Sections

Preparing Today’s Digital Disruptors To Be Tomorrow’s Leaders

Rob Enslin

Today’s youth are the digitally native, socially responsible men and women of the millennial generation which, according to a Deloitte human capital trends report, will constitute 75% of the workforce by 2025. This digital-savvy generation is poised to be the future disruptors in the digital economy.

Poised for greatness – yet challenged

While the youth of today have the potential to create a world unimaginable in the future, this generation faces challenges unlike any before it. The United Nations estimates that the number of unemployed youth around the world is close to 75 million. The rate varies globally, with economically struggling countries – such as Spain, Greece, Mexico, and many in the Middle East – having rates of 40% or higher.

The generation is also challenged by a skills gap. Right now, 73% of CEOs believe the lack of employees with key technical skills is a threat to their company’s growth. And they could be worried for good reason. Though many millennials are more educated than their parents or grandparents, the digital world is changing so rapidly that they now need new, evolving skill sets to improve employability. A World Economic Forum report estimates that 65% of children entering primary school today will work in completely new job types that don’t even yet exist.

How do we prepare youth for something that doesn’t exist yet? To ensure that this generation and those that follow have the right skills for the digital economy, organizations – whether they are public or private sector, or nonprofit – must take swift action.

Future-proofing our youth for a world unimaginable

The best approach to bridging the skills gap is with programs that focus on science, technology, engineering, and math (STEM). This generation may be expert at digital skills such as texting and creating social media brands, but the digital economy needs more than that. It needs problem-solvers, collaborators, and global thinkers. These skills, combined with education and training that are STEM-focused, will future-proof today’s workforce and ensure success as the world transforms digitally.

Many organizations around the globe are already undertaking the challenge of closing the wide skills gap that exists today. Generation is an intensive boot camp-style training program created by the McKinsey Social Initiative for youth in India, Kenya, Mexico, Spain, and the United States. This initiative integrates technical skills, behavioral skills, and mind-set skills so that boot campers can be fully job-ready and operate at peak productivity when entering the workforce. It boasts an impressive 90% placement rate for its graduates.

With a placement success rate of 70% or more, Academy Cube is another successful up-skill initiative. The program combines e-learning with job searches, using an intelligent matching system that identifies the skills and qualifications applicants are missing. Academy Cube then offers STEM-focused trainings to participants. Participants are connected with top European companies with employment opportunities.

The Global Entrepreneurship Summer School is a six-university initiative in Munich, Mexico City, and Shanghai. The program gathers young students from all over the world to form interdisciplinary teams that develop ideas with both a sustainable impact for society and a self-sustaining, profitable business model. Graduates, such as Taita Ngetich, have gone on to create successful businesses that have a significant economic and social impact on the communities where they live.

With the goal to integrate digital literacy in schools, Africa Code Week helps address the fact that nearly 35% of Africa’s youth lack the basic skills and technology training required to perform a job. Launched in the fall of 2015, close to 90,000 youth from 17 African countries have participated in more than 3,000 free coding workshops thus far. The students learned the skills they need to thrive in the 21st century digital workforce and become key contributors in Africa’s economic development.

BTECH is an initiative that combines a high school and college curriculum and credits with a strong focus on business and technology. Four programs with college and high school partners in New York, Boston, Oakland, and Vancouver prepare the youth who attend for the problems of tomorrow. 

Empowering the future workforce

The vision and purpose of SAP is to help the world run better and improve people’s lives. Today’s youth are no exception. We are committed to partnering with public and private organizations around the globe on programs to inspire today’s youth to become tomorrow’s digital disruptors and innovative entrepreneurs.

It is our responsibility – yours and mine – to give our youth every opportunity possible to create the world in which they want to live. They are indeed poised to become the next generation of corporate leaders, enterprise customers, and game-changing partners. But only if we provide them with the education they need today. The opportunity is there. We can all play a role to help prepare this generation for the future and a world that is unimaginable today.

For more expert knowledge on the changing workforce, see Our Digital Planet: Rise of The Digital Worker, The New Breed of Worker.

Comments

Rob Enslin

About Rob Enslin

Robert Enslin is a member of the SAP Executive Board and president of Global Customer Operations. He oversees sales and operations, SAP’s industry and cloud go-to-market modeling and execution, line of business solution management, and private equity. Previously, he was president of SAP North America as well as COO and executive vice president of Fast Growth Markets. He also served as chairman of SAP’s Fast Growth Markets Board and interim president and CEO for SAP Latin America. Prior to his global positions, he was president and CEO of SAP Japan; senior vice president and general manager of the Northeast region in North America; and held various roles in South Africa. Before joining SAP, Robert spent 11 years in various roles in the IT industry.

