Sections

Humaniq: Financial Inclusion Of World’s 2 Billion Unbanked

Jacqueline Prause

Consider some of the services you probably rely on your bank to provide: safekeeping, payments processing, and the occasional credit. Your bank also likely facilitates certain intangibles: your sense of financial inclusion, job market participation, and household security. Without these you would easily be vulnerable to potential exclusion and economic prejudice.

Access to basic financial services is so critical to security and development that it is listed as the top target set forth in the UN Sustainable Development Goals to end poverty. For more than 2 billion people, banking services still remain out of reach, according to the World Bank. Traditional banking services may be complex, expensive, and difficult to access. Barriers include lack of local banking infrastructure within reasonable distance and high expenses to open accounts. In addition, some 1.5 billion people lack the necessary personal identification documents to open a bank account – preventing them from taking even the most basic steps to integration.

Humaniq, a London-based fintech startup, is a next-generation bank offering solutions for the world’s unbanked population. Combining its vision for economic empowerment and community building with the latest innovations in blockchain technology, mobile, biometrics, and artificial intelligence, Humaniq aims to provide a technology platform for financial inclusion services for those who lack practical, affordable banking solutions.

Dinis Guarda, CEO of Humaniq, is a vocal proponent of global sustainability initiatives. In founding Humaniq, he joined with fellow co-founders Alex Fork and Dimitry Kaminsky to seek a way to use advanced technologies to solve humanity’s most pressing challenges. “The biggest challenge at the moment is that a big proportion of the world’s population is filtered-out from the technology around them. They don’t see the future of work and all the disruption that is going on,” explains Guarda. “At the same time, we have new disruptive technologies, a lot of them foundational technologies, like blockchain, as well as IoT and AI. These technologies are creating a fast transformation in the way we consume information, the way we deal with our economic and social models, and the way we deal with economics.”

Initial coin offering powers expansion

Established in July 2016, Humaniq has moved swiftly in executing on its plans to build a sustainable business model as well as a technology model that supports expansion of its platform and ecosystem. In April, Humaniq achieved a major milestone with the initial coin offering (ICO) of its HMQ token. The sale attracted 12,000 investors and netted close to USD$5.2 million. “With this, we are now building the beta version of our app,” says Guarda. “We did our first pilot project in India. With these pilot projects, we are testing the technology, and as we get a much bigger capacity to understand [users’] needs, we are going to scale these and take things to the next level.”

Platform integrates mobile, biometrics, and blockchain technology

Developers at Humaniq are working to build a robust technology platform that can scale. Of its five development teams, Humaniq has two teams working on both the backend and frontend, one team on the backend, and one team on open API development with third-party providers. Humaniq’s specialty – which distinguishes it from simply being yet another mobile wallet app – is its innovative combination of mobile technology, biometrics, and blockchain technology.

While almost half of the world’s population lacks basic financial services, a sizable portion own a mobile phone. To access Humaniq’s app, all that will be required of a user is a mobile phone with a camera. The app is being developed initially for Android devices, but will eventually be available for iOS as well.

The use of biometric identification offers a twofold advantage. On the one hand, it simplifies the user experience so that even a novice can use the service. One the other, biometrics provide a sophisticated layer of security through facial recognition algorithms and neural networks that can verify user identity upon each login. This concept, known as proof of face, is based on a series of photos, video recordings of facial gestures, and the user’s speech. “Biometric, because from the UI and UX we want to make sure it is possible for anyone to use it,” says Guarda. “Especially in India, there is a study showing approximately 1 billion people who do not exist in terms of documentation; so we want to make sure through biometrics that we can integrate people in the digital economy.”

HMQ derives value from community

Users of the Humaniq app will hold HMQ tokens as the chief value denomination within the community.  These tokens will be exchangeable into bitcoins, and then into dollars, euros, or other standard currencies. Two crypto-exchanges already accept HMQ tokens. Every user is given tokens for passing bio-identification. They can earn additional tokens by inviting friends to join the Humaniq community and by doing transactions. As the community grows and becomes more sustainable, it is expected that it will become much easier to exchange tokens than to go through currencies and traditional exchanges.

“People have a token because of being in the community,” says Guarda. “These tokens will have a value similar to other assets such as commodities, fiat currencies, or stock-market shares. The HMQ token is already doing this at the time of writing.”

