Sections

4 Top Challenges Facing The Banking Industry Right Now

Jessica Schubert

woman using ATM at a nonbankHow is the traditional banking industry keeping up with today’s constantly changing technology landscape? Not very well it seems, according to the video, “Addressing Start-up Competition,” by SAP and IBM.

Banks are facing challenges in several areas, but there are four that stand out in today’s market.

The top 4 challenges facing banks and financial institutions

  1. Not making enough money. Despite all of the headlines about banking profitability, banks and financial institutions still are not making enough return on investment, or the return on equity, that shareholders require.
  1. Consumer expectations. These days it’s all about the customer experience, and many banks are feeling pressure because they are not delivering the level of service that consumers are demanding, especially in regards to technology.
  1. Increasing competition from financial technology companies. Financial technology (FinTech) companies are usually start-up companies based on using software to provide financial services. The increasing popularity of FinTech companies is disrupting the way traditional banking has been done. This creates a big challenge for traditional banks because they are not able to adjust quickly to the changes – not just in technology, but also in operations, culture, and other facets of the industry.
  1. Regulatory pressure. Regulatory requirements continue to increase, and banks need to spend a large part of their discretionary budget on being compliant, and on building systems and processes to keep up with the escalating requirements.

These challenges continue to escalate, so traditional banks need to constantly evaluate and improve their operations in order to keep up with the fast pace of change in the banking and financial industry today.

This information was based on Finextra’s video: “Addressing Start-up Competition,” featuring SAP and IBM representatives at SAP’s Financial Services Forum in London, England, June 2015.

For an in-depth look at how digital technology is transforming the business landscape, download the new SAP eBook, The Digital Economy: Reinventing the Business World.

To learn more about the business and technology forces driving digital transformation, download the SAP eBook, Digital Disruption: How Digital Technology is Transforming Our World.

What are the 3 Greatest Challenges Of Core Banking Transformation?

Learn 7 Questions CFOs Should Ask Themselves About Cyber Security, and find out if Banks are Taking Chances with Cyber Security

See how another industry is transforming in the digital age. Find out about connected healthcare in the SAP eBook, Connected Care: The Digital Pulse of Global Healthcare.

 

Comments

About Jessica Schubert

Jessica Schubert is the Director of Global Partner Marketing, IBM Alliance Lead, at SAP. Her specialties include strategic partnerships, business alliances, go-to-market strategy, product marketing and demand generation.

Time For Banks To Fight Back

Laurence Leyden

Metamora, Illinois, USA --- USA, Illinois, Metamora, Close-up of man photographing checque --- Image by © Vstock LLC/Tetra Images/CorbisThe financial services industry has suffered consecutive blows in recent years. The global banking crisis, new regulations, empowered customers calling the shots, not to mention a new breed of digital disruptors out to steal market share, have wreaked havoc on business as usual.  Profits have been slashed, reputations have been damaged, and management has been blindsided.

The only way forward is change – a change of business model, a change of mindset, and a change of ecosystem.  It’s a major upheaval, and not to be taken lightly. Banks in particular have operated largely the same way for the past 300 years. Management is facing a once in a generation reassessment of 21st century banking.

Changes in customer behaviour, including 24×7 omnichannel service expectations, lack of loyalty by current customers willing to exchange privacy for easier access to information, generational expectations of future customers – “screenagers” and tech savvy Millennials – and technology advances in cloud, mobile, real-time data, and predictive analytics make yesterday’s business model redundant.

Banking isn’t actually about banking anymore. It’s about enabling people’s lifestyles. That means you have to completely re-think how you engage with customers. The lessons are everywhere in parallel industries. Nokia, for example, thought it was about the phone, not the customer experience. Digitisation has both emboldened and empowered customers. Ignoring this fact is pointless. You need to cater to what consumers want. That means your back-end systems need to be integrated, consistent, contextualised and easy to deploy across any channel.

There’s also a whole new ecosystem required to support this new business model. Banks are facing disaggregation as they no longer own the end-to-end value chain, as well as disintermediation as new market entrants attack specific parts of the business (think Apple Pay). Smart banks are forging relationships with different and unexpected partners, such as mobile and retail organisations, even providing products from outside of the group where they are the best fit for a customer’s needs.  As I’ve said in one of my previous blogs, there’s a new mantra for modern banking: “Must play well with others.”

