Sections

2013 Technology Trends

Tien Anh Nguyen

six disrupting technology trends for 2013

Three years ago, I wrote a blog post about future technology trends. Two years later, I wrote another post looking back to my predictions and found that while I was spot on for major themes like mobile payment and cloud computing, I missed the growth of daily deal sites and the socialization of education technology, and underestimated the sea change in mobile health technologies.

I was also over enthusiastic on power management platforms — but the advent and popularity of Nest was definitely a step in the right direction — and e-government — perhaps because a lot of investment has actually gone into cyber-security (on the public side), or grassroots organizational capability (on the private side, in support of the recent hotly contested election cycles).

However, my main takeaway from the exercise in 2012 was that I needed to make my review and new predictions more often, lest my predictions be outdated and hopelessly outstripped by the rapid pace of disruptions in technologies nowadays.

For example, some of my 2012 predictions have already been borne out: crowdsourcing has really achieved mainstream success, people are spending more and more time on non-search engine driven discovery platforms, and mobile devices are surely revolutionizing how people work in traditional industries such as manufacturing and service.

So, what is in store for the year 2013?

1) Big Data Will Become Mainstream

Big Data has been a buzzword for the last few years, but I predict that 2013 will be the breakout year for all manner of Big Data, from NoSQL databases to high performance business analytics platforms. The technologies are already there, but many startups and major players have been toiling away at building market-ready solutions and the market for them. In 2013, they will find the mass acceptance of customers and the maturity of business use cases for Big Data platforms.

2) Tablets Will Define Everything We Do

Tablets — all shapes and forms — are rapidly becoming the device of choice for many people. The great rivalry raging between Google, Samsung, Apple, and Microsoft only helps to empower the innovative impetus that leads to better applications, better user interface, and more versatile usage of the tablets at work and in everyday life.

An example of this trend is the app “Chromatik“, which aims to revolutionize how people learn music by making the process of reading and practicing with sheet music — with or without a teacher or other musicians — incredibly simple and portable.

3) Get Ready for More HR Software Disruptions

What I did not anticipate in 2012 was the rapid consolidation of the Human Resource Management technology market, with the acquisitions of Taleo and SuccessFactors. However, in 2013, this market is ripe for disruption. Younger, more nimble companies are making disruptive innovation in all aspects of human resource software and technologies.

Job boards are becoming more interactive and engaging, company review websites like Glassdoor are gaining traction, and data-heavy applications are transforming performance management and employee motivation at major corporations. Meanwhile, employee-oriented benefits and health management platforms are helping companies make dramatic strides in providing better work environment and benefits for their employees.

4) We’ll See a New Wave of Marketing Technologies

Last year saw the coming of age of SaaS marketing companies, with the successful IPOs of ExactTarget and then Eloqua (which has since been acquired by Oracle). Innovations are happening at such a rapid pace in this space that in 2013, we’ll see a whole wave of new marketing technologies that will challenge the dominance of larger players and conventional wisdom about how marketing should be done.

The newcomers will offer best-of-breed solutions, focused on specific, discrete areas of marketing automation, such as retargeting, high volume delivery (Sendgrid), high volume content optimization (Sailthru), automated list vending (Marketfish), automation of local marketing tasks, and social CRM.

5) Rise of New Content Platforms

In 2013, I believe that content creation will be taken to a whole new level, as companies are now finally finding out ways to help customers deal with the information overload of the social media age.

For example, LinkedIn has developed an extremely successful content platform with thought leaders providing extremely high-quality content for its business-oriented network. Social media aggregators like Circa or Rebelmouse let users define ways to filter through the mass of content they receive through their social networks and other information sources. Then there are platforms like Medium or Storify that allow users to reproduce that data in their preferred format and republish it back to the world, but along with their own words and perspectives.

I fully expect to see more innovations in this space and a definite trend towards empowering content creation and delivery by the end users themselves.

6) Wearable Computing

Wearable computing is truly coming of age because the technologies have finally caught up with the vision and people have become used to having and carrying “smart” devices. These devices — such as the Shine by startup Misfit Wearables — are also becoming more standardized and easily connected to the cloud or other devices, which make sharing of the data easy and effective.

Furthermore, wearable computing is being commercialized not only by major players (like Google with its 3D goggles), but by startups and enthusiasts, powered both by traditional VC funding and crowd-sourced efforts on Kickstarter. I expect this trend to continue, and by the end of 2013 many people will be very used to wearing the devices. We may even see an entire network of users develop for them.