What Gen Z’s Arrival In The Workforce Means For Recruiters

Meghan M. Biro

Generation Z’s arrival in the workforce means some changes are on the horizon for recruiters. This cohort, born roughly from the mid-90s to approximately 2010, will be entering the workforce in four Hiring Generation Z words in 3d letters on an organization chart to illustrate finding young employees for your company or businessshort years, and you can bet recruiters and employers are already paying close attention to them.

This past fall, the first group of Gen Z youth began entering university. As Boomers continue to work well past traditional retirement age, four or five years from now, we’ll have an American workplace comprised of five generations.

Marketers and researchers have been obsessed with Millennials for over a decade; they are the most studied generation in history, and at 80 million strong they are an economic force to be reckoned with. HR pros have also been focused on all things related to attracting, motivating, mentoring, and retaining Millennials and now, once Gen Z is part of the workforce, recruiters will have to shift gears and also learn to work with this new, lesser-known generation. What are the important points they’ll need to know?

Northeastern University led the way with an extensive survey on Gen Z in late 2014 that included 16- through 19-year-olds and shed some light on key traits. Here are a few points from that study that recruiters should pay special attention to:

  • In general, the Generation Z cohort tends to be comprised of self-starters who have a strong desire to be autonomous. 63% of them report that they want colleges to teach them about being an entrepreneur.
  • 42% expect to be self-employed later in life, and this percentage was higher among minorities.
  • Despite the high cost of higher education, 81% of Generation Z members surveyed believe going to college is extremely important.
  • Generation Z has a lot of anxiety around debt, not only student loan debt, and they report they are very interested in being well-educated about finances.
  • Interpersonal interaction is highly important to Gen Z; just as Millennials before them, communicating via technology, including social media, is far less valuable to them than face-to-face communication.

Of course Gen Z is still very young, and their opinions as they relate to future employment may well change. For example, reality is that only 6.6% of the American workforce is self-employed, making it likely that only a small percentage of those expecting to be self-employed will be as well. The future in that respect is uncertain, and this group has a lot of learning to do and experiences yet ahead of them. However, when it comes to recruiting them, here are some things that might be helpful.

Generation Z is constantly connected

Like Millennials, Gen Z is a cohort of digital natives; they have had technology and the many forms of communication that affords since birth. They are used to instant access to information and, like their older Gen Y counterparts, they are continually processing information. Like Millennials, they prefer to solve their own problems, and will turn to YouTube or other video platforms for tutorials and to troubleshoot before asking for help. They also place great value on the reviews of their peers.

For recruiters, that means being ready to communicate on a wide variety of platforms on a continual basis. In order to recruit the top talent, you will have to be as connected as they are. You’ll need to keep up with their preferred networks, which will likely always be changing, and you’ll need to be transparent about what you want, as this generation is just as skeptical of marketing as the previous one.

Flexible schedules will continue to grow in importance

With the growth of part-time and contract workers, Gen Z will more than likely assume the same attitude their Millennial predecessors did when it comes to career expectations; they will not expect to remain with the same company for more than a few years. Flexible schedules will be a big part of their world as they move farther away from the traditional 9-to-5 job structure as work becomes more about life and less about work, and they’ll likely take on a variety of part time roles.

This preference for flexible work schedules means that business will happen outside of traditional work hours, and recruiters’ own work hours will, therefore, have to be just as flexible as their Gen Z targets’ schedule are. Companies will also have to examine what are in many cases decades old policies on acceptable work hours and business norms as they seek to not only attract, but to hire and retain this workforce with wholly different preferences than the ones that came before them. In many instances this is already happening, but I believe we will see this continue to evolve in the coming years.

Echoing the silent generation

Unlike Millennials, Gen Z came of age during difficult economic times; older Millennials were raised in the boom years. As Alex Williams points out in his recent New York Times piece, there’s an argument to be made that Generation Z is similar in attitude to the Silent Generation, growing up in a time of recession means they are more pragmatic and skeptical than their slightly older peers.

So how will this impact their behavior and desires as job candidates? Most of them are the product of Gen X parents, and stability will likely be very important to them. They may be both hard-working and fiscally savvy.