Challenges: technology integration and security

External resistance and technical challenges are likely to crop up around the integration of the various technologies, especially concerning the integration of blockchain with biometrics. The biometrics aspect presents additional challenges with security and data, however, Humaniq is working with leading cybersecurity experts and non-governmental organizations to ensure the integrity of digital identity and Big Data management. “We are conscious that, working in some of these countries, there will be a lot of unforeseen challenges,” says Guarda. “We need to make sure there is a high degree of cybersecurity.”

One foreseeable challenge for Humaniq is that as its digital asset becomes stronger, there will be additional financial, legal, and ecosystem issues to consider. On these matters, Humaniq is working with Deloitte for guidance. To mitigate potential risks to its currency, Humaniq has strictly enforced policies limiting the number of tokens any single person or entity can mint. Because of the biometric ID requirement, no one can own HMQ tokens anonymously. These policies are intended to protect HMQ against the notoriety gained by some cryptocurrencies as tools for money laundering, currency manipulation, and abuse.

Priority on building a solid community

In July, Humaniq plans to make its service available via pilot projects in Africa, Asia, and South America. Ultimately, the service will be available to anyone anywhere, facilitating an exchange between the developed world and developing countries. For example, someone working in Germany will be able to send money back to her family in Africa. Guarda says, “We want to make sure that Humaniq is not merely an app, but a social-good ecosystem for humanity.”

Community is an integral part of Humaniq’s mission. “The challenge of building a solid community is essential, because if we don’t build a solid community, it won’t scale,” says Guarda. Humaniq’s first step in community building was the success of its ICO. “We got 12,000 people that participated in our crowd sale, which is the biggest successful crowd sale in terms of participants in documented human history. This means we already have a community in terms of people who believe in us and our vision for the near future. That’s point one,” says Guarda. “Point two is that we have ambassadors around the world. We have people in more than 50 countries already involved. We have offices in London, Luxembourg, and Silicon Valley. We are building that community step by step.”

The ambassadors are Humaniq’s representatives on the ground in locales where its services are being offered. These people, some of whom are influential leaders locally, will hold info sessions and be a bridge for the service into the community. Humaniq’s own team stands out for its technical expertise as well as its multicultural background with people from all over the world, including Cambridge, the United States, Germany, Italy, Nigeria, Ghana, Jamaica, and Asia.

Looking ahead to the future, Guarda’s entrepreneurial vision for Humaniq is that it will be a driver for social change. “I certainly want to make sure we use the technology for the right things,” he says. “I want to say how Humaniq made tech for good, and in the process integrated billions of people into the world economy. If I can do that, I think I will be happy and my children will be proud of me.”

For more on blockchain, distributed ledgers, and smart contracts, see Running Future Cities on Blockchain.

Comments

About Jacqueline Prause

Jacqueline Prause is the Senior Managing Editor of Media Channels at SAP. She writes, edits, and coordinates journalistic content for SAP.info, SAP's global online news magazine for customers, partners, and business influencers .

IoT Can Keep You Healthy — Even When You Sleep [VIDEO]

Christine Donato

Today the Internet of Things is revamping technology. IoT image from American Geniuses.jpg

Smart devices speak to each other and work together to provide the end user with a better product experience.

Coinciding with this change in technology is a change in people. We’ve transitioned from a world of people who love processed foods and french fries to people who eat kale chips and Greek yogurt…and actually like it.

People are taking ownership of their well-being, and preventative care is at the forefront of focus for both physicians and patients. Fitness trackers alert wearers of the exact number of calories burned from walking a certain number of steps. Mobile apps calculate our perfect nutritional balance. And even while we sleep, people are realizing that it’s important to monitor vitals.

According to research conducted at Harvard University, proper sleep patterns bolster healthy side effects such as improved immune function, a faster metabolism, preserved memory, and reduced stress and depression.

Conversely, the Harvard study determined that lack of sleep can negatively affect judgement, mood, and the ability retain information, as well as increase the risk of obesity, diabetes, cardiovascular disease, and even premature death.

Through the Internet of Things, researchers can now explore sleep patterns without the usual sleep labs and movement-restricting electrode wires. And with connected devices, individuals can now easily monitor and positively influence their own health.

EarlySense, a startup credited with the creation of continuous patient monitoring solutions focused on early detection of patient deterioration, mid-sleep falls, and pressure ulcers, began with a mission to prevent premature and preventable deaths.

Without constant monitoring, patients with unexpected clinical deterioration may be accidentally neglected, and their conditions can easily escalate into emergency situations.