What do you think of my predictions? Am I spot on? What disruptions do you see shaking up the tech industry in 2013?

Comments

Compelling Shopping Moments: 4 Creative Ways Stores Connect With Their Customers

Ralf Kern

compelling shopping momentsOn a recent morning, as I was going through my usual routine, my coffeemaker broke. I cannot live without coffee in the morning, so I immediately looked up my coffeemaker on Amazon and had it shipped Prime in one day. My problem was solved within minutes. My Amazon app, and my loyalty account with that company, was there for me when I needed it most.

It was in this moment that I realized the importance of digital presence for retailers. There is a chance that the store 10 minutes from my house carries this very same coffeemaker; I could have had it in one hour, instead of one day. But the need for immediate access to information pushed me to the online store. My local retailer was not able to be there for me digitally like Amazon.

Retail is still about reading the minds of your customers in order to know what they need and create a flawless experience. But the days of the unconnected shopper in a monochannel world are over. I am not alone in my digital-first mindset; according to a recent MasterCard report, 80% of consumers use technology during the shopping process. I, and consumers like me, use mobile devices as a guide to the physical world.

We don’t need to have an academic discussion about multichannel, omnichannel, and omnicommerce and their meanings, because what it really comes down to for your consumers, or fans, is shopping. And shopping has everything to do with moments in your customers’ lives: celebration moments, in-a-hurry moments, I-want-to-be-entertained moments, and more. Most companies only look for and measure very few moments along the shopping journey, like the moment of coupon download or the moment of sales.

Anticipating these moments was easier when mom and pop stores knew their customers by name. They knew how to be there for their shoppers when, where, and how they wanted it. And shoppers didn’t have any other options. Now it is crucial for companies to understand all of these moments and even anticipate or trigger the right moments for their customers.

In today’s digital economy the way to achieve customer connection is with simple, enjoyable, and personalized front ends that are supported by sophisticated, digital back ends. Then you can use that system to support your customer outreach.

Companies around the world are using creative and innovative methods to find their customers in various moments. Being there for customers comes in many different shapes and forms. Consider these examples:

Chilli Beans

A Brazilian maker of fashion sunglasses, glasses, and watches, Chilli Beans has a loyal following online and at over 700 locations around the world. Chilli Beans keeps its customers engaged by releasing 10 limited-edition styles each week. If customers like what they see, they have to buy fast or risk missing out.

Bonobos

Online men’s fashion retailer Bonobos reaches its customers with its Guide Shops. While they look like traditional retail outlets, the shops don’t actually sell any clothes. Customers come in for one-on-one appointments with the staff, and if they like anything that they try on, the staff member orders it for them online and it is shipped to their house. The 20 Guide Shops currently open have proven very successful for the company.

Peak Performance

Peak Performance, a European maker of outdoor clothing, has added a little magic to its customer experience. It has created virtual pop-up shops that customers can track on their smartphones through CatchMagicHour.com, and they are only available at sunrise and sunset at exact GPS locations. Customers who go to the location, be it at a lighthouse or on top of a mountain, are rewarded with the ability to select free clothing from the virtual shop that they have unlocked on their phones.

Shoes of Prey

The customer experience is completely custom at Shoes of Prey, a website where women can design custom shoes. From fabric to color, the customer picks every element, and then her custom creation is sent directly to her house. Shoes of Prey has even shifted its business model based on customer feedback. Its customers wanted to get inspiration and advice in a physical store. So Shoes of Prey made the move from online-only to omnicommerce and has started to open stores around the world.

While the customer experience for each of these connections is relatively simple – a website, a smartphone, an online design studio – the back end that powers them has to be powerful and nimble at the same time. These sophisticated back ends – powering simple, enjoyable, and personalized front ends – will completely change the game in retail. They will allow companies to engage their customers in ways we can’t even begin to imagine.

Technology will help you be there in the shopping moment. The best technology won’t annoy your customers with irrelevant promotions or pop-up messages. Instead, like a good friend, it will know how to engage with customers and when to leave them alone – how to truly connect with customers instead of manage them. Consequently, customer relationship management as we know it is an outdated technology in the economy of today – and tomorrow. Technologies that go beyond CRM will help retailers to differentiate. Aligning your organization and those technologies will be the Holy Grail to creating true and sustainable customer loyalty.

Learn more ways that business will never be the same again. Learn 99 Mind-Blowing Ways The Digital Economy Is Changing The Future Of Business.

Find out how SAP can help you go beyond CRM and support your retail business.