Sparks & Honey, in their much quoted slideshare on Gen Z, puts the number of high-schooler students who felt pressured by their parents to get jobs at 55 percent. Income and earning your keep are likely to be a big motivation for GenZ. Due to the recession, they also share the experience of living in multi-generational households, which may help considerably as they navigate a workplace comprised of several generations.

We don’t have all the answers

With its youngest members not yet in double digits, Gen Z is still maturing. There is obviously still a lot that we don’t know. This generation may have the opposite experience from the Millennials before them, where the older members experienced the booming economy, with some even getting a career foothold, before the collapse in 2008. Gen Z’s younger members may get to see a resurgent economy as they make their way out of college. Those younger members are still forming their personalities and views of the world; we would be presumptuous to think we have all of the answers already.

Generational analysis is part research, but also part theory testing. What we do know is that this second generation of digital natives, with its adaption of technology and comfort with the fast-paced changing world, will leave its mark on the American workforce as it makes its way in. As a result, everything about HR will change, in a big way. I wrote a post for my Forbes column recently where I said, “To recruit in this environment is like being part wizard, part astronaut, part diplomat, part guidance counselor,” and that’s very true.

As someone who loves change, I believe there has never been a more exciting time to be immersed in both the HR and the technology space. How do you feel about what’s on the horizon as it relates to the future of work and the impending arrival of Generation Z? I’d love to hear your thoughts.

Social tools are playing an increasingly important role in the workplace, especially for younger workers. Learn more: Adopting Social Software For Workforce Collaboration [Video].

The post What Gen Z’s Arrival In The Workforce Means For Recruiters appeared first on TalentCulture.

Image: Bigstock

Comments

How To Find The Talent You Need To Solve Challenges That Don’t Exist Yet

Mike Ettling

Although executives, analysts, and experts regularly try to predict where business is headed, the pace of innovation continues to exceed our expectations and imagination – especially when it comes to the world of work. Not only is technology impacting how we work and interact with each other, it’s transforming what we actually do for work.People walking on office concourse --- Image by © Igor E./Image Source/Corbis

Consider this: 2 billion jobs that exist today will disappear by 2030, according to futurist Thomas Frey. 2 billion. That’s roughly 50% of all of jobs worldwide. Cathy N. Davidson, Duke University professor, backed up this prediction in her book Now You See It, noting that 65% of children entering grade school this year will assume careers that don’t yet exist.

How can you possibly plan for a future workforce in jobs we can’t today know? And how can we develop talent when we don’t what our business will need not just in a few years, but even in a few months from now?

The future of talent acquisition relies on a broad footprint enabled by technology

The dynamic of workforce mix is changing. Employees no longer fit neatly into a box, nor should they. Salaried employees. Hourly employees. Contingent employees. These categories are more fluid than ever.

As digital businesses like Uber and Airbnb have shown, the understanding of “employee” is being redefined to include people who are not employed in the traditional sense or necessarily found on the company payroll. Rather, they are customers – on the other side of the seller-buyer relationship.

This new approach does not come without risk. Once the salary-wage relationship is removed from the employer-employee equation, the degree of employee loyalty and affinity seen in the past will slowly deteriorate. This forces CHROs to adjust how to relate to their existing workforce, and as important, their future employees and the people who influence them.

To create an employer brand that is more fluid and differentiated, CHROs should consider four things:

1. Your employer brand matters whether you’re actively recruiting or not.

Your employer brand needs to be an interaction that happens consistently – whether or not you are looking for new talent to join your team at the moment. And while the brand is not the sole purview of HR, HR is in the best position to shepherd it.

2. Expand your footprint to attract the best – before they’re even in the workforce.

In our age of social media, people follow brands they admire. But here’s a secret: This also brings an opportunity for following high-performing professionals within or outside the industry as well as students of all ages who are mastering valuable skills.

As I look at my two school-aged boys, I see firsthand how their new generation – Gen Z – will create their own definition of work and career fulfillment. Pretty soon, new graduates will be less concerned about job titles and more interested in working for companies with whom they feel an affinity. And increasingly, these interactions begin long before a job search.

3. Master the science of data – no PhD required.

How many of us groan when terms like “data science” and “number crunching” get mentioned? Today’s technology is taking away the fear factor; analysing data is becoming more intuitive and delivering more valuable insights. And increasingly, the machines are doing it for us, melting processes along the way.

