taking ownership of their well-being, and preventative care is at the forefront of focus for both physicians and patients. Fitness trackers alert wearers of the exact number of calories burned from walking a certain number of steps. Mobile apps calculate our perfect nutritional balance. And even while we sleep, people are realizing that it’s important to monitor vitals.

According to research conducted at Harvard University, proper sleep patterns bolster healthy side effects such as improved immune function, a faster metabolism, preserved memory, and reduced stress and depression.

Conversely, the Harvard study determined that lack of sleep can negatively affect judgement, mood, and the ability retain information, as well as increase the risk of obesity, diabetes, cardiovascular disease, and even premature death.

Through the Internet of Things, researchers can now explore sleep patterns without the usual sleep labs and movement-restricting electrode wires. And with connected devices, individuals can now easily monitor and positively influence their own health.

EarlySense, a startup credited with the creation of continuous patient monitoring solutions focused on early detection of patient deterioration, mid-sleep falls, and pressure ulcers, began with a mission to prevent premature and preventable deaths.

Without constant monitoring, patients with unexpected clinical deterioration may be accidentally neglected, and their conditions can easily escalate into emergency situations.

Motivated by many instances of patients who died from preventable post-elective surgery complications, EarlySense founders created a product that constantly monitors patients when hospital nurses can’t, alerting the main nurse station when a patient leaves his or her bed and could potentially fall, or when a patient’s vital signs drop or rise unexpectedly.

Now EarlySense technology has expanded outside of the hospital realm. The EarlySense wellness sensor, a device connected via the Internet of Things, mobile solutions, and supported by SAP HANA Cloud Platform, monitors all vital signs while a person sleeps. The device is completely wireless and lies subtly underneath one’s mattress. The sensor collects all mechanical vibrations that the patient’s body emits while sleeping, continuously monitoring heart and respiratory rates.

Watch this short video to learn more about how the EarlySense wellness sensor works:

The result is faster diagnoses with better treatments and outcomes. Sleep issues can be identified and addressed; individuals can use the data collected to make adjustments in diet or exercise habits; and those on heavy pain medications can monitor the way their bodies react to the medication. In addition, physicians can use the data collected from the sensor to identify patient health problems before they escalate into an emergency situation.

Connected care is opening the door for a new way to practice health. Through connected care apps that link people with their doctors, fitness trackers that measure daily activity, and sensors like the EarlySense wellness sensor, today’s technology enables people and physicians to work together to prevent sickness and accidents before they occur. Technology is forever changing the way we live, and in turn we are living longer, healthier lives.

To learn how SAP HANA Cloud Platform can affect your business, visit It&Me.

For more stories, join me on Twitter.

Comments

Christine Donato

About Christine Donato

Christine Donato is a Senior Integrated Marketing Specialist at SAP. She is an accomplished project manager and leader of multiple marketing and sales enablement campaigns and events, that supported a multi million euro business.

Unlock Your Digital Super Powers: How Digitization Helps Companies Be Live Businesses

Erik Marcade and Fawn Fitter

The Port of Hamburg handles 9 million cargo containers a year, making it one of the world’s busiest container ports. According to the Hamburg Port Authority (HPA), that volume doubled in the last decade, and it’s expected to at least double again in the next decade—but there’s no room to build new roads in the center of Hamburg, one of Germany’s historic cities. The port needed a way to move more freight more efficiently with the physical infrastructure it already has.

sap_Q216_digital_double_feature1_images1The answer, according to an article on ZDNet, was to digitize the processes of managing traffic into, within, and back out of the port. By deploying a combination of sensors, telematics systems, smart algorithms, and cloud data processing, the Port of Hamburg now collects and analyzes a vast amount of data about ship arrivals and delays, parking availability, ground traffic, active roadwork, and more. It generates a continuously updated model of current port conditions, then pushes the results through mobile apps to truck drivers, letting them know exactly when ships are ready to drop off or receive containers and optimizing their routes. According to the HPA, they are now on track to handle 25 million cargo containers a year by 2025 without further congestion or construction, helping shipping companies bring more goods and raw materials in less time to businesses and consumers all across Europe.