Ralf Kern is Global Vice President Retail for SAP and a retail ambassador for SAP. Interested in your feedback. You can also get in touch on Twitter or LinkedIn

This blog also appeared on SAP Customer Network.

Comments

Ralf Kern

About Ralf Kern

Ralf Kern is the Global Vice President, Business Unit Retail, at SAP, responsible for the future direction of SAP’s solution and global Go-to-Market strategy for Omnicommerce Retail, leading them into today’s digital reality.

IoT Can Keep You Healthy — Even When You Sleep [VIDEO]

Christine Donato

Today the Internet of Things is revamping technology. IoT image from American Geniuses.jpg

Smart devices speak to each other and work together to provide the end user with a better product experience.

Coinciding with this change in technology is a change in people. We’ve transitioned from a world of people who love processed foods and french fries to people who eat kale chips and Greek yogurt…and actually like it.

People are taking ownership of their well-being, and preventative care is at the forefront of focus for both physicians and patients. Fitness trackers alert wearers of the exact number of calories burned from walking a certain number of steps. Mobile apps calculate our perfect nutritional balance. And even while we sleep, people are realizing that it’s important to monitor vitals.

According to research conducted at Harvard University, proper sleep patterns bolster healthy side effects such as improved immune function, a faster metabolism, preserved memory, and reduced stress and depression.

Conversely, the Harvard study determined that lack of sleep can negatively affect judgement, mood, and the ability retain information, as well as increase the risk of obesity, diabetes, cardiovascular disease, and even premature death.

Through the Internet of Things, researchers can now explore sleep patterns without the usual sleep labs and movement-restricting electrode wires. And with connected devices, individuals can now easily monitor and positively influence their own health.

EarlySense, a startup credited with the creation of continuous patient monitoring solutions focused on early detection of patient deterioration, mid-sleep falls, and pressure ulcers, began with a mission to prevent premature and preventable deaths.

Without constant monitoring, patients with unexpected clinical deterioration may be accidentally neglected, and their conditions can easily escalate into emergency situations.

Motivated by many instances of patients who died from preventable post-elective surgery complications, EarlySense founders created a product that constantly monitors patients when hospital nurses can’t, alerting the main nurse station when a patient leaves his or her bed and could potentially fall, or when a patient’s vital signs drop or rise unexpectedly.

Now EarlySense technology has expanded outside of the hospital realm. The EarlySense wellness sensor, a device connected via the Internet of Things, mobile solutions, and supported by SAP HANA Cloud Platform, monitors all vital signs while a person sleeps. The device is completely wireless and lies subtly underneath one’s mattress. The sensor collects all mechanical vibrations that the patient’s body emits while sleeping, continuously monitoring heart and respiratory rates.

Watch this short video to learn more about how the EarlySense wellness sensor works:

The result is faster diagnoses with better treatments and outcomes. Sleep issues can be identified and addressed; individuals can use the data collected to make adjustments in diet or exercise habits; and those on heavy pain medications can monitor the way their bodies react to the medication. In addition, physicians can use the data collected from the sensor to identify patient health problems before they escalate into an emergency situation.

Connected care is opening the door for a new way to practice health. Through connected care apps that link people with their doctors, fitness trackers that measure daily activity, and sensors like the EarlySense wellness sensor, today’s technology enables people and physicians to work together to prevent sickness and accidents before they occur. Technology is forever changing the way we live, and in turn we are living longer, healthier lives.

To learn how SAP HANA Cloud Platform can affect your business, visit It&Me.

For more stories, join me on Twitter.

Comments

About Christine Donato

Christine Donato is a Senior Integrated Marketing Specialist at SAP. She is an accomplished project manager and leader of multiple marketing and sales enablement campaigns and events, that supported a multi million euro business.

Heroes in the Race to Save Antibiotics

Dr. David Delaney, Joseph Miles, Walt Ellenberger, Saravana Chandran, and Stephanie Overby

Last August, a woman arrived at a Reno, Nevada, hospital and told the attending doctors that she had recently returned from an extended trip to India, where she had broken her right thighbone two years ago. The woman, who was in her 70s, had subsequently developed an infection in her thigh and hip for which she was hospitalized in India several times. The Reno doctors recognized that the infection was serious—and the visit to India, where antibiotic-resistant bacteria runs rampant, raised red flags.