4. Engage before Day 1.

HR today has the tools to become less about process and more about employee engagement. Onboarding is a perfect example of how, and why it matters.

Typically, onboarding has been about providing the physical things a new employee needs to start working: security badge, laptop, desk assignment, setup of a 401k account, and payroll deductions to name a just a few. None of this generally happens until the person walks through the door on Day 1.

Now we have the ability to make onboarding a social interaction, allowing a new employee the opportunity to be engaged before they even start. HR can provide the ability for new employees to connect with their manager, along with peers who can help them better understand and navigate the organisation, and potential mentors who can help them become successful – reducing the traditional ramp up process that can take months or longer.

In today’s digital economy, it’s less about the job and more about the talent. How are you preparing?

Want more future-focuses strategies that empower your workforce? See 6 Habits Of Mind That Will Impact The Future Of Work.

Comments

Mike Ettling

About Mike Ettling

Mike Ettling is the President of SAP SuccessFactors. He is an inspirational, visionary and highly dynamic leader with a wealth of leadership expertise, genuine business acumen, and an exemplary record driving multi-million dollar sales, marketing initiatives and transformation in a global context.

Unlock Your Digital Super Powers: How Digitization Helps Companies Be Live Businesses

Erik Marcade and Fawn Fitter

The Port of Hamburg handles 9 million cargo containers a year, making it one of the world’s busiest container ports. According to the Hamburg Port Authority (HPA), that volume doubled in the last decade, and it’s expected to at least double again in the next decade—but there’s no room to build new roads in the center of Hamburg, one of Germany’s historic cities. The port needed a way to move more freight more efficiently with the physical infrastructure it already has.

sap_Q216_digital_double_feature1_images1The answer, according to an article on ZDNet, was to digitize the processes of managing traffic into, within, and back out of the port. By deploying a combination of sensors, telematics systems, smart algorithms, and cloud data processing, the Port of Hamburg now collects and analyzes a vast amount of data about ship arrivals and delays, parking availability, ground traffic, active roadwork, and more. It generates a continuously updated model of current port conditions, then pushes the results through mobile apps to truck drivers, letting them know exactly when ships are ready to drop off or receive containers and optimizing their routes. According to the HPA, they are now on track to handle 25 million cargo containers a year by 2025 without further congestion or construction, helping shipping companies bring more goods and raw materials in less time to businesses and consumers all across Europe.

In the past, the port could only have solved its problem with backhoes and building permits—which, given the physical constraints, means the problem would have been unsolvable. Today, though, software and sensors are allowing it to improve processes and operations to a previously impossible extent. Big Data analysis, data mining, machine learning, artificial intelligence (AI), and other technologies have finally become sophisticated enough to identify patterns not just in terabytes but in petabytes of data, make decisions accordingly, and learn from the results, all in seconds. These technologies make it possible to digitize all kinds of business processes, helping organizations become more responsive to changing market conditions and more able to customize interactions to individual customer needs. Digitization also streamlines and automates these processes, freeing employees to focus on tasks that require a human touch, like developing innovative strategies or navigating office politics.

In short, digitizing business processes is key to ensuring that the business can deliver relevant, personalized responses to the market in real time. And that, in turn, is the foundation of the Live Business—a business able to coordinate multiple functions in order to respond to and even anticipate customer demand at any moment.

Some industries and organizations are on the verge of discovering how business process digitization can help them go live. Others have already started putting it into action: fine-tuning operations to an unprecedented level across departments and at every point in the supply chain, cutting costs while turbocharging productivity, and spotting trends and making decisions at speeds that can only be called superhuman.

Balancing Insight and Action

sap_Q216_digital_double_feature1_images2Two kinds of algorithms drive process digitization, says Chandran Saravana, senior director of advanced analytics at SAP. Edge algorithms operate at the point where customers or other end users interact directly with a sensor, application, or Internet-enabled device. These algorithms, such as speech or image recognition, focus on simplicity and accuracy. They make decisions based primarily on their ability to interpret input with precision and then deliver a result in real time.