Old-fashioned banking is gone, and with it so have old style processes, business models and attitudes. Nobody wants to be the last dinosaur.  It’s time for the industry to dust itself off, and step up. Embracing change is easier – and far more profitable – than risking irrelevance in the widening digital divide.

I’ve briefly summarised only some of the key drivers of digital transformation, but you can find much more insight – including views from thought leaders in banks, insurance companies, fintech providers, challenger banks and aggregators – by downloading the eBook from the recent SAP Financial Services Forum: The digital evolution – As technology transforms financial services who will triumph.

It’s essential reading if you’re going to successfully fight back.

Comments

Laurence Leyden

About Laurence Leyden

Laurence is general manager of Financial Services, EMEA, at SAP and is primarily involved in helping banks in their transformation agenda. Prior to SAP he worked for numerous banks in Europe and Asia including Barclays, Lloyds Banking Group and HSBC. He regularly presents on industry trends and SAP’s banking strategy.

Why Banks Should Be Bullish On Integrating Finance And Risk Data

Mike Russo

Welcome to the regulatory world of banking, where finance and risk must join forces to banking executiveensure compliance and control. Today it’s no longer sufficient to manage your bank’s performance using finance-only metrics such as net income. What you need is a risk-adjusted view of performance that identifies how much revenue you earn relative to the amount of risk you take on. That requires metrics that combine finance and risk components, such as risk-adjusted return on capital, shareholder value added, or economic value added.

While the smart money is on a unified approach to finance and risk, most banking institutions have isolated each function in a discrete technology “silo” complete with its own data set, models, applications, and reporting components. What’s more, banks continually reuse and replicate their finance and risk-related data – resulting in the creation of additional data stores filled with redundant data that grows exponentially over time. Integrating all this data on a single platform that supports both finance and risk scenarios can provide the data integrity and insight needed to meet regulations. Such an initiative may involve some heavy lifting, but the advantages extend far beyond compliance.

Cashing in on bottom-line benefits

Consider the potential cost savings of taking a more holistic approach to data management. In our work with large global banks, we estimate that data management – including validation, reconciliation, and copying data from one data mart to another – accounts for 50% to 70% of total IT costs. Now factor in the benefits of reining in redundancy. One bank we’re currently working with is storing the same finance and risk-related data 20 times. This represents a huge opportunity to save costs by eliminating data redundancy and all the associated processes that unfold once you start replicating data across multiple sources.

With the convergence of finance and risk, we’re seeing more banks reviewing their data architecture, thinking about new models, and considering how to handle data in a smarter way. Thanks to modern methodologies, building a unified platform that aligns finance and risk no longer requires a rip-and-replace process that can disrupt operations. As with any enterprise initiative, it’s best to take a phased approach.

Best practices in creating a unified data platform

Start by identifying a chief data officer (CDO) who has strategic responsibility for the unified platform, including data governance, quality, architecture, and analytics. The CDO oversees the initiative, represents all constituencies, and ensures that the new data architecture serves the interests of all stakeholders.

Next, define a unified set of terms that satisfies both your finance and risk constituencies while addressing regulatory requirements. This creates a common language across the enterprise so all stakeholders clearly understand what the data means. Make sure all stakeholders have an opportunity to weigh in and explain their perspective of the data early on because certain terms can mean different things to finance and risk folks.

In designing your platform, take advantage of new technologies that make previous IT models predicated on compute-intensive risk modeling a thing of the past. For example, in-memory computing now enables you to integrate all information and analytic processes in memory, so you can perform calculations on-the-fly and deliver results in real time. Advanced event stream processing lets you run analytics against transaction data as it’s posting, so you can analyze and act on events as they happen.

Such technologies bring integration, speed, flexibility, and access to finance and risk data. They eliminate the need to move data to data marts and reconcile data to meet user requirements. Now a single finance and risk data warehouse can be flexible and comprehensive enough to serve many masters.

Join our webinar with Risk.net on 7 October, 2015 to learn best practices and benefits of deploying an integrated finance and risk platform.