When none of the 14 antibiotics the physicians used to treat the woman worked, they sent a sample of the bacterium to the U.S. Centers for Disease Control (CDC) for testing. The CDC confirmed the doctors’ worst fears: the woman had a class of microbe called carbapenem-resistant Enterobacteriaceae (CRE). Carbapenems are a powerful class of antibiotics used as last-resort treatment for multidrug-resistant infections. The CDC further found that, in this patient’s case, the pathogen was impervious to all 26 antibiotics approved by the U.S. Food and Drug Administration (FDA).

In other words, there was no cure.

This is just the latest alarming development signaling the end of the road for antibiotics as we know them. In September, the woman died from septic shock, in which an infection takes over and shuts down the body’s systems, according to the CDC’s Morbidity and Mortality Weekly Report.

Other antibiotic options, had they been available, might have saved the Nevada woman. But the solution to the larger problem won’t be a new drug. It will have to be an entirely new approach to the diagnosis of infectious disease, to the use of antibiotics, and to the monitoring of antimicrobial resistance (AMR)—all enabled by new technology.

But that new technology is not being implemented fast enough to prevent what former CDC director Tom Frieden has nicknamed nightmare bacteria. And the nightmare is becoming scarier by the year. A 2014 British study calculated that 700,000 people die globally each year because of AMR. By 2050, the global cost of antibiotic resistance could grow to 10 million deaths and US$100 trillion a year, according to a 2014 estimate. And the rate of AMR is growing exponentially, thanks to the speed with which humans serving as hosts for these nasty bugs can move among healthcare facilities—or countries. In the United States, for example, CRE had been seen only in North Carolina in 2000; today it’s nationwide.

Abuse and overuse of antibiotics in healthcare and livestock production have enabled bacteria to both mutate and acquire resistant genes from other organisms, resulting in truly pan-drug resistant organisms. As ever-more powerful superbugs continue to proliferate, we are potentially facing the deadliest and most costly human-made catastrophe in modern times.

“Without urgent, coordinated action by many stakeholders, the world is headed for a post-antibiotic era, in which common infections and minor injuries which have been treatable for decades can once again kill,” said Dr. Keiji Fukuda, assistant director-general for health security for the World Health Organization (WHO).

Even if new antibiotics could solve the problem, there are obstacles to their development. For one thing, antibiotics have complex molecular structures, which slows the discovery process. Further, they aren’t terribly lucrative for pharmaceutical manufacturers: public health concerns call for new antimicrobials to be financially accessible to patients and used conservatively precisely because of the AMR issue, which reduces the financial incentives to create new compounds. The last entirely new class of antibiotic was introduced 30 year ago. Finally, bacteria will develop resistance to new antibiotics as well if we don’t adopt new approaches to using them.

Technology can play the lead role in heading off this disaster. Vast amounts of data from multiple sources are required for better decision making at all points in the process, from tracking or predicting antibiotic-resistant disease outbreaks to speeding the potential discovery of new antibiotic compounds. However, microbes will quickly adapt and resist new medications, too, if we don’t also employ systems that help doctors diagnose and treat infection in a more targeted and judicious way.

Indeed, digital tools can help in all four actions that the CDC recommends for combating AMR: preventing infections and their spread, tracking resistance patterns, improving antibiotic use, and developing new diagnostics and treatment.

Meanwhile, individuals who understand both the complexities of AMR and the value of technologies like machine learning, human-computer interaction (HCI), and mobile applications are working to develop and advocate for solutions that could save millions of lives.

Keeping an Eye Out for Outbreaks

Like others who are leading the fight against AMR, Dr. Steven Solomon has no illusions about the difficulty of the challenge. “It is the single most complex problem in all of medicine and public health—far outpacing the complexity and the difficulty of any other problem that we face,” says Solomon, who is a global health consultant and former director of the CDC’s Office of Antimicrobial Resistance.

Solomon wants to take the battle against AMR beyond the laboratory. In his view, surveillance—tracking and analyzing various data on AMR—is critical, particularly given how quickly and widely it spreads. But surveillance efforts are currently fraught with shortcomings. The available data is fragmented and often not comparable. Hospitals fail to collect the representative samples necessary for surveillance analytics, collecting data only on those patients who experience resistance and not on those who get better. Laboratories use a wide variety of testing methods, and reporting is not always consistent or complete.

Surveillance can serve as an early warning system. But weaknesses in these systems have caused public health officials to consistently underestimate the impact of AMR in loss of lives and financial costs. That’s why improving surveillance must be a top priority, says Solomon, who previously served as chair of the U.S. Federal Interagency Task Force on AMR and has been tracking the advance of AMR since he joined the U.S. Public Health Service in 1981.