Edge algorithms work in tandem with, and sometimes mature into, server-level algorithms, which report on both the results of data analysis and the analytical process itself. For example, the complex systems that generate credit scores assess how creditworthy an individual is, but they also explain to both the lender and the credit applicant why a score is low or high, what factors went into calculating it, and what an applicant can do to raise the score in the future. These server-based algorithms gather data from edge algorithms, learn from their own results, and become more accurate through continuous feedback. The business can then track the results over time to understand how well the digitized process is performing and how to improve it.

sap_Q216_digital_double_feature1_images5From Data Scarcity to a Glut

To operate in real time, businesses need an accurate data model that compares what’s already known about a situation to what’s happened in similar situations in the past to reach a lightning-fast conclusion about what’s most likely to happen next. The greatest barrier to this level of responsiveness used to be a lack of data, but the exponential growth of data volumes in the last decade has flipped this problem on its head. Today, the big challenge for companies is having too much data and not enough time or power to process it, says Saravana.

Even the smartest human is incapable of gathering all the data about a given situation, never mind considering all the possible outcomes. Nor can a human mind reach conclusions at the speed necessary to drive Live Business. On the other hand, carefully crafted algorithms can process terabytes or even petabytes of data, analyze patterns and detect outliers, arrive at a decision in seconds or less—and even learn from their mistakes (see How to Train Your Algorithm).

How to Train Your Algorithm 

The data that feeds process digitization can’t just simmer.
It needs constant stirring.

Successfully digitizing a business process requires you to build a model of the business process based on existing data. For example, a bank creates a customer record that includes not just the customer’s name, address, and date of birth but also the amount and date of the first deposit, the type of account, and so forth. Over time, as the customer develops a history with the bank and the bank introduces new products and services, customer records expand to include more data. Predictive analytics can then extrapolate from these records to reach conclusions about new customers, such as calculating the likelihood that someone who just opened a money market account with a large balance will apply for a mortgage in the next year.

Germany --- Germany, Lower Bavaria, Man training English Springer Spaniel in grass field --- Image by © Roman M‰rzinger/Westend61/CorbisTo keep data models accurate, you have to have enough data to ensure that your models are complete—that is, that they account for every possible predictable outcome. The model also has to push outlying data and exceptions, which create unpredictable outcomes, to human beings who can address their special circumstances. For example, an algorithm may be able to determine that a delivery will fail to show up as scheduled and can point to the most likely reasons why, but it can only do that based on the data it can access. It may take a human to start the process of locating the misdirected shipment, expediting a replacement, and establishing what went wrong by using business knowledge not yet included in the data model.

Indeed, data models need to be monitored for relevance. Whenever the results of a predictive model start to drift significantly from expectations, it’s time to examine the model to determine whether you need to dump old data that no longer reflects your customer base, add a new product or subtract a defunct one, or include a new variable, such as marital status or length of customer relationship that further refines your results.

It’s also important to remember that data doesn’t need to be perfect—and, in fact, probably shouldn’t be, no matter what you might have heard about the difficulty of starting predictive analytics with lower-quality data. To train an optical character recognition system to recognize and read handwriting in real time, for example, your samples of block printing and cursive writing data stores also have to include a few sloppy scrawls so the system can learn to decode them.

On the other hand, in a fast-changing marketplace, all the products and services in your database need consistent and unchanging references, even though outside the database, names, SKUs, and other identifiers for a single item may vary from one month or one order to the next. Without consistency, your business process model won’t be accurate, nor will the results.

Finally, when you’re using algorithms to generate recommendations to drive your business process, the process needs to include opportunities to test new messages and products against existing successful ones as well as against random offerings, Saravana says. Otherwise, instead of responding to your customers’ needs, your automated system will actually control their choices by presenting them with only a limited group of options drawn from those that have already received the most
positive results.

Any process is only as good as it’s been designed to be. Digitizing business processes doesn’t eliminate the possibility of mistakes and problems; but it does ensure that the mistakes and problems that arise are easy to spot and fix.

From Waste to Gold

Organizations moving to digitize and streamline core processes are even discovering new business opportunities and building new digitized models around them. That’s what happened at Hopper, an airfare prediction app firm in Cambridge, Massachusetts, which discovered in 2013 that it could mine its archives of billions of itineraries to spot historical trends in airfare pricing—data that was previously considered “waste product,” according to Hopper’s chief data scientist, Patrick Surry.

Hopper developed AI algorithms to correlate those past trends with current fares and to predict whether and when the price of any given flight was likely to rise or fall. The results were so accurate that Hopper jettisoned its previous business model. “We check up to 3 billion itineraries live, in real time, each day, then compare them to the last three to four years of historical airfare data,” Surry says. “When consumers ask our smartphone app whether they should buy now or wait, we can tell them, ‘yes, that’s a good deal, buy it now,’ or ‘no, we think that fare is too expensive, we predict it will drop, and we’ll alert you when it does.’ And we can give them that answer in less than one second.”