Motivated by many instances of patients who died from preventable post-elective surgery complications, EarlySense founders created a product that constantly monitors patients when hospital nurses can’t, alerting the main nurse station when a patient leaves his or her bed and could potentially fall, or when a patient’s vital signs drop or rise unexpectedly.

Now EarlySense technology has expanded outside of the hospital realm. The EarlySense wellness sensor, a device connected via the Internet of Things, mobile solutions, and supported by SAP HANA Cloud Platform, monitors all vital signs while a person sleeps. The device is completely wireless and lies subtly underneath one’s mattress. The sensor collects all mechanical vibrations that the patient’s body emits while sleeping, continuously monitoring heart and respiratory rates.

Watch this short video to learn more about how the EarlySense wellness sensor works:

The result is faster diagnoses with better treatments and outcomes. Sleep issues can be identified and addressed; individuals can use the data collected to make adjustments in diet or exercise habits; and those on heavy pain medications can monitor the way their bodies react to the medication. In addition, physicians can use the data collected from the sensor to identify patient health problems before they escalate into an emergency situation.

Connected care is opening the door for a new way to practice health. Through connected care apps that link people with their doctors, fitness trackers that measure daily activity, and sensors like the EarlySense wellness sensor, today’s technology enables people and physicians to work together to prevent sickness and accidents before they occur. Technology is forever changing the way we live, and in turn we are living longer, healthier lives.

To learn how SAP HANA Cloud Platform can affect your business, visit It&Me.

For more stories, join me on Twitter.

Comments

About Christine Donato

Christine Donato is a Senior Integrated Marketing Specialist at SAP. She is an accomplished project manager and leader of multiple marketing and sales enablement campaigns and events, that supported a multi million euro business.

Zhena’s Gypsy Tea Brews Sustainable Growth On Cloud ERP

David Trites

Recently I had the pleasure of hosting a podcast with Paula Muesse, COO and CFO of Zhena’s Gypsy Tea, a small, organic, fair-trade tea company based in California, and Ursula Ringham from SAP. We talked about some of the business challenges Zhena’s faces and how the company’s ERP solution helped spur growth and digital transformation.

Small but complex business

~ERP helped Zhena’s sustain growthZhena’s has grown from one person (Zhena Muzyka) selling hand-packed tea from a cart, into a thriving small business that puts quality, sustainability, and fair trade first. And although the company is small its business is complex.

For starters, tea isn’t grown in the United States, so Zhena’s has to maintain and import inventory from multiple warehouses around the world. Some of their tea blends have up to 14 ingredients, and each one has a different lead time. That makes demand-planning difficult. In addition, the FDA and US Customs require designated ingredients be traced and treated a certain way to comply with regulations.

Being organic and fair trade also makes things more complicated. Zhena’s has to pass an annual organic compliance audit for all products and processing facilities. And all products need to be traceable back to the farms where the tea was grown and picked to ensure the workers (mostly women) are paid fair wages.

Sustainable growth

Prior to implementing its new ERP system, Zhena’s was using a mix of tools like QuickBooks, Excel, and paper to manage the business. But to sustain growth and ensure future success, the company had to make some changes. Zhena’s needed an integrated software solution that could handle all facets of the business. It needed a tool that could help with cost control and profitability analysis and facilitate complex reporting and regulatory requirements.

The SAP Business ByDesign solution was the perfect choice. The cloud-based ERP solution reduced both business and IT costs, simplified processes from demand planning to accounting, and enabled mobile access and real-time reporting.

Check out the podcast to hear more about how Zhena’s successfully transformed its business by moving to SAP Business ByDesign.

 This article originally appeared on SAP Business Trends.

Building a successful company is hard work. SAP’s affordable solutions for small and midsize companies are designed to make it easier. Simple to install and use, SAP SME Solutions help you automate and integrate your business processes to give real-time, actionable insights. So you can make decisions on the spot. Find out how Run Simple can work for you. Visit sap.com/sme.

Comments

About David Trites

David Trites is a Director of SAP Global Marketing. He is responsible for producing interesting and compelling customer stories that will humanize the SAP brand, support sales and marketing teams across SAP, and increase the awareness of SAP in key markets.

Data Lakes: Deep Insights

Timo Elliott, John Schitka, Michael Eacrett, and Carolyn Marsan

Dan McCaffrey has an ambitious goal: solving the world’s looming food shortage.

As vice president of data and analytics at The Climate Corporation (Climate), which is a subsidiary of Monsanto, McCaffrey leads a team of data scientists and engineers who are building an information platform that collects massive amounts of agricultural data and applies machine-learning techniques to discover new patterns. These analyses are then used to help farmers optimize their planting.