A Collaborative Diagnosis

Ineffective surveillance has also contributed to huge growth in the use of antibiotics when they aren’t warranted. Strong patient demand and financial incentives for prescribing physicians are blamed for antibiotics abuse in China. India has become the largest consumer of antibiotics on the planet, in part because they are prescribed or sold for diarrheal diseases and upper respiratory infections for which they have limited value. And many countries allow individuals to purchase antibiotics over the counter, exacerbating misuse and overuse.

In the United States, antibiotics are improperly prescribed 50% of the time, according to CDC estimates. One study of adult patients visiting U.S. doctors to treat respiratory problems found that more than two-thirds of antibiotics were prescribed for conditions that were not infections at all or for infections caused by viruses—for which an antibiotic would do nothing. That’s 27 million courses of antibiotics wasted a year—just for respiratory problems—in the United States alone.

And even in countries where there are national guidelines for prescribing antibiotics, those guidelines aren’t always followed. A study published in medical journal Family Practice showed that Swedish doctors, both those trained in Sweden and those trained abroad, inconsistently followed rules for prescribing antibiotics.

Solomon strongly believes that, worldwide, doctors need to expand their use of technology in their offices or at the bedside to guide them through a more rational approach to antibiotic use. Doctors have traditionally been reluctant to adopt digital technologies, but Solomon thinks that the AMR crisis could change that. New digital tools could help doctors and hospitals integrate guidelines for optimal antibiotic prescribing into their everyday treatment routines.

“Human-computer interactions are critical, as the amount of information available on antibiotic resistance far exceeds the ability of humans to process it,” says Solomon. “It offers the possibility of greatly enhancing the utility of computer-assisted physician order entry (CPOE), combined with clinical decision support.” Healthcare facilities could embed relevant information and protocols at the point of care, guiding the physician through diagnosis and prescription and, as a byproduct, facilitating the collection and reporting of antibiotic use.

Cincinnati Children’s Hospital’s antibiotic stewardship division has deployed a software program that gathers information from electronic medical records, order entries, computerized laboratory and pathology reports, and more. The system measures baseline antimicrobial use, dosing, duration, costs, and use patterns. It also analyzes bacteria and trends in their susceptibilities and helps with clinical decision making and prescription choices. The goal, says Dr. David Haslam, who heads the program, is to decrease the use of “big gun” super antibiotics in favor of more targeted treatment.

While this approach is not yet widespread, there is consensus that incorporating such clinical-decision support into electronic health records will help improve quality of care, contain costs, and reduce overtreatment in healthcare overall—not just in AMR. A 2013 randomized clinical trial finds that doctors who used decision-support tools were significantly less likely to order antibiotics than those in the control group and prescribed 50% fewer broad-spectrum antibiotics.

Putting mobile devices into doctors’ hands could also help them accept decision support, believes Solomon. Last summer, Scotland’s National Health Service developed an antimicrobial companion app to give practitioners nationwide mobile access to clinical guidance, as well as an audit tool to support boards in gathering data for local and national use.

“The immediacy and the consistency of the input to physicians at the time of ordering antibiotics may significantly help address the problem of overprescribing in ways that less-immediate interventions have failed to do,” Solomon says. In addition, handheld devices with so-called lab-on-a-chip  technology could be used to test clinical specimens at the bedside and transmit the data across cellular or satellite networks in areas where infrastructure is more limited.

Artificial intelligence (AI) and machine learning can also become invaluable technology collaborators to help doctors more precisely diagnose and treat infection. In such a system, “the physician and the AI program are really ‘co-prescribing,’” says Solomon. “The AI can handle so much more information than the physician and make recommendations that can incorporate more input on the type of infection, the patient’s physiologic status and history, and resistance patterns of recent isolates in that ward, in that hospital, and in the community.”

Speed Is Everything

Growing bacteria in a dish has never appealed to Dr. James Davis, a computational biologist with joint appointments at Argonne National Laboratory and the University of Chicago Computation Institute. The first of a growing breed of computational biologists, Davis chose a PhD advisor in 2004 who was steeped in bioinformatics technology “because you could see that things were starting to change,” he says. He was one of the first in his microbiology department to submit a completely “dry” dissertation—that is, one that was all digital with nothing grown in a lab.

Upon graduation, Davis wanted to see if it was possible to predict whether an organism would be susceptible or resistant to a given antibiotic, leading him to explore the potential of machine learning to predict AMR.