When consumers ask our smartphone app whether they should buy now or wait, we can tell them, ‘yes, that’s a good deal, buy it now’.

— Patrick Surry, chief data scientist, Hopper

While trying to predict airfare trends is nothing new, Hopper has told TechCrunch that it can not only save users up to 40% on airfares but it can also find them the lowest possible price 95% of the time. Surry says that’s all due to Hopper’s algorithms and data models.

The Hopper app launched on iOS in January 2015 and on Android eight months later. The company also switched in September 2015 from directing customers to external travel agencies to taking bookings directly through the app for a small fee. The Hopper app has already been downloaded to more than 2 million phones worldwide.

Surry predicts that we’ll soon see sophisticated chatbots that can start with vague requests from customers like “I want to go somewhere warm in February for less than $500,” proceed to ask questions that help users narrow their options, and finally book a trip that meets all their desired parameters. Eventually, he says, these chatbots will be able to handle millions of interactions simultaneously, allowing a wide variety of companies to reassign human call center agents to the handling of high-value transactions and exceptions to the rules built into the digitized booking process.

Port of Hamburg Lets the Machines Untangle Complexity

In early 2015, AI experts told Wired magazine that at least another 10 years would pass before a computer could best the top human players at Go, an ancient game that’s exponentially harder than chess. Yet before the end of that same year, Wired also reported that machine learning techniques drove Google’s AlphaGo AI to win four games out of five against one of the world’s top Go players. This feat proves just how good algorithms have become at managing extremely complex situations with multiple interdependent choices, Saravana points out.

The Port of Hamburg, which has digitized traffic management for an estimated 40,000 trucks a day, is a good example. In the past, truck drivers had to show up at the port to check traffic and parking message boards. If they arrived before their ships docked, they had to drive around or park in the neighboring residential area, contributing to congestion and air pollution while they waited to load or unload. Today, the HPA’s smartPORT mobile app tracks individual trucks using telematics. It customizes the information that drivers receive based on location and optimizes truck routes and parking in real time so drivers can make more stops a day with less wasted time and fuel.

The platform that drives the smartPORT app also uses sensor data in other ways: it tracks wind speed and direction and transmits the data to ship pilots so they can navigate in and out of the port more safely. It monitors emissions and their impact on air quality in various locations in order to adjust operations in real time for better control over environmental impact. It automatically activates streetlights for vehicle and pedestrian traffic, then switches them off again to save energy when the road is empty. This ability to coordinate and optimize multiple business functions on the fly makes the Port of Hamburg a textbook example of a Live Business.

Digitization Is Not Bounded by Industry

Other retail and B2B businesses of all types will inevitably join the Port of Hamburg in further digitizing processes, both in predictable ways and in those we can only begin to imagine.

sap_Q216_digital_double_feature1_images4Customer service, for example, is likely to be in the vanguard. Automated systems already feed information about customers to online and phone-based service representatives in real time, generate cross-selling and upselling opportunities based on past transactions, and answer customers’ frequently asked questions. Saravana foresees these systems becoming even more sophisticated, powered by AI algorithms that are virtually indistinguishable from human customer service agents in their ability to handle complex live interactions in real time.

In manufacturing and IT, Sven Bauszus, global vice president and general manager for predictive analytics at SAP, forecasts that sensors and predictive analysis will further automate the process of scheduling and performing maintenance, such as monitoring equipment for signs of failure in real time, predicting when parts or entire machines will need replacement, and even ordering replacements preemptively. Similarly, combining AI, sensors, data mining, and other technologies will enable factories to optimize workforce assignments in real time based on past trends, current orders, and changing market conditions.

Public health will be able to go live with technology that spots outbreaks of infectious disease, determines where medical professionals and support personnel are needed most and how many to send, and helps ensure that they arrive quickly with the right medication and equipment to treat patients and eradicate the root cause. It will also make it easier to track communicable illnesses, find people who are symptomatic, and recommend approaches to controlling the spread of the illness, Bauszus says.

He also predicts that the insurance industry, which has already begun to digitize its claims-handling processes, will refine its ability to sort through more claims in less time with greater accuracy and higher customer satisfaction. Algorithms will be better and faster at flagging claims that have a high probability of being fraudulent and then pushing them to claims inspectors for investigation. Simultaneously, the same technology will be able to identify and resolve valid claims in real time, possibly even cutting a check or depositing money directly into the insured person’s bank account within minutes.