“By 2050, the world is going to have too many people at the current rate of growth. And with shrinking amounts of farmland, we must find more efficient ways to feed them. So science is needed to help solve these things,” McCaffrey explains. “That’s what excites me.”

“The deeper we can go into providing recommendations on farming practices, the more value we can offer the farmer,” McCaffrey adds.

But to deliver that insight, Climate needs data—and lots of it. That means using remote sensing and other techniques to map every field in the United States and then combining that information with climate data, soil observations, and weather data. Climate’s analysts can then produce a massive data store that they can query for insights.

Meanwhile, precision tractors stream data into Climate’s digital agriculture platform, which farmers can then access from iPads through easy data flow and visualizations. They gain insights that help them optimize their seeding rates, soil health, and fertility applications. The overall goal is to increase crop yields, which in turn boosts a farmer’s margins.

Climate is at the forefront of a push toward deriving valuable business insight from Big Data that isn’t just big, but vast. Companies of all types—from agriculture through transportation and financial services to retail—are tapping into massive repositories of data known as data lakes. They hope to discover correlations that they can exploit to expand product offerings, enhance efficiency, drive profitability, and discover new business models they never knew existed.

The internet democratized access to data and information for billions of people around the world. Ironically, however, access to data within businesses has traditionally been limited to a chosen few—until now. Today’s advances in memory, storage, and data tools make it possible for companies both large and small to cost effectively gather and retain a huge amount of data, both structured (such as data in fields in a spreadsheet or database) and unstructured (such as e-mails or social media posts). They can then allow anyone in the business to access this massive data lake and rapidly gather insights.

It’s not that companies couldn’t do this before; they just couldn’t do it cost effectively and without a lengthy development effort by the IT department. With today’s massive data stores, line-of-business executives can generate queries themselves and quickly churn out results—and they are increasingly doing so in real time. Data lakes have democratized both the access to data and its role in business strategy.

Indeed, data lakes move data from being a tactical tool for implementing a business strategy to being a foundation for developing that strategy through a scientific-style model of experimental thinking, queries, and correlations. In the past, companies’ curiosity was limited by the expense of storing data for the long term. Now companies can keep data for as long as it’s needed. And that means companies can continue to ask important questions as they arise, enabling them to future-proof their strategies.

Prescriptive Farming

Climate’s McCaffrey has many questions to answer on behalf of farmers. Climate provides several types of analytics to farmers including descriptive services, which are metrics about the farm and its operations, and predictive services related to weather and soil fertility. But eventually the company hopes to provide prescriptive services, helping farmers address all the many decisions they make each year to achieve the best outcome at the end of the season. Data lakes will provide the answers that enable Climate to follow through on its strategy.

Behind the scenes at Climate is a deep-science data lake that provides insights, such as predicting the fertility of a plot of land by combining many data sets to create accurate models. These models allow Climate to give farmers customized recommendations based on how their farm is performing.

“Machine learning really starts to work when you have the breadth of data sets from tillage to soil to weather, planting, harvest, and pesticide spray,” McCaffrey says. “The more data sets we can bring in, the better machine learning works.”

The deep-science infrastructure already has terabytes of data but is poised for significant growth as it handles a flood of measurements from field-based sensors.

“That’s really scaling up now, and that’s what’s also giving us an advantage in our ability to really personalize our advice to farmers at a deeper level because of the information we’re getting from sensor data,” McCaffrey says. “As we roll that out, our scale is going to increase by several magnitudes.”

Also on the horizon is more real-time data analytics. Currently, Climate receives real-time data from its application that streams data from the tractor’s cab, but most of its analytics applications are run nightly or even seasonally.

In August 2016, Climate expanded its platform to third-party developers so other innovators can also contribute data, such as drone-captured data or imagery, to the deep-science lake.

“That helps us in a lot of ways, in that we can get more data to help the grower,” McCaffrey says. “It’s the machine learning that allows us to find the insights in all of the data. Machine learning allows us to take mathematical shortcuts as long as you’ve got enough data and enough breadth of data.”

Predictive Maintenance

Growth is essential for U.S. railroads, which reinvest a significant portion of their revenues in maintenance and improvements to their track systems, locomotives, rail cars, terminals, and technology. With an eye on growing its business while also keeping its costs down, CSX, a transportation company based in Jacksonville, Florida, is adopting a strategy to make its freight trains more reliable.