In the past, the port could only have solved its problem with backhoes and building permits—which, given the physical constraints, means the problem would have been unsolvable. Today, though, software and sensors are allowing it to improve processes and operations to a previously impossible extent. Big Data analysis, data mining, machine learning, artificial intelligence (AI), and other technologies have finally become sophisticated enough to identify patterns not just in terabytes but in petabytes of data, make decisions accordingly, and learn from the results, all in seconds. These technologies make it possible to digitize all kinds of business processes, helping organizations become more responsive to changing market conditions and more able to customize interactions to individual customer needs. Digitization also streamlines and automates these processes, freeing employees to focus on tasks that require a human touch, like developing innovative strategies or navigating office politics.

In short, digitizing business processes is key to ensuring that the business can deliver relevant, personalized responses to the market in real time. And that, in turn, is the foundation of the Live Business—a business able to coordinate multiple functions in order to respond to and even anticipate customer demand at any moment.

Some industries and organizations are on the verge of discovering how business process digitization can help them go live. Others have already started putting it into action: fine-tuning operations to an unprecedented level across departments and at every point in the supply chain, cutting costs while turbocharging productivity, and spotting trends and making decisions at speeds that can only be called superhuman.

Balancing Insight and Action

sap_Q216_digital_double_feature1_images2Two kinds of algorithms drive process digitization, says Chandran Saravana, senior director of advanced analytics at SAP. Edge algorithms operate at the point where customers or other end users interact directly with a sensor, application, or Internet-enabled device. These algorithms, such as speech or image recognition, focus on simplicity and accuracy. They make decisions based primarily on their ability to interpret input with precision and then deliver a result in real time.

Edge algorithms work in tandem with, and sometimes mature into, server-level algorithms, which report on both the results of data analysis and the analytical process itself. For example, the complex systems that generate credit scores assess how creditworthy an individual is, but they also explain to both the lender and the credit applicant why a score is low or high, what factors went into calculating it, and what an applicant can do to raise the score in the future. These server-based algorithms gather data from edge algorithms, learn from their own results, and become more accurate through continuous feedback. The business can then track the results over time to understand how well the digitized process is performing and how to improve it.

sap_Q216_digital_double_feature1_images5From Data Scarcity to a Glut

To operate in real time, businesses need an accurate data model that compares what’s already known about a situation to what’s happened in similar situations in the past to reach a lightning-fast conclusion about what’s most likely to happen next. The greatest barrier to this level of responsiveness used to be a lack of data, but the exponential growth of data volumes in the last decade has flipped this problem on its head. Today, the big challenge for companies is having too much data and not enough time or power to process it, says Saravana.

Even the smartest human is incapable of gathering all the data about a given situation, never mind considering all the possible outcomes. Nor can a human mind reach conclusions at the speed necessary to drive Live Business. On the other hand, carefully crafted algorithms can process terabytes or even petabytes of data, analyze patterns and detect outliers, arrive at a decision in seconds or less—and even learn from their mistakes (see How to Train Your Algorithm).

How to Train Your Algorithm 

The data that feeds process digitization can’t just simmer.
It needs constant stirring.

Successfully digitizing a business process requires you to build a model of the business process based on existing data. For example, a bank creates a customer record that includes not just the customer’s name, address, and date of birth but also the amount and date of the first deposit, the type of account, and so forth. Over time, as the customer develops a history with the bank and the bank introduces new products and services, customer records expand to include more data. Predictive analytics can then extrapolate from these records to reach conclusions about new customers, such as calculating the likelihood that someone who just opened a money market account with a large balance will apply for a mortgage in the next year.