Financial services firms will be able to apply machine learning, data mining, and AI to accelerate the process of rating borrowers’ credit and detecting fraud. Instead of filling out a detailed application, consumers might be able to get on-the-spot approval for a credit card or loan after inputting only enough information to be identified. Similarly, banks will be able to alert customers to suspicious transactions by text message or phone call—not within a day or an hour, as is common now, but in a minute or less.

Pitfalls and Possibilities

As intelligent as business processes can be programmed to be, there will always be a point beyond which they have to be supervised. Indeed, Saravana forecasts increasing regulation around when business processes can and can’t be digitized. Especially in areas involving data security, physical security, and health and safety, it’s one thing to allow machines to parse data and arrive at decisions to drive a critical business process, but it’s another thing entirely to allow them to act on those decisions without human oversight.

Automated, impersonal decision making is fine for supply chain automation, demand forecasting, inventory management, and other processes that need faster-than-human response times. In human-facing interactions, though, Saravana insists that it’s still best to digitize the part of the process that generates decisions, but leave it to a human to finalize the decision and decide how to put it into action.

“Any time the interaction is machine-to-machine, you don’t need a human to slow the process down,” he says. “But when the interaction involves a person, it’s much more tricky, because people have preferences, tastes, the ability to try something different, the ability to get fatigued—people are only statistically predictable.”

For example, technology has made it entirely possible to build a corporate security system that can gather information from cameras, sensors, voice recognition technology, and other IP-enabled devices. The system can then feed that information in a steady stream to an algorithm designed to identify potentially suspicious activity and act in real time to prevent or stop it while alerting the authorities. But what happens when an executive stays in the office unusually late to work on a presentation and the security system misidentifies her as an unauthorized intruder? What if the algorithm decides to lock the emergency exits, shut down the executive’s network access, or disable her with a Taser instead of simply sending an alert to the head of security asking what to do while waiting for the police to come?

sap_Q216_digital_double_feature1_images6The Risk Is Doing Nothing

The greater, if less dramatic, risk associated with digitizing business processes is simply failing to pursue it. It’s true that taking advantage of new digital technologies can be costly in the short term. There’s no question that companies have to invest in hardware, software, and qualified staff in order to prepare enormous data volumes for storage and analysis. They also have to implement new data sources such as sensors or Internet-connected devices, develop data models, and create and test algorithms to drive business processes that are currently analog. But as with any new technology, Saravana advises, it’s better to start small with a key use case, rack up a quick win with high ROI, and expand gradually than to drag your heels out of a failure to grasp the long-term potential.

The economy is digitizing rapidly, but not evenly. According to the McKinsey Global Institute’s December 2015 Digital America report, “The race to keep up with technology and put it to the most effective business use is producing digital ‘haves’ and ‘have-mores’—and the large, persistent gap between them is becoming a decisive factor in competition across the economy.” Companies that want to be among the have-mores need to commit to Live Business today. Failing to explore it now will put them on the wrong side of the gap and, in the long run, rack up a high price tag in unrealized efficiencies and missed opportunities. D!

Comments

Erik Marcade

About Erik Marcade

Erik Marcade is vice president of Advanced Analytics Products at SAP.

Tags:

5 Things Pokémon Go Taught Me About The Future Of Marketing

Madelyn Bayer

In case you haven’t been outside lately, there is a game taking over the millennial world right now – it’s called Pokémon Go.

Pokémon Go is a mobile app that you can download for iOS or Android. It’s free to download and play, but you have the option to use real money to buy in-game currency called PokéCoins. PokéCoins are used to purchase Pokéballs, the in-game item you need to catch Pokémon. The game uses your phone’s GPS to obtain your real-world location and augmented reality to bring up Pokémon characters on your screen, placing them on top of what you see in front of you. You—the digital you—can be customised with clothing, a faction (a “team” of players you can join), and other options, and you level up as you play.

On the surface, it’s a fun mobile game whose popularity is as intriguing as it is entertaining, but the superficial fun of the app has led to some real results: Developer Nintendo’s valuation has increased by an estimated $7.5 billion thanks to the game.

With results like that, this app is more than just a game, but a possible whole new realm of digital marketing. I started to research some of the key learnings from Pokémon go from a marketing perspective.