Comments

About Mike Russo

Mike Russo, Senior Industry Principal – Financial Services Mike has 30 years experience in the Financial Services/ Financial Software industries. His experience includes stints as Senior Auditor for the Irving Trust Co., NY; Manager of the International Department at Barclays Bank of New York; and 14 years as CFO for Nordea Bank’s, New York City branch –a full service retail/commercial bank. Mike also served on Nordea’s Credit, IT, and Risk Committees. Mike’s financial software experience includes roles as a Senior Banking Consultant with Sanchez Computer Associates and Manager of Global Business Solutions (focused on sale of financial/risk management solutions) with Thomson Financial. Prior to joining SAP, Mike was a regulator with the Federal Reserve Bank in Charlotte, where he was responsible for the supervision of large commercial banking organizations in the Southeast with a focus on market/credit/operational risk management. Joined SAP 8years ago.

More Than Noise: 5 Digital Stories From 2016 That Are Bigger Than You Think

Dan Wellers, Michael Rander, Kai Göerlich, Josh Waddell, Saravana Chandran, and Stephanie Overby

These days it seems that we are witnessing waves of extreme disruption rather than incremental technology change. While some tech news stories have been just so much noise, unlikely to have long-term impact, a few are important signals of much bigger, longer-term changes afoot.

From bots to blockchains, augmented realities to human-machine convergence, a number of rapidly advancing technological capabilities hit important inflection points in 2016. We looked at five important emerging technology news stories that happened this year and the trends set in motion that will have an impact for a long time to come.

sap_q416_digital_double_feature1__1

Immersive experiences were one of three top-level trends identified by Gartner for 2016, and that was evident in the enormous popularity of Pokémon Go. While the hype may have come and gone, the immersive technologies that have been quietly advancing in the background for years are ready to boil over into the big time—and into the enterprise.

The free location-based augmented reality (AR) game took off shortly after Nintendo launched it in July, and it became the most downloaded app in Apple’s app store history in its first week, as reported by TechCrunch. Average daily usage of the app on Android devices in July 2016 exceeded that of the standard-bearers Snapchat, Instagram, and Facebook, according to SimilarWeb. Within two months, Pokémon Go had generated more than US$440 million, according to Sensor Tower.

Unlike virtual reality (VR), which immerses us in a simulated world, AR layers computer-generated information such as graphics, sound, or other data on top of our view of the real world. In the case of Pokémon Go, players venture through the physical world using a digital map to search for Pokémon characters.

The game’s instant global acceptance was a surprise. Most watching this space expected an immersive headset device like Oculus Rift or Google Cardboard to steal the headlines. But it took Pikachu and the gang to break through. Pokémon Go capitalized on a generation’s nostalgia for its childhood and harnessed the latest advancements in key AR enabling technologies such as geolocation and computer vision.

sap_q416_digital_double_feature1_images8Just as mobile technologies percolated inside companies for several years before the iPhone exploded onto the market, companies have been dabbling in AR since the beginning of the decade. IKEA created an AR catalog app in 2013 to help customers visualize how their KIVIK modular sofa, for example, would look in their living rooms. Mitsubishi Electric has been perfecting an AR application, introduced in 2011, that enables homeowners to visualize its HVAC products in their homes. Newport News Shipbuilding has launched some 30 AR projects to help the company build and maintain its vessels. Tech giants including Facebook, HP, and Apple have been snapping up immersive tech startups for some time.

The overnight success of Pokémon Go will fuel interest in and understanding of all mediated reality technology—virtual and augmented. It’s created a shorthand for describing immersive reality and could launch a wave of technology consumerization the likes of which we haven’t seen since the iPhone instigated a tsunami of smartphone usage. Enterprises would be wise to figure out the role of immersive technology sooner rather than later. “AR and VR will both be the new normal within five years,” says futurist Gerd Leonhard, noting that the biggest hurdles may be mobile bandwidth availability and concerns about sensory overload. “Pokémon is an obvious opening scene only—professional use of AR and VR will explode.”

sap_q416_digital_double_feature1__3

Blockchains, the decentralized digital ledgers of transactions that are processed by a distributed network, first made headlines as the foundation for new types of financial transactions beginning with Bitcoin in 2009. According to Greenwich Associates, financial and technology companies will invest an estimated $1 billion in blockchain technology in 2016. But, as Gartner recently pointed out, there could be even more rapid evolution and acceptance in the areas of manufacturing, government, healthcare, and education.

By the 2020s, blockchain-based systems will reduce or eliminate many points of friction for a variety of business transactions. Individuals and companies will be able to exchange a wide range of digitized or digitally represented assets and value with anyone else, according to PwC. The supervised peer-to-peer network concept “is the future,” says Leonhard.