Germany --- Germany, Lower Bavaria, Man training English Springer Spaniel in grass field --- Image by © Roman M‰rzinger/Westend61/CorbisTo keep data models accurate, you have to have enough data to ensure that your models are complete—that is, that they account for every possible predictable outcome. The model also has to push outlying data and exceptions, which create unpredictable outcomes, to human beings who can address their special circumstances. For example, an algorithm may be able to determine that a delivery will fail to show up as scheduled and can point to the most likely reasons why, but it can only do that based on the data it can access. It may take a human to start the process of locating the misdirected shipment, expediting a replacement, and establishing what went wrong by using business knowledge not yet included in the data model.

Indeed, data models need to be monitored for relevance. Whenever the results of a predictive model start to drift significantly from expectations, it’s time to examine the model to determine whether you need to dump old data that no longer reflects your customer base, add a new product or subtract a defunct one, or include a new variable, such as marital status or length of customer relationship that further refines your results.

It’s also important to remember that data doesn’t need to be perfect—and, in fact, probably shouldn’t be, no matter what you might have heard about the difficulty of starting predictive analytics with lower-quality data. To train an optical character recognition system to recognize and read handwriting in real time, for example, your samples of block printing and cursive writing data stores also have to include a few sloppy scrawls so the system can learn to decode them.

On the other hand, in a fast-changing marketplace, all the products and services in your database need consistent and unchanging references, even though outside the database, names, SKUs, and other identifiers for a single item may vary from one month or one order to the next. Without consistency, your business process model won’t be accurate, nor will the results.

Finally, when you’re using algorithms to generate recommendations to drive your business process, the process needs to include opportunities to test new messages and products against existing successful ones as well as against random offerings, Saravana says. Otherwise, instead of responding to your customers’ needs, your automated system will actually control their choices by presenting them with only a limited group of options drawn from those that have already received the most
positive results.

Any process is only as good as it’s been designed to be. Digitizing business processes doesn’t eliminate the possibility of mistakes and problems; but it does ensure that the mistakes and problems that arise are easy to spot and fix.

From Waste to Gold

Organizations moving to digitize and streamline core processes are even discovering new business opportunities and building new digitized models around them. That’s what happened at Hopper, an airfare prediction app firm in Cambridge, Massachusetts, which discovered in 2013 that it could mine its archives of billions of itineraries to spot historical trends in airfare pricing—data that was previously considered “waste product,” according to Hopper’s chief data scientist, Patrick Surry.

Hopper developed AI algorithms to correlate those past trends with current fares and to predict whether and when the price of any given flight was likely to rise or fall. The results were so accurate that Hopper jettisoned its previous business model. “We check up to 3 billion itineraries live, in real time, each day, then compare them to the last three to four years of historical airfare data,” Surry says. “When consumers ask our smartphone app whether they should buy now or wait, we can tell them, ‘yes, that’s a good deal, buy it now,’ or ‘no, we think that fare is too expensive, we predict it will drop, and we’ll alert you when it does.’ And we can give them that answer in less than one second.”

When consumers ask our smartphone app whether they should buy now or wait, we can tell them, ‘yes, that’s a good deal, buy it now’.

— Patrick Surry, chief data scientist, Hopper

While trying to predict airfare trends is nothing new, Hopper has told TechCrunch that it can not only save users up to 40% on airfares but it can also find them the lowest possible price 95% of the time. Surry says that’s all due to Hopper’s algorithms and data models.

The Hopper app launched on iOS in January 2015 and on Android eight months later. The company also switched in September 2015 from directing customers to external travel agencies to taking bookings directly through the app for a small fee. The Hopper app has already been downloaded to more than 2 million phones worldwide.

Surry predicts that we’ll soon see sophisticated chatbots that can start with vague requests from customers like “I want to go somewhere warm in February for less than $500,” proceed to ask questions that help users narrow their options, and finally book a trip that meets all their desired parameters. Eventually, he says, these chatbots will be able to handle millions of interactions simultaneously, allowing a wide variety of companies to reassign human call center agents to the handling of high-value transactions and exceptions to the rules built into the digitized booking process.