In the past, CSX maintained its fleet of locomotives through regularly scheduled maintenance activities, which prevent failures in most locomotives as they transport freight from shipper to receiver. To achieve even higher reliability, CSX is tapping into a data lake to power predictive analytics applications that will improve maintenance activities and prevent more failures from occurring.

Beyond improving customer satisfaction and raising revenue, CSX’s new strategy also has major cost implications. Trains are expensive assets, and it’s critical for railroads to drive up utilization, limit unplanned downtime, and prevent catastrophic failures to keep the costs of those assets down.

That’s why CSX is putting all the data related to the performance and maintenance of its locomotives into a massive data store.

“We are then applying predictive analytics—or, more specifically, machine-learning algorithms—on top of that information that we are collecting to look for failure signatures that can be used to predict failures and prescribe maintenance activities,” says Michael Hendrix, technical director for analytics at CSX. “We’re really looking to better manage our fleet and the maintenance activities that go into that so we can run a more efficient network and utilize our assets more effectively.”

“In the past we would have to buy a special storage device to store large quantities of data, and we’d have to determine cost benefits to see if it was worth it,” says Donna Crutchfield, assistant vice president of information architecture and strategy at CSX. “So we were either letting the data die naturally, or we were only storing the data that was determined to be the most important at the time. But today, with the new technologies like data lakes, we’re able to store and utilize more of this data.”

CSX can now combine many different data types, such as sensor data from across the rail network and other systems that measure movement of its cars, and it can look for correlations across information that wasn’t previously analyzed together.

One of the larger data sets that CSX is capturing comprises the findings of its “wheel health detectors” across the network. These devices capture different signals about the bearings in the wheels, as well as the health of the wheels in terms of impact, sound, and heat.

“That volume of data is pretty significant, and what we would typically do is just look for signals that told us whether the wheel was bad and if we needed to set the car aside for repair. We would only keep the raw data for 10 days because of the volume and then purge everything but the alerts,” Hendrix says.

With its data lake, CSX can keep the wheel data for as long as it likes. “Now we’re starting to capture that data on a daily basis so we can start applying more machine-learning algorithms and predictive models across a larger history,” Hendrix says. “By having the full data set, we can better look for trends and patterns that will tell us if something is going to fail.”

Another key ingredient in CSX’s data set is locomotive oil. By analyzing oil samples, CSX is developing better predictions of locomotive failure. “We’ve been able to determine when a locomotive would fail and predict it far enough in advance so we could send it down for maintenance and prevent it from failing while in use,” Crutchfield says.

“Between the locomotives, the tracks, and the freight cars, we will be looking at various ways to predict those failures and prevent them so we can improve our asset allocation. Then we won’t need as many assets,” she explains. “It’s like an airport. If a plane has a failure and it’s due to connect at another airport, all the passengers have to be reassigned. A failure affects the system like dominoes. It’s a similar case with a railroad. Any failure along the road affects our operations. Fewer failures mean more asset utilization. The more optimized the network is, the better we can service the customer.”

Detecting Fraud Through Correlations

Traditionally, business strategy has been a very conscious practice, presumed to emanate mainly from the minds of experienced executives, daring entrepreneurs, or high-priced consultants. But data lakes take strategy out of that rarefied realm and put it in the environment where just about everything in business seems to be going these days: math—specifically, the correlations that emerge from applying a mathematical algorithm to huge masses of data.

The Financial Industry Regulatory Authority (FINRA), a nonprofit group that regulates broker behavior in the United States, used to rely on the experience of its employees to come up with strategies for combating fraud and insider trading. It still does that, but now FINRA has added a data lake to find patterns that a human might never see.

Overall, FINRA processes over five petabytes of transaction data from multiple sources every day. By switching from traditional database and storage technology to a data lake, FINRA was able to set up a self-service process that allows analysts to query data themselves without involving the IT department; search times dropped from several hours to 90 seconds.

While traditional databases were good at defining relationships with data, such as tracking all the transactions from a particular customer, the new data lake configurations help users identify relationships that they didn’t know existed.

Leveraging its data lake, FINRA creates an environment for curiosity, empowering its data experts to search for suspicious patterns of fraud, marketing manipulation, and compliance. As a result, FINRA was able to hand out 373 fines totaling US$134.4 million in 2016, a new record for the agency, according to Law360.