  1. Keep it small and simple. Gone are the days of needing to invest in large ad campaigns and advertising budgets. How many ads did we see leading up to the Pokémon Go launch? Very few. Pokémon Go didn’t invest much into advertising because it didn’t need it – either the ad executives in charge knew that the success of the app would be dependent on the marketing and viral factors listed here, or they didn’t expect the app to be a breakout hit. Regardless, the bottom line is that you don’t need a massive advertising budget to be a great marketer; you just need to be able to connect with people. Simplicity is key: Well-designed websites, e-commerce platforms, apps, and products should welcome new users and make it extremely easy for all to get involved (a lesson learned from breakout social media apps like Instagram and Snapchat).
  1. Have an agile digital platform. If you don’t have an agile digital marketing platform, you will miss the boat. This lesson has been proven time and time again in today’s digital world. The marketing game changes faster than most brands can keep up with – but being able to react quickly to trends like this is essential. Failing fast, minimum viable product, and agile: These are fast becoming key phrases in marketing teams’ vocabulary. Whether you are launching a social campaign, a consumer app, or a large-scale marketing operation, you must be able to stand it up quickly, test it, iterate on it, and send it out quickly.
  1. Loyalty is everything. If you want to increase customer loyalty, you must reward your users for continuing to invest in your product. Pokémon Go players get bonuses and incentives for levelling up, taking on gyms, catching new Pokémon, and even walking. The thrill of finding a rare Pokémon or winning an intense battle is enough to keep users yearning for more, even through the less-active parts of the game. There are definite rewards for continued investment, and that’s what keeps users playing—sometimes at the expense of productivity. When I think of the apps I know and love, this feature is nothing new, but it is very important. Gamification and loyalty are what keep me checking in on the highly addictive Air New Zealand app, for example, tuning in each Tuesday to watch the reverse auctions grab flight seats. Creating an individualised offering to every consumer is a hot trend for retailers right now, and it may also be part of the lessons learned from Pokémon Go.
  1. Appeal to the new generation of augmented reality and virtual-reality natives. Just as Gen Y are considered digital natives because they grew up with Internet access, the emerging gen Z will be known as AR and VR natives – what feels new to us now will be the new normal for kids growing up today. That’s not to say every brand should jump on the AR or VR bandwagon. But learn from what this game has taught us: Why is this game taking over the world? What insights can be adapted to generate positive brand engagement? We have evolved past the age of disruptive placement and are now in an era of behavioral targeting. One of the biggest challenges retailers face is knowing where their customers are at any given point in time. How do they reward their customers at the point of sale? Could the next wave of retail disruption be the gamification of shopping in a virtual reality?
  1. Privacy vs. Personalisation. That old chestnut. According to the SAP New Zealand Digital Experience Report 2016, New Zealanders rated having relevant offers without infringing on privacy amongst the highest consumer experience attributes when considering importance to digital experience satisfaction. This is interesting considering the backlash concerning the data Niantic is actively collecting on Pokémon Go users. It seems this hasn’t deterred users too much; the explanation for this may lie further in the New Zealand Digital Experience report research.

Arguably, Pokémon Go ticks all the boxes when we look at the consumer-rated digital experience attributes listed below – though there may be one exception if we consider recent user safety horror stories that are starting to come out.

So what has all this taught us? It links back to the report: The better the digital experience – defined by the above attributes – the happier consumers are to give up their data. The graphs below show consumers’ willingness to give up certain personal information, depending on whether or not they have a satisfactory digital experience. As we all know, data, or information, is the currency of the future, and lessons like these raise important takeaways for all digital marketers looking to gain real consumer insights and preferences.

If you haven’t already given Pokémon Go a go, see what all the fuss is about. Whether the game is a passing fad or the newest trend of digital marketing is yet to be determined, but it offers some interesting thoughts to consider before you launch your next campaign to consumers.

For more insight on where marketing is headed, see MarTech: The Future Of Digital Marketing.

Comments

Madelyn Bayer

About Madelyn Bayer

In my role as an Industry Value Associate at SAP Australia and New Zealand, I help organisations calculate and realise the value that new systems and technology will have on their operations. My role covers industries spanning utilities, public sector, consumer products and retail with a specific focus around customer engagement and commerce solutions and through this role I have developed a strong understanding of mega trends, cloud computing, enterprise software, the networked economy, Internet of Things, millennials and digital consumers. I am particularly passionate about creating sustainable solutions to solving world problems through technology.