Port of Hamburg Lets the Machines Untangle Complexity

In early 2015, AI experts told Wired magazine that at least another 10 years would pass before a computer could best the top human players at Go, an ancient game that’s exponentially harder than chess. Yet before the end of that same year, Wired also reported that machine learning techniques drove Google’s AlphaGo AI to win four games out of five against one of the world’s top Go players. This feat proves just how good algorithms have become at managing extremely complex situations with multiple interdependent choices, Saravana points out.

The Port of Hamburg, which has digitized traffic management for an estimated 40,000 trucks a day, is a good example. In the past, truck drivers had to show up at the port to check traffic and parking message boards. If they arrived before their ships docked, they had to drive around or park in the neighboring residential area, contributing to congestion and air pollution while they waited to load or unload. Today, the HPA’s smartPORT mobile app tracks individual trucks using telematics. It customizes the information that drivers receive based on location and optimizes truck routes and parking in real time so drivers can make more stops a day with less wasted time and fuel.

The platform that drives the smartPORT app also uses sensor data in other ways: it tracks wind speed and direction and transmits the data to ship pilots so they can navigate in and out of the port more safely. It monitors emissions and their impact on air quality in various locations in order to adjust operations in real time for better control over environmental impact. It automatically activates streetlights for vehicle and pedestrian traffic, then switches them off again to save energy when the road is empty. This ability to coordinate and optimize multiple business functions on the fly makes the Port of Hamburg a textbook example of a Live Business.

Digitization Is Not Bounded by Industry

Other retail and B2B businesses of all types will inevitably join the Port of Hamburg in further digitizing processes, both in predictable ways and in those we can only begin to imagine.

sap_Q216_digital_double_feature1_images4Customer service, for example, is likely to be in the vanguard. Automated systems already feed information about customers to online and phone-based service representatives in real time, generate cross-selling and upselling opportunities based on past transactions, and answer customers’ frequently asked questions. Saravana foresees these systems becoming even more sophisticated, powered by AI algorithms that are virtually indistinguishable from human customer service agents in their ability to handle complex live interactions in real time.

In manufacturing and IT, Sven Bauszus, global vice president and general manager for predictive analytics at SAP, forecasts that sensors and predictive analysis will further automate the process of scheduling and performing maintenance, such as monitoring equipment for signs of failure in real time, predicting when parts or entire machines will need replacement, and even ordering replacements preemptively. Similarly, combining AI, sensors, data mining, and other technologies will enable factories to optimize workforce assignments in real time based on past trends, current orders, and changing market conditions.

Public health will be able to go live with technology that spots outbreaks of infectious disease, determines where medical professionals and support personnel are needed most and how many to send, and helps ensure that they arrive quickly with the right medication and equipment to treat patients and eradicate the root cause. It will also make it easier to track communicable illnesses, find people who are symptomatic, and recommend approaches to controlling the spread of the illness, Bauszus says.

He also predicts that the insurance industry, which has already begun to digitize its claims-handling processes, will refine its ability to sort through more claims in less time with greater accuracy and higher customer satisfaction. Algorithms will be better and faster at flagging claims that have a high probability of being fraudulent and then pushing them to claims inspectors for investigation. Simultaneously, the same technology will be able to identify and resolve valid claims in real time, possibly even cutting a check or depositing money directly into the insured person’s bank account within minutes.

Financial services firms will be able to apply machine learning, data mining, and AI to accelerate the process of rating borrowers’ credit and detecting fraud. Instead of filling out a detailed application, consumers might be able to get on-the-spot approval for a credit card or loan after inputting only enough information to be identified. Similarly, banks will be able to alert customers to suspicious transactions by text message or phone call—not within a day or an hour, as is common now, but in a minute or less.

Pitfalls and Possibilities

As intelligent as business processes can be programmed to be, there will always be a point beyond which they have to be supervised. Indeed, Saravana forecasts increasing regulation around when business processes can and can’t be digitized. Especially in areas involving data security, physical security, and health and safety, it’s one thing to allow machines to parse data and arrive at decisions to drive a critical business process, but it’s another thing entirely to allow them to act on those decisions without human oversight.

