Sections

People Analytics: Tapping Into A Powerful Resource

Meghan M. Biro

HR has relied on the use of data and analytics for years, but has only recently begun to embrace people analytics. Defined as using a data-driven approach to inform your people practices, programs and processes, people analytics is a powerful resource for HR.

After all, human capital is the source of all business success—it makes sense to analyze people to understand and even predict enterprise performance. Recently, HR departments have begun to leverage this powerful tool – and it’s changing the game for many businesses.

HR today is all about understanding people and predicting their actions and responses. And as Josh Bersin has said, “…People analytics as a business discipline has arrived. Our research now shows tremendous growth in this market, and a significant shift away from measuring HR toward a real focus on using people data to understand and predict business performance.”

Unfortunately, while we see more organizations beginning to talk about it, 92 percent of HR departments don’t believe they’re proficient in using people analytics. But that doesn’t have to be the case. Use the following tips to get started or build your proficiency in using people analytics in your organization.

Create a department for people analytics

To establish a solid foundation and use people analytics correctly you’ll need to create a department specifically devoted to this area—one completely separate from the traditional HR team. Why? Well, for the most part, the people with traditional HR backgrounds (or in closely related subjects) tend not to have the skill sets needed to perform sophisticated analyses. You’ll do well to draw from different talent pools. In fact, statisticians or mathematicians, not HR experts, are the best heads for these groups.

People analytics that start in the HR department affect every part of business, so it’s important that someone on the team understands the various units. The best people analytics teams draw talent from across the organization.

Gather the necessary data

The biggest problem companies face in the nascent area of people analytics in HR, besides the lack of adequately staffed departments, is the fragmented nature of their data. For people analytics (or any analytics) to be feasible, the team working on it needs access to a massive amount of data spread over many departments. Core HR information, separate payrolls, varying benefit packages and carriers, and financial information—these are just a few examples of data that was once kept separate but now must be combined for people analytics to function effectively.

An essential step in building a solid foundation in people analytics is developing the new information systems to bring together the disparate information required. People analysts need a single place where this information can be accessed and updated regularly. Developing such a system can be difficult and costly—but the potential ROI is immense.

Diligently maintain privacy and security

A major concern in using people analytics include the issues of privacy and security. Gathering all the data on employees in one place increases the risk of unqualified personnel accessing and using confidential information. As companies create people analytics departments, they’ll need to take steps to maintain the security of their data as well as their employees’ privacy. Additionally, any protected health information (PHI) thetas transmitted, stored, or received by the people analytics department will be subject to HIPAA compliance regulations.

Your company can take these steps to secure employee privacy and data:

  • Inform employees about data collection: Providing the option to “opt-in” will bolster a sense of security, privacy, and trust.
  • Carefully weigh the decision and who can access the info. Will you share employee activity data with team managers as well? You may need to train your analytics team to recognize Personally Identifiable Data, too.
  • Get away from the concept of “anonymity:” This may seem counterintuitive, but employees tend to believe even anonymous information can be traced back to its source. Telling employees that all data will be kept confidential has become more beneficial than promising anonymity.

Witness the benefits of people analytics

While the shift to people analytics is still in its early stages, the companies that have reported some pretty incredible advantages. Check out some of these applications and perks of people analytics provides:

  • Predicting employee retention: This has been one of the biggest uses of people analytics thus far. People analytics allows you to calculate retention risks. That information helps you understand why people are leaving and can contribute to predicting how many new hires you’ll need to secure.
  • Improving recruiting techniques: People analytics can discover new, more accurate qualifications to predict who will do well in what positions.
  • Improving revenue generation: This application spans people analytics across both the sales and HR departments. When these two departments pool their people analytics data, companies are finding ways to increase revenue generation drastically.
  • Predict absences: People analytics can even be used to predict which days people will most likely be absent, allowing HR teams to schedule extra staff ahead of time.

Employee productivity, workforce demographics, and talent development are other areas where people analytics may yield some fantastic insight.

Companies are just beginning to adapt people analytics into their HR departments, and many attempting to do so are discovering that it’s a challenging process. However, there are clear advantages behind the use of new form of Big Data. People analytics is likely to become pivotal to HR departments in the not-too-distant future.