But the most important blockchain-related news of 2016 revealed a weak link in the application of technology that is touted as an immutable record.

In theory, blockchain technology creates a highly tamper-resistant structure that makes transactions secure and verifiable through a massively distributed digital ledger. All the transactions that take place are recorded in this ledger, which lives on many computers. High-grade encryption makes it nearly impossible for someone to cheat the system.

In practice, however, blockchain-based transactions and contracts are only as good as the code that enables them.

Case in point: The DAO, one of the first major implementations of a “Decentralized Autonomous Organization” (for which the fund is named). The DAO was a crowdfunded venture capital fund using cryptocurrency for investments and run through smart contracts. The rules that govern those smart contracts, along with all financial transaction records, are maintained on the blockchain. In June, the DAO revealed that an individual exploited a vulnerability in the company’s smart contract code to take control of nearly $60 million worth of the company’s digital currency.

The fund’s investors voted to basically rewrite the smart contract code and roll back the transaction, in essence going against the intent of blockchain-based smart contracts, which are supposed to be irreversible once they self-execute.

The DAO’s experience confirmed one of the inherent risks of distributed ledger technology—and, in particular, the risk of running a very large fund autonomously through smart contracts based on blockchain technology. Smart contract code must be as error-free as possible. As Cornell University professor and hacker Emin Gün Sirer wrote in his blog, “writing a robust, secure smart contract requires extreme amounts of diligence. It’s more similar to writing code for a nuclear power reactor, than to writing loose web code.” Since smart contracts are intended to be executed irreversibly on the blockchain, their code should not be rewritten and improved over time, as software typically is. But since no code can ever be completely airtight, smart contracts may have to build in contingency plans for when weaknesses in their code are exploited.

Importantly, the incident was not a result of any inherent weakness in the blockchain or distributed ledger technology generally. It will not be the end of cryptocurrencies or smart contracts. And it’s leading to more consideration of editable blockchains, which proponents say would only be used in extraordinary circumstances, according to Technology Review.

sap_q416_digital_double_feature1__5

Application programming interfaces (APIs), the computer codes that serve as a bridge between software applications, are not traditionally a hot topic outside of coder circles. But they are critical components in much of the consumer technology we’ve all come to rely on day-to-day.

One of the most important events in API history was the introduction of such an interface for Google Maps a decade ago. The map app was so popular that everyone wanted to incorporate its capabilities into their own systems. So Google released an API that enabled developers to connect to and use the technology without having to hack into it. The result was the launch of hundreds of inventive location-enabled apps using Google technology. Today, millions of web sites and apps use Google Maps APIs, from Allstate’s GoodHome app, which shows homeowners a personalized risk assessment of their properties, to Harley-Davidson’s Ride Planner to 7-Eleven’s app for finding the nearest Slurpee.

sap_q416_digital_double_feature1_images6Ultimately, it became de rigueur for apps to open up their systems in a safe way for experimentation by others through APIs. Technology professional Kin Lane, who tracks the now enormous world of APIs, has said, “APIs bring together a unique blend of technology, business, and politics into a transparent, self-service mix that can foster innovation.”

Thus it was significant when Apple announced in June that it would open up Siri to third-party developers through an API, giving the wider world the ability to integrate Siri’s voice commands into their apps. The move came on the heels of similar decisions by Amazon, Facebook, and Microsoft, all of which have AI bots or assistants of their own. And in October, Google opened up its Google Assistant as well.

The introduction of APIs confirms that the AI technology behind these bots has matured significantly—and that a new wave of AI-based innovation is nigh.

The best way to spark that innovation is to open up AI technologies such as Siri so that coders can use them as platforms to build new apps that can more rapidly expand AI uses and capabilities. Call it the “platformication” of AI. The value will be less in the specific AI products a company introduces than in the value of the platform for innovation. And that depends on the quality of the API. The tech company that attracts the best and brightest will win. AI platforms are just beginning to emerge and the question is: Who will be the platform leader?

sap_q416_digital_double_feature1__4

In June, Swiss citizens voted on a proposal to introduce a guaranteed basic income for all of its citizens, as reported by BBC News. It was the first country to take the issue to the polls, but it won’t be the last. Discussions about the impact of both automation and the advancing gig economy on individual livelihoods are happening around the world. Other countries—including the United States—are looking at solutions to the problem. Both Finland and the Netherlands have universal guaranteed income pilots planned for next year. Meanwhile, American startup incubator Y Combinator is launching an experiment to give 100 families in Oakland, California, a minimum wage for five years with no strings attached, according to Quartz.