Automated, impersonal decision making is fine for supply chain automation, demand forecasting, inventory management, and other processes that need faster-than-human response times. In human-facing interactions, though, Saravana insists that it’s still best to digitize the part of the process that generates decisions, but leave it to a human to finalize the decision and decide how to put it into action.

“Any time the interaction is machine-to-machine, you don’t need a human to slow the process down,” he says. “But when the interaction involves a person, it’s much more tricky, because people have preferences, tastes, the ability to try something different, the ability to get fatigued—people are only statistically predictable.”

For example, technology has made it entirely possible to build a corporate security system that can gather information from cameras, sensors, voice recognition technology, and other IP-enabled devices. The system can then feed that information in a steady stream to an algorithm designed to identify potentially suspicious activity and act in real time to prevent or stop it while alerting the authorities. But what happens when an executive stays in the office unusually late to work on a presentation and the security system misidentifies her as an unauthorized intruder? What if the algorithm decides to lock the emergency exits, shut down the executive’s network access, or disable her with a Taser instead of simply sending an alert to the head of security asking what to do while waiting for the police to come?

sap_Q216_digital_double_feature1_images6The Risk Is Doing Nothing

The greater, if less dramatic, risk associated with digitizing business processes is simply failing to pursue it. It’s true that taking advantage of new digital technologies can be costly in the short term. There’s no question that companies have to invest in hardware, software, and qualified staff in order to prepare enormous data volumes for storage and analysis. They also have to implement new data sources such as sensors or Internet-connected devices, develop data models, and create and test algorithms to drive business processes that are currently analog. But as with any new technology, Saravana advises, it’s better to start small with a key use case, rack up a quick win with high ROI, and expand gradually than to drag your heels out of a failure to grasp the long-term potential.

The economy is digitizing rapidly, but not evenly. According to the McKinsey Global Institute’s December 2015 Digital America report, “The race to keep up with technology and put it to the most effective business use is producing digital ‘haves’ and ‘have-mores’—and the large, persistent gap between them is becoming a decisive factor in competition across the economy.” Companies that want to be among the have-mores need to commit to Live Business today. Failing to explore it now will put them on the wrong side of the gap and, in the long run, rack up a high price tag in unrealized efficiencies and missed opportunities. D!

Comments

Erik Marcade

About Erik Marcade

Erik Marcade is vice president of Advanced Analytics Products at SAP.

Tags:

Millennials Are Transforming How Finance Works

Estelle Lagorce

If you haven’t already, get used to it: Millennials are now officially the largest demographic group in the U.S. workforce. And they have very different aspirations and expectations than their fellow workers do about the nature of work.

Millennials are typically self-motivated and forward-looking. They understand the power of technology and social media, and all the different ways to use both to network and communicate with one another. So does that make them “dangerous” to how finance operates in the future? Their characteristic work style – caring deeply about workplace satisfaction, social networking, and mobile-addiction – changes the historically new-trend-and-technology-averse finance department. As a result, all financial professionals worldwide are now seeing their role and job within the corporate enterprise differently.

On the April 26, 2016 edition of Financial Excellence with Game-Changers Radio, produced by SAP’s Bonnie D. Graham, three thought leaders agreed: Yes, it could make them “dangerous.” (Listen to the episode here.)

According to Henner Schliebs, vice president and head of Global Finance Audience Marketing at SAP, it is not millennials themselves who are dangerous. Rather it is their work style that is being picked up by others in the finance department. As he said, “It’s not really a generational conflict. It’s a shift in society, it’s a shift in the workforce, and everybody is and should be a part of it.”

Another attitude

One of the ways millennials differ from previous generations is in their attitude toward money: They are more money-conscious. And according to John Arellano, senior manager with the Aerospace & Defense and Aviation group at Deloitte Consulting, millennials share 13 times more content about their personal finances on LinkedIn than the preceding Generation X. And this spills over into their style of financial planning.

“Many millennials have started saving for retirement in their early twenties,” John commented. “It’s really interesting how early they understand the importance of saving money and investing money for the future.”