For more on how this new technology is shaping the future of HR, see Joining The People Analytics Revolution.

The post People Analytics: Tapping into a Powerful Resource appeared first on TalentCulture.

Photo Credit: Universidad Politécnica de Madrid via Compfight cc

Comments

About Meghan M. Biro

Meghan Biro is talent management and HR tech brand strategist, analyst, digital catalyst, author and speaker. I am the founder and CEO of TalentCulture and host of the #WorkTrends live podcast and Twitter Chat. Over my career, I have worked with early-stage ventures and global brands like Microsoft, IBM and Google, helping them recruit and empower stellar talent. I have been a guest on numerous radio shows and online forums, and has been a featured speaker at global conferences. I am the co-author of The Character-Based Leader: Instigating a Revolution of Leadership One Person at a Time, and a regular contributor at Forbes, Huffington Post, Entrepreneur and several other media outlets. I also serve on advisory boards for leading HR and technology brands.

Data Analysts And Scientists More Important Than Ever For The Enterprise

Daniel Newman

The business world is now firmly in the age of data. Not that data wasn’t relevant before; it was just nowhere close to the speed and volume that’s available to us today. Businesses are buckling under the deluge of petabytes, exabytes, and zettabytes. Within these bytes lie valuable information on customer behavior, key business insights, and revenue generation. However, all that data is practically useless for businesses without the ability to identify the right data. Plus, if they don’t have the talent and resources to capture the right data, organize it, dissect it, draw actionable insights from it and, finally, deliver those insights in a meaningful way, their data initiatives will fail.

Rise of the CDO

Companies of all sizes can easily find themselves drowning in data generated from websites, landing pages, social streams, emails, text messages, and many other sources. Additionally, there is data in their own repositories. With so much data at their disposal, companies are under mounting pressure to utilize it to generate insights. These insights are critical because they can (and should) drive the overall business strategy and help companies make better business decisions. To leverage the power of data analytics, businesses need more “top-management muscle” specialized in the field of data science. This specialized field has lead to the creation of roles like Chief Data Officer (CDO).

In addition, with more companies undertaking digital transformations, there’s greater impetus for the C-suite to make data-driven decisions. The CDO helps make data-driven decisions and also develops a digital business strategy around those decisions. As data grows at an unstoppable rate, becoming an inseparable part of key business functions, we will see the CDO act as a bridge between other C-suite execs.

Data skills an emerging business necessity

So far, only large enterprises with bigger data mining and management needs maintain in-house solutions. These in-house teams and technologies handle the growing sets of diverse and dispersed data. Others work with third-party service providers to develop and execute their big data strategies.

As the amount of data grows, the need to mine it for insights becomes a key business requirement. For both large and small businesses, data-centric roles will experience endless upward mobility. These roles include data anlysts and scientists. There is going to be a huge opportunity for critical thinkers to turn their analytical skills into rapidly growing roles in the field of data science. In fact, data skills are now a prized qualification for titles like IT project managers and computer systems analysts.

Forbes cited the McKinsey Global Institute’s prediction that by 2018 there could be a massive shortage of data-skilled professionals. This indicates a disruption at the demand-supply level with the needs for data skills at an all-time high. With an increasing number of companies adopting big data strategies, salaries for data jobs are going through the roof. This is turning the position into a highly coveted one.

According to Harvard Professor Gary King, “There is a big data revolution. The big data revolution is that now we can do something with the data.” The big problem is that most enterprises don’t know what to do with data. Data professionals are helping businesses figure that out. So if you’re casting about for where to apply your skills and want to take advantage of one of the best career paths in the job market today, focus on data science.

I’m compensated by University of Phoenix for this blog. As always, all thoughts and opinions are my own.

For more insight on our increasingly connected future, see The $19 Trillion Question: Are You Undervaluing The Internet Of Things?

The post Data Analysts and Scientists More Important Than Ever For the Enterprise appeared first on Millennial CEO.

Comments

About Daniel Newman

Daniel Newman serves as the Co-Founder and CEO of EC3, a quickly growing hosted IT and