As the availability of cheap computing power has gone up and the cost of genome sequencing has gone down, it has become possible to sequence a pathogen sample in order to detect its AMR resistance mechanisms. This could allow doctors to identify the nature of an infection in minutes instead of hours or days, says Davis.

Davis is part of a team creating a giant database of bacterial genomes with AMR metadata for the Pathosystems Resource Integration Center (PATRIC), funded by the U.S. National Institute of Allergy and Infectious Diseases to collect data on priority pathogens, such as tuberculosis and gonorrhea.

Because the current inability to identify microbes quickly is one of the biggest roadblocks to making an accurate diagnosis, the team’s work is critically important. The standard method for identifying drug resistance is to take a sample from a wound, blood, or urine and expose the resident bacteria to various antibiotics. If the bacterial colony continues to divide and thrive despite the presence of a normally effective drug, it indicates resistance. The process typically takes between 16 and 20 hours, itself an inordinate amount of time in matters of life and death. For certain strains of antibiotic-resistant tuberculosis, though, such testing can take a week. While physicians are waiting for test results, they often prescribe broad-spectrum antibiotics or make a best guess about what drug will work based on their knowledge of what’s happening in their hospital, “and in the meantime, you either get better,” says Davis, “or you don’t.”

At PATRIC, researchers are using machine-learning classifiers to identify regions of the genome involved in antibiotic resistance that could form the foundation for a “laboratory free” process for predicting resistance. Being able to identify the genetic mechanisms of AMR and predict the behavior of bacterial pathogens without petri dishes could inform clinical decision making and improve reaction time. Thus far, the researchers have developed machine-learning classifiers for identifying antibiotic resistance in Acinetobacter baumannii (a big player in hospital-acquired infection), methicillin-resistant Staphylococcus aureus (a.k.a. MRSA, a worldwide problem), and Streptococcus pneumoniae (a leading cause of bacterial meningitis), with accuracies ranging from 88% to 99%.

Houston Methodist Hospital, which uses the PATRIC database, is researching multidrug-resistant bacteria, specifically MRSA. Not only does resistance increase the cost of care, but people with MRSA are 64% more likely to die than people with a nonresistant form of the infection, according to WHO. Houston Methodist is investigating the molecular genetic causes of drug resistance in MRSA in order to identify new treatment approaches and help develop novel antimicrobial agents.

The Hunt for a New Class of Antibiotics

There are antibiotic-resistant bacteria, and then there’s Clostridium difficile—a.k.a. C. difficile—a bacterium that attacks the intestines even in young and healthy patients in hospitals after the use of antibiotics.

It is because of C. difficile that Dr. L. Clifford McDonald jumped into the AMR fight. The epidemiologist was finishing his work analyzing the spread of SARS in Toronto hospitals in 2004 when he turned his attention to C. difficile, convinced that the bacteria would become more common and more deadly. He was right, and today he’s at the forefront of treating the infection and preventing the spread of AMR as senior advisor for science and integrity in the CDC’s Division of Healthcare Quality Promotion. “[AMR] is an area that we’re funding heavily…insofar as the CDC budget can fund anything heavily,” says McDonald, whose group has awarded $14 million in contracts for innovative anti-AMR approaches.

Developing new antibiotics is a major part of the AMR battle. The majority of new antibiotics developed in recent years have been variations of existing drug classes. It’s been three decades since the last new class of antibiotics was introduced. Less than 5% of venture capital in pharmaceutical R&D is focused on antimicrobial development. A 2008 study found that less than 10% of the 167 antibiotics in development at the time had a new “mechanism of action” to deal with multidrug resistance. “The low-hanging fruit [of antibiotic development] has been picked,” noted a WHO report.

Researchers will have to dig much deeper to develop novel medicines. Machine learning could help drug developers sort through much larger data sets and go about the capital-intensive drug development process in a more prescriptive fashion, synthesizing those molecules most likely to have an impact.

McDonald believes that it will become easier to find new antibiotics if we gain a better understanding of the communities of bacteria living in each of us—as many as 1,000 different types of microbes live in our intestines, for example. Disruption to those microbial communities—our “microbiome”—can herald AMR. McDonald says that Big Data and machine learning will be needed to unlock our microbiomes, and that’s where much of the medical community’s investment is going.