Data Lakes Don’t End Complexity for IT

Though data lakes make access to data and analysis easier for the business, they don’t necessarily make the CIO’s life a bed of roses. Implementations can be complex, and companies rarely want to walk away from investments they’ve already made in data analysis technologies, such as data warehouses.

“There have been so many millions of dollars going to data warehousing over the last two decades. The idea that you’re just going to move it all into a data lake isn’t going to happen,” says Mike Ferguson, managing director of Intelligent Business Strategies, a UK analyst firm. “It’s just not compelling enough of a business case.” But Ferguson does see data lake efficiencies freeing up the capacity of data warehouses to enable more query, reporting, and analysis.

Data lakes also don’t free companies from the need to clean up and manage data as part of the process required to gain these useful insights. “The data comes in very raw, and it needs to be treated,” says James Curtis, senior analyst for data platforms and analytics at 451 Research. “It has to be prepped and cleaned and ready.”

Companies must have strong data governance processes, as well. Customers are increasingly concerned about privacy, and rules for data usage and compliance have become stricter in some areas of the globe, such as the European Union.

Companies must create data usage policies, then, that clearly define who can access, distribute, change, delete, or otherwise manipulate all that data. Companies must also make sure that the data they collect comes from a legitimate source.

Many companies are responding by hiring chief data officers (CDOs) to ensure that as more employees gain access to data, they use it effectively and responsibly. Indeed, research company Gartner predicts that 90% of large companies will have a CDO by 2019.

Data lakes can be configured in a variety of ways: centralized or distributed, with storage on premise or in the cloud or both. Some companies have more than one data lake implementation.

“A lot of my clients try their best to go centralized for obvious reasons. It’s much simpler to manage and to gather your data in one place,” says Ferguson. “But they’re often plagued somewhere down the line with much more added complexity and realize that in many cases the data lake has to be distributed to manage data across multiple data stores.”

Meanwhile, the massive capacities of data lakes mean that data that once flowed through a manageable spigot is now blasting at companies through a fire hose.

“We’re now dealing with data coming out at extreme velocity or in very large volumes,” Ferguson says. “The idea that people can manually keep pace with the number of data sources that are coming into the enterprise—it’s just not realistic any more. We have to find ways to take complexity away, and that tends to mean that we should automate. The expectation is that the information management software, like an information catalog for example, can help a company accelerate the onboarding of data and automatically classify it, profile it, organize it, and make it easy to find.”

Beyond the technical issues, IT and the business must also make important decisions about how data lakes will be managed and who will own the data, among other things (see How to Avoid Drowning in the Lake).

How to Avoid Drowning in the Lake

The benefits of data lakes can be squandered if you don’t manage the implementation and data ownership carefully.

Deploying and managing a massive data store is a big challenge. Here’s how to address some of the most common issues that companies face:

Determine the ROI. Developing a data lake is not a trivial undertaking. You need a good business case, and you need a measurable ROI. Most importantly, you need initial questions that can be answered by the data, which will prove its value.

Find data owners. As devices with sensors proliferate across the organization, the issue of data ownership becomes more important.

Have a plan for data retention. Companies used to have to cull data because it was too expensive to store. Now companies can become data hoarders. How long do you store it? Do you keep it forever?

Manage descriptive data. Software that allows you to tag all the data in one or multiple data lakes and keep it up-to-date is not mature yet. We still need tools to bring the metadata together to support self-service and to automate metadata to speed up the preparation, integration, and analysis of data.

Develop data curation skills. There is a huge skills gap for data repository development. But many people will jump at the chance to learn these new skills if companies are willing to pay for training and certification.

Be agile enough to take advantage of the findings. It used to be that you put in a request to the IT department for data and had to wait six months for an answer. Now, you get the answer immediately. Companies must be agile to take advantage of the insights.

Secure the data. Besides the perennial issues of hacking and breaches, a lot of data lakes software is open source and less secure than typical enterprise-class software.

Measure the quality of data. Different users can work with varying levels of quality in their data. For example, data scientists working with a huge number of data points might not need completely accurate data, because they can use machine learning to cluster data or discard outlying data as needed. However, a financial analyst might need the data to be completely correct.

Avoid creating new silos. Data lakes should work with existing data architectures, such as data warehouses and data marts.

From Data Queries to New Business Models

The ability of data lakes to uncover previously hidden data correlations can massively impact any part of the business. For example, in the past, a large soft drink maker used to stock its vending machines based on local bottlers’ and delivery people’s experience and gut instincts. Today, using vast amounts of data collected from sensors in the vending machines, the company can essentially treat each machine like a retail store, optimizing the drink selection by time of day, location, and other factors. Doing this kind of predictive analysis was possible before data lakes came along, but it wasn’t practical or economical at the individual machine level because the amount of data required for accurate predictions was simply too large.