The world is on the verge of potential job loss at a scale and speed never seen before. The Industrial Revolution was more of an evolution, happening over more than a century. The ongoing digital revolution is happening in relative hyper speed.

No one is exactly sure how increased automation and digitization will affect the world’s workforce. One 2013 study suggests as much as 47% of the U.S workforce is at risk of being replaced by machines over the next two decades, but even a conservative estimate of 10% could have a dramatic impact, not just on workers but on society as a whole.

The proposed solution in Switzerland did not pass, in part because a major political party did not introduce it, and citizens are only beginning to consider the potential implications of digitization on their incomes. What’s more, the idea of simply guaranteeing pay runs contrary to long-held notions in many societies that humans ought to earn their keep.

Whether or not state-funded support is the answer is just one of the questions that must be answered. The votes and pilots underway make it clear that governments will have to respond with some policy measures. The question is: What will those measures be? The larger impact of mass job displacement, what future employment conditions might look like, and what the responsibilities of institutions are in ensuring that we can support ourselves are among the issues that policy makers will need to address.

New business models resulting from digitization will create some new types of roles—but those will require training and perhaps continued education. And not all of those who will be displaced will be in a position to remake their careers. Just consider taxi drivers: In the United States, about 223,000 people currently earn their living behind the wheel of a hired car. The average New York livery driver is 46 years old, according to the New York City Taxi and Limousine Commission, and no formal education is required. When self-driving cars take over, those jobs will go away and the men and women who held them may not be qualified for the new positions that emerge.

As digitization dramatically changes the constructs of commerce and work, no one is quite sure how people will be impacted. But waiting to see how it all shakes out is not a winning strategy. Companies and governments today will have to experiment with potential solutions before the severity of the problem is clear. Among the questions that will have to be answered: How can we retrain large parts of the workforce? How will we support those who fall through the cracks? Will we prioritize and fund education? Technological progress and shifting work models will continue, whether or not we plan for their consequences.

sap_q416_digital_double_feature1__2

In April, a young man, who was believed to have permanently lost feeling in and control over his hands and legs as the result of a devastating spine injury, became able to use his right hand and fingers again. He used technology that transmits his thoughts directly to his hand muscles, bypassing his injured spinal cord. Doctors implanted a computer chip into the quadriplegic’s brain two years ago and—with ongoing training and practice—he can now perform everyday tasks like pouring from a bottle and playing video games.

The system reconnected the man’s brain directly to his muscles—the first time that engineers have successfully bypassed the nervous system’s information superhighway, the spinal cord. It’s the medical equivalent of moving from wired to wireless computing.

The man has in essence become a cyborg, that term first coined in 1960 to describe “self-regulating human-machine systems.” Yet the beneficiary of this scientific advance himself said, “You’re not going to be looked on as, ‘Oh, I’m a cyborg now because I have this big huge prosthetic on the side of my arm.’ It’s something a lot more natural and intuitive to learn because I can see my own hand reacting.”

As described in IEEE Spectrum, the “neural-bypass system” records signals that the man generates when thinking about moving his hand, decodes those signals, and routes them to the electric sleeve around his arm to stimulate movement: “The result looks surprisingly simple and natural: When Burkhart thinks about picking up a bottle, he picks up the bottle. When he thinks about playing a chord in Guitar Hero, he plays the chord.”

sap_q416_digital_double_feature1_images5What seems straightforward on the surface is powered by a sophisticated algorithm that can analyze the vast amounts of data the man’s brain produces, separating important signals from noise.

The fact that engineers have begun to unlock the complex code that controls brain-body communication opens up enormous possibilities. Neural prostheses (cochlear implants) have already reversed hearing loss. Light-sensitive chips serving as artificial retinas are showing progress in restoring vision. Other researchers are exploring computer implants that can read human thoughts directly to signal an external computer to help people speak or move in new ways. “Human and machine are converging,” says Leonhard.

The National Academy of Engineering predicts that “the intersection of engineering and neuroscience promises great advances in healthcare, manufacturing, and communication.”