Celina Rogers, vice president and editorial director for CFO Publishing, agreed. “I certainly think it’s interesting that millennials have such a keen interest in personal finance. And I think that feeds into the desire among some millennials to find more secure work – but also to find meaning within that work. And that’s where I think many finance functions will be challenged: to provide that sense of meaning together with the kind of security finance has offered in the past.”

In fact, millennials’ attitude towards work will put the traditional financial department under threat. Millennials want the flexibility to work when they want to – work on a Sunday, for example, and have Monday off. Henner added, “Technology advancement over the last couple of years makes this possible.”

Different expectations

The expectation from millennials that they can be more self-deterministic will undoubtedly be a challenge for many finance departments. But enlightened CFOs are embracing it, as Celina explained. “Many finance leaders see this as a tremendous opportunity. By absorbing millennials and their approach to work into finance, [leaders] can help transform their finance functions in ways that are incredibly important to the business in general.”

Millennials also expect the latest technology at work. They have grown up with the Internet and mobile phones. They want to use their own devices, not the aging company desktop. And they also expect to be able to access from anywhere the data and systems they need to do their jobs.

But according to Henner, there is something else that makes them different, and that will be a catalyst for change. “They want to see what their contribution is to the overall mission of the company and the company’s contribution to society,” he said. “This is a very drastic change in how a CFO should perceive his or her role.”

Fragile loyalty

With millennials bringing lots of fresh ideas to the table, the panel of experts believes it is important to communicate with them and incorporate their ideas. Simply seeing millennials as another resource is not enough. Millennials want their work to have meaning, which requires treating them differently; otherwise they could easily walk away from their job. As John put it, “There are a lot of great millennials in the workplace that a lot of firms need to retain.”

Gaining their loyalty requires rethinking the finance function, what its role in the organization should be, and, importantly, communicating this to everyone involved. Finance can no longer be seen as simply reporting the numbers. Finance needs to report what the company is giving back to society, from a social, environmental, and societal perspective.

Reverse mentoring

Millennials also want to work smarter, not harder. For them it’s not about a work-life balance; it’s about work-life integration. And this can also benefit other demographic cohorts in the workplace. Henner sees a kind of “reverse mentoring” happening, where the older generations are learning from millennials. For example, he observed, millennials are asking, “Why should I do a job that can be automated? If a machine can do it, why should I?”

Millennials also want to be connected to their companies 24×7 so they can work when they want to. “I think this convenience that improves our whole lives is something that we can learn from the millennials,” he continued.

The millennial CFO

So as millennials climb the corporate ladder (if there is such a thing any more) and start taking on the role of CFO, what changes do the experts think they will make?

For John, it will be technology. “With technology, you are going to see a lot of new capabilities.”

Celina added that it will happen quickly, even in the next five to ten years. “I think that the fresh perspective that millennials will bring to finance will really accelerate and drive change, if for no other reason than the value consciousness they will bring.”

For Henner, millennials are already having an effect. “They want this digitalized world because they grew up with it,” he explained. “They grew up with information all over the place and they are expecting the same within the organization [where they work].”

Prediction

So what are the experts’ future predictions regarding millennials? For John, it’s leadership. “Millennials are no longer leaders of tomorrow. They are now leaders of today. So we have to understand that, first and foremost.”

Celina pointed to the influence factor. “I see that in ten years, millennials will really dominate finance leadership. In that capacity, we’ll see tremendous improvement in the kind of enterprise technology that’s working in finance and an expansion of finance’s influence.”

And for Henner, it’s how millennials will manage the generation after them. “Given that 50% of the children going into elementary school today will have a job that does not currently exist, millennials will have to face bigger problems than we’re facing with them right now,” he says. “I wish them all the luck in the world.”

For more information:

Comments

Estelle Lagorce

About Estelle Lagorce

Estelle Lagorce is the Director, Global Partner Marketing, at SAP. She leads the global planning, successful implementation and business impact of integrated marketing programs with top global Strategic Partner across priority regions and countries (demand generation, thought leadership).