The next step is for companies to use the insights gathered from their massive data stores not just to become more efficient and profitable in their existing lines of business but also to actually change their business models.

For example, product companies could shield themselves from the harsh light of comparison shopping by offering the use of their products as a service, with sensors on those products sending the company a constant stream of data about when they need to be repaired or replaced. Customers are spared the hassle of dealing with worn-out products, and companies are protected from competition as long as customers receive the features, price, and the level of service they expect. Further, companies can continuously gather and analyze data about customers’ usage patterns and equipment performance to find ways to lower costs and develop new services.

Data for All

Given the tremendous amount of hype that has surrounded Big Data for years now, it’s tempting to dismiss data lakes as a small step forward in an already familiar technology realm. But it’s not the technology that matters as much as what it enables organizations to do. By making data available to anyone who needs it, for as long as they need it, data lakes are a powerful lever for innovation and disruption across industries.

“Companies that do not actively invest in data lakes will truly be left behind,” says Anita Raj, principal growth hacker at DataRPM, which sells predictive maintenance applications to manufacturers that want to take advantage of these massive data stores. “So it’s just the option of disrupt or be disrupted.” D!

Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.


About the Authors:

Timo Elliott is Vice President, Global Innovation Evangelist, at SAP.

John Schitka is Senior Director, Solution Marketing, Big Data Analytics, at SAP.

Michael Eacrett is Vice President, Product Management, Big Data, Enterprise Information Management, and SAP Vora, at SAP.

Carolyn Marsan is a freelance writer who focuses on business and technology topics.

Comments

About Timo Elliott

Timo Elliott is an Innovation Evangelist for SAP and a passionate advocate of innovation, digital business, analytics, and artificial intelligence. He was the eighth employee of BusinessObjects and for the last 25 years he has worked closely with SAP customers around the world on new technology directions and their impact on real-world organizations. His articles have appeared in articles such as Harvard Business Review, Forbes, ZDNet, The Guardian, and Digitalist Magazine. He has worked in the UK, Hong Kong, New Zealand, and Silicon Valley, and currently lives in Paris, France. He has a degree in Econometrics and a patent in mobile analytics. 

Tags:

Artificial Intelligence: The Future Of Oil And Gas

Anoop Srivastava

Oil prices have fallen dramatically over last few years, forcing some major oil companies to take drastic actions such as layoffs, cutting investments and budgets, and more. Shell, for example, shelved its plan to invest in Qatar, Aramco put on hold its deep-water exploration in the Red Sea, Schlumberger fired a few thousand employees, and the list goes on…

In view of falling oil prices and the resulting squeeze on cash flows, the oil and gas industry has been challenged to adapt and optimize its performance to remain profitable while maintaining a long-term investment and operating outlook. Currently, oil and gas companies find it difficult to maintain the same level of investment in exploration and production as when crude prices were at their peak. Operations in the oil and gas industry today means balancing a dizzying array of trade-offs in the drive for competitive advantage while maximizing return on investment.

The result is a dire need to optimize performance and optimize the cost of production per barrel. Companies have many optimization opportunities once they start using the massive data being generated by oil fields. Oil and gas companies can turn this crisis into an opportunity by leveraging technological innovations like artificial intelligence to build a foundation for long-term success. If volatility in oil prices is the new norm, the push for “value over volume” is the key to success going forward.

Using AI tools, upstream oil and gas companies can shift their approach from production at all costs to producing in context. They will need to do profit and loss management at the well level to optimize the production cost per barrel. To do this, they must integrate all aspects of production management, collect the data for analysis and forecasting, and leverage artificial intelligence to optimize operations.

When remote sensors are connected to wireless networks, data can be collected and centrally analyzed from any location. According to the consulting firm McKinsey, the oil and gas supply chain stands to gain $50 billion in savings and increased profit by adopting AI. As an example, using AI algorithms to more accurately sift through signals and noise in seismic data can decrease dry wellhead development by 10 percent.

How oil and gas can leverage artificial intelligence

1. Planning and forecasting

On a macro scale, deep machine learning can help increase awareness of macroeconomic trends to drive investment decisions in exploration and production. Economic conditions and even weather patterns can be considered to determine where investments should take place as well as intensity of production.