Burkhart spent two years in training with the computer that has helped power his arm to get this far. It’s the result of more than a decade of development in brain-computer interfaces. And it can currently be used only in the lab; researchers are working on a system for home use. But it’s a clear indication of how quickly the lines between man and machine are blurring—and it opens the door for further computerized reanimation in many new scenarios.

This fall, Switzerland hosted its first cyborg Olympics, in which disabled patients compete using the latest assistive technologies, including robot exoskeletons and brainwave-readers. Paraplegic athletes use electrical simulation systems to compete in cycling, for example. The winners are those who can control their device the best. “Instead of celebrating the human body moving under its own power,” said a recent article in the IEEE Spectrum, “the cyborg games will celebrate the strength and ingenuity of human-machine collaborations.” D!

Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.

Comments

About Dan Wellers

Dan Wellers is the Global Lead of Digital Futures at SAP, which explores how organizations can anticipate the future impact of exponential technologies. Dan has extensive experience in technology marketing and business strategy, plus management, consulting, and sales.

Tags:

The Future Of Work Is Now

Stefan Ries

Far beyond collaboration, the digitization of work determines how we work and engage people. Technologies – such as artificial intelligence, machine learning, robotics, analytics, and cloud technologies – change the way we recruit, develop talent, and make our workforce more inclusive. They also introduce new jobs, largely with different skill set requirements. Some of the most-wanted jobs today did not exist five years ago – and many jobs we wouldn’t even imagine today will arise in the near future. Our workplace is changing at light speed.

“Beyond collaboration, the digitization of work determines how we work and engage people”

Technology accelerates the transformation of businesses and industries. We need to prepare our businesses for the future, anticipate skills requirements and workforce changes. While some of the developments are unpredictable, it is up to thought and industry leaders like us to take control and shape the future of work.

SAP Future Factor, an interactive Web series: Engaging with thought leaders about the future of work

Welcome to the SAP Future Factor Web Salon, an interactive Web series featuring perspectives of thought leaders from academia, business, and government about the workplace of the future. The series drives a continuous exchange about the impacts of digitization on organizations and shares insight on innovative practices already in place.

The inaugural episode features SAP chief human resources officer Stefan Ries and Kevin Kruse, leadership expert and author of the New York Times best-seller “We: How to Increase Performance and Profits Through Full Engagement.” The two thought leaders exchange views on the opportunities and challenges of a digitized workplace and business culture. Their discussion will touch on the rising digital workplace, new ways to collaborate, the role technology plays to foster diversity and inclusion, employee engagement, and talent development.

Choose the topics that match your needs

Tomorrow’s workplace is all about choices – and so is the format of the SAP Future Factor Web series. All episodes are fully interactive, giving you the opportunity to interact with the content of the video by choosing topics of interest to you and your business. You determine what you would like to view and learn about, and in what order.

Episode 1 features the following topics:

  • Impacts of Digitization
  • HR’s Role in a Digitized World
  • Cloud Culture
  • Business Beyond Bias
  • Man vs. Machine
  • Rise of Social Intelligence

The future is now. Engage with us in the SAP Future Factor!

We hope you will enjoy the first episode. Tell us what you think.

Are the biggest trends from the last year on your radar screen? See More Than Noise: 5 Digital Stories From 2016 That Are Bigger Than You Think.

Comments

Stefan Ries

About Stefan Ries

Stefan Ries is Chief Human Resources Officer (CHRO), Labor Relations Director, and a member of the Executive Board of SAP SE. Stefan was born in Bavaria and raised in Constance, Germany, where he spent most of his youth. After receiving his masters of business in economics from the University of Constance in 1991, he moved to Munich. He started his career as HR Manager at Microsoft, overseeing HR duties in Austria, Switzerland, and East European countries. In July 1994, he went on to lead the HR function for Compaq Computer in Europe, Middle East, and Africa. Following the company’s acquisitions of Tandem Computers and Digital Equipment Corporation in 1999 and 2000, Stefan led the entire HR organization for Compaq in Germany. Stefan first joined SAP in 2002 and later became responsible for various HR functions, heading up the HR business partner organization and overseeing all HR functions on an operational level. To support innovation, Stefan attaches great importance to a diverse working culture. He is convinced that appreciating the differences among people, their unique backgrounds and personalities is a key success factor for SAP.