He predicts that within five years, hospitals will take fecal samples or skin swabs and sequence the microorganisms in them as a kind of pulse check on antibiotic resistance. “Just doing the bioinformatics to sort out what’s there and the types of antibiotic resistance that might be in that microbiome is a Big Data challenge,” McDonald says. “The only way to make sense of it, going forward, will be advanced analytic techniques, which will no doubt include machine learning.”

Reducing Resistance on the Farm

Bringing information closer to where it’s needed could also help reduce agriculture’s contribution to the antibiotic resistance problem. Antibiotics are widely given to livestock to promote growth or prevent disease. In the United States, more kilograms of antibiotics are administered to animals than to people, according to data from the FDA.

One company has developed a rapid, on-farm diagnostics tool to provide livestock producers with more accurate disease detection to make more informed management and treatment decisions, which it says has demonstrated a 47% to 59% reduction in antibiotic usage. Such systems, combined with pressure or regulations to reduce antibiotic use in meat production, could also help turn the AMR tide.

Breaking Down Data Silos Is the First Step

Adding to the complexity of the fight against AMR is the structure and culture of the global healthcare system itself. Historically, healthcare has been a siloed industry, notorious for its scattered approach focused on transactions rather than healthy outcomes or the true value of treatment. There’s no definitive data on the impact of AMR worldwide; the best we can do is infer estimates from the information that does exist.

The biggest issue is the availability of good data to share through mobile solutions, to drive HCI clinical-decision support tools, and to feed supercomputers and machine-learning platforms. “We have a fragmented healthcare delivery system and therefore we have fragmented information. Getting these sources of data all into one place and then enabling them all to talk to each other has been problematic,” McDonald says.

Collecting, integrating, and sharing AMR-related data on a national and ultimately global scale will be necessary to better understand the issue. HCI and mobile tools can help doctors, hospitals, and public health authorities collect more information while advanced analytics, machine learning, and in-memory computing can enable them to analyze that data in close to real time. As a result, we’ll better understand patterns of resistance from the bedside to the community and up to national and international levels, says Solomon. The good news is that new technology capabilities like AI and new potential streams of data are coming online as an era of data sharing in healthcare is beginning to dawn, adds McDonald.

The ideal goal is a digitally enabled virtuous cycle of information and treatment that could save millions of dollars, lives, and perhaps even civilization if we can get there. D!

Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.


About the Authors:

Dr. David Delaney is Chief Medical Officer for SAP.

Joseph Miles is Global Vice President, Life Sciences, for SAP.

Walt Ellenberger is Senior Director Business Development, Healthcare Transformation and Innovation, for SAP.

Saravana Chandran is Senior Director, Advanced Analytics, for SAP.

Stephanie Overby is an independent writer and editor focused on the intersection of business and technology.

Comments

Tags:

4 Traits Set Digital Leaders Apart From 97% Of The Competition

Vivek Bapat

Like the classic parable of the blind man and the elephant, it seems everyone has a unique take on digital transformation. Some equate digital transformation with emerging technologies, placing their bets on as the Internet of Things, machine learning, and artificial intelligence. Others see it as a way to increase efficiencies and change business processes to accelerate product to market. Some others think of it is a means of strategic differentiation, innovating new business models for serving and engaging their customers. Despite the range of viewpoints, many businesses are still challenged with pragmatically evolving digital in ways that are meaningful, industry-disruptive, and market-leading.

According to a recent study of more than 3,000 senior executives across 17 countries and regions, only a paltry three percent of businesses worldwide have successfully completed enterprise-wide digital transformation initiatives, even though 84% of C-level executives ranks such efforts as “critically important” to the fundamental sustenance of their business.

The most comprehensive global study of its kind, the SAP Center for Business Insight report “SAP Digital Transformation Executive Study: 4 Ways Leaders Set Themselves Apart,” in collaboration with Oxford Economics, identified the challenges, opportunities, value, and key technologies driving digital transformation. The findings specifically analyzed the performance of “digital leaders” – those who are connecting people, things, and businesses more intelligently, more effectively, and creating punctuated change faster than their less advanced rivals.

After analyzing the data, it was eye-opening to see that only three percent of companies (top 100) are successfully realizing their full potential through digital transformation. However, even more remarkable was that these leaders have four fundamental traits in common, regardless of their region of operation, their size, their organizational structure, or their industry.

We distilled these traits in the hope that others in the early stages of transformation or that are still struggling to find their bearings can embrace these principles in order to succeed. Ultimately I see these leaders as true ambidextrous organizations, managing evolutionary and revolutionary change simultaneously, willing to embrace innovation – not just on the edges of their business, but firmly into their core.