2. Eliminate costly risks in drilling

Drilling is an expensive and risky investment, and applying AI in the operational planning and execution stages can significantly improve well planning, real-time drilling optimization, frictional drag estimation, and well cleaning predictions. Additionally, geoscientists can better assess variables such as the rate of penetration (ROP) improvement, well integrity, operational troubleshooting, drilling equipment condition recognition, real-time drilling risk recognition, and operational decision-making.

When drilling, machine-learning software takes into consideration a plethora of factors, such as seismic vibrations, thermal gradients, and strata permeability, along with more traditional data such as pressure differentials. AI can help optimize drilling operations by driving decisions such as direction and speed in real time, and it can predict failure of equipment such as semi-submersible pumps (ESPs) to reduce unplanned downtime and equipment costs.

3. Well reservoir facility management

Wells, reservoirs, and facility management includes integration of multiple disciplines: reservoir engineering, geology, production technology, petro physics, operations, and seismic interpretation. AI can help to create tools that allow asset teams to build professional understanding and identify opportunities to improve operational performance.

AI techniques can also be applied in other activities such as reservoir characterization, modeling and     field surveillance. Fuzzy logic, artificial neural networks and expert systems are used extensively across the industry to accurately characterize reservoirs in order to attain optimum production level.

Today, AI systems form the backbone of digital oil field (DOF) concepts and implementations. However, there is still great potential for new ways to optimize field development and production costs, prolong field life, and increase the recovery factor.

4. Predictive maintenance

Today, artificial intelligence is taking the industry by storm. AI-powered software and sensor hardware enables us to use very large amounts of data to gain real-time responses on the best future course of action. With predictive analytics and cognitive security, for example, oil and gas companies can operate equipment safely and securely while receiving recommendations on how to avoid future equipment failure or mediate potential security breaches.

5. Oil and gas well surveying and inspections

Drones have been part of the oil and gas industry since 2013, when ConocoPhillips used the Boeing ScanEagle drone in trials in the Chukchi Sea.  In June 2014, the Federal Aviation Administration (FAA) issued the first commercial permit for drone use over United States soil to BP, allowing the company to survey pipelines, roads, and equipment in Prudhoe Bay, Alaska. In January, Sky-Futures completed the first drone inspection in the Gulf of Mexico.

While drones are primarily used in the midstream sector, they can be applied to almost every aspect of the industry, including land surveying and mapping, well and pipeline inspections, and security. Technology is being developed to enable drones to detect early methane leaks. In addition, one day, drones could be used to find oil and gas reservoirs underlying remote uninhabited regions, from the comfort of a warm office.

6. Remote logistics

As logistics to offshore locations is always a challenge, AI-enhanced drones can be used to deliver materials to remote offshore locations.

Current adoption of AI

Chevron is currently using AI to identify new well locations and simulation candidates in California. By using AI software to analyze the company’s large collection of historical well performance data, the company is drilling in better locations and has seen production rise 30% over conventional methods. Chevron is also using predictive models to analyze the performance of thousands of pieces of rotating equipment to detect failures before they occur. By addressing problems before they become critical, Chevron has avoided unplanned shutdowns and lowered repair expenses. Increased production and lower costs have translated to more profit per well.

Future journey

Today’s oil and gas industry has been transformed by two industry downturns in one decade. Although adoption of new hard technology such as directional drilling and hydraulic fracturing (fracking) has helped, the oil and gas industry needs to continue to innovate in today’s low-price market to survive. AI has the potential to differentiate companies that thrive and those that are left behind.

The promise of AI is already being realized in the oil and gas industry. Early adopters are taking advantage of their position  to get a head start on the competition and protect their assets. The industry has always leveraged technology to adapt to change, and early adopters have always benefited the most. As competition in the oil and gas industry continues to heat up, companies cannot afford to be left behind. For those that understand and seize the opportunities inherent in adopting cognitive technologies, the future looks bright.

For more insight on advanced technology in the energy sector, see How Digital Transformation Is Refueling The Energy Industry.

Comments

Anoop Srivastava

About Anoop Srivastava

Anoop Srivastava is Senior Director of the Energy and Natural Resources Industries at SAP Value Engineering in Middle East and North Africa. He advises clients on their digital transformation strategies and helps them align their business strategy with IT strategy leveraging digital technology innovations such as the Internet of Things, Big Data, Advanced Analytics, Cloud etc. He has 21+ years of work experience spanning across Oil& Gas Industry, Business Consulting, Industry Value Advisory and Digital Transformation.