Here are the four traits that set these leaders apart from the rest:

Trait #1: They see digital transformation as truly transformational

An overwhelming majority (96%) of digital leaders view digital transformation as a core business goal that requires a unified digital mindset across the entire enterprise. But instead of allowing individual functions to change at their own pace, digital leaders prefer to evolve the organization to help ensure the success of their digital strategies.

The study found that 56% of these businesses regularly shift their organizational structure, which includes processes, partners, suppliers, and customers, compared to 10% of remaining companies. Plus, 70% actively bring lines of business together through cross-functional processes and technologies.

By creating a firm foundation for transformation, digital leaders are further widening the gap between themselves and their less advanced competitors as they innovate business models that can mitigate emerging risks and seize new opportunities quickly.

Trait #2: They focus on transforming customer-facing functions first

Although most companies believe technology, the pace of change, and growing global competition are the key global trends that will affect everything for years to come, digital leaders are expanding their frame of mind to consider the influence of customer empowerment. Executives who build a momentum of breakthrough innovation and industry transformation are the ones that are moving beyond the high stakes of the market to the activation of complete, end-to-end customer experiences.

In fact, 92% of digital leaders have established sophisticated digital transformation strategies and processes to drive transformational change in customer satisfaction and engagement, compared to 22% of their less mature counterparts. As a result, 70% have realized significant or transformational value from these efforts.

Trait #3: They create a virtuous cycle of digital talent

There’s little doubt that the competition for qualified talent is fierce. But for nearly three-quarters of companies that demonstrate digital-transformation leadership, it is easier to attract and retain talent because they are five times more likely to leverage digitization to change their talent management efforts.

The impact of their efforts goes beyond empowering recruiters to identify best-fit candidates, highlight risk factors and hiring errors, and predict long-term talent needs. Nearly half (48%) of digital leaders understand that they must invest heavily in the development of digital skills and technology to drive revenue, retain productive employees, and create new roles to keep up with their digital maturity over the next two years, compared to 30% of all surveyed executives.

Trait #4: They invest in next-generation technology using a bimodal architecture

A couple years ago, Peter Sondergaard, senior vice president at Gartner and global head of research, observed that “CIOs can’t transform their old IT organization into a digital startup, but they can turn it into a bi-modal IT organization. Forty-five percent of CIOs state they currently have a fast mode of operation, and we predict that 75% of IT organizations will be bimodal in some way by 2017.”

Based on the results of the SAP Center for Business Insight study, Sondergaard’s prediction was spot on. As digital leaders dive into advanced technologies, 72% are using a digital twin of the conventional IT organization to operate efficiently without disruption while refining innovative scenarios to resolve business challenges and integrate them to stay ahead of the competition. Unfortunately, only 30% of less advanced businesses embrace this view.

Working within this bimodal architecture is emboldening digital leaders to take on incredibly progressive technology. For example, the study found that 50% of these firms are using artificial intelligence and machine learning, compared to seven percent of all respondents. They are also leading the adoption curve of Big Data solutions and analytics (94% vs. 60%) and the Internet of Things (76% vs. 52%).

Digital leadership is a practice of balance, not pure digitization

Most executives understand that digital transformation is a critical driver of revenue growth, profitability, and business expansion. However, as digital leaders are proving, digital strategies must deliver a balance of organizational flexibility, forward-looking technology adoption, and bold change. And clearly, this approach is paying dividends for them. They are growing market share, increasing customer satisfaction, improving employee engagement, and, perhaps more important, achieving more profitability than ever before.

For any company looking to catch up to digital leaders, the conversation around digital transformation needs to change immediately to combat three deadly sins: Stop investing in one-off, isolated projects hidden in a single organization. Stop viewing IT as an enabler instead of a strategic partner. Stop walling off the rest of the business from siloed digital successes.

As our study shows, companies that treat their digital transformation as an all-encompassing, all-sharing, and all-knowing business imperative will be the ones that disrupt the competitive landscape and stay ahead of a constantly evolving economy.

Follow me on twitter @vivek_bapat 

For more insight on digital leaders, check out the SAP Center for Business Insight report, conducted in collaboration with Oxford Economics,SAP Digital Transformation Executive Study: 4 Ways Leaders Set Themselves Apart.”

Comments

About Vivek Bapat

Vivek Bapat is the Senior Vice President, Global Head of Marketing Strategy and Thought Leadership, at SAP. He leads SAP's Global Marketing Strategy, Messaging, Positioning and related Thought Leadership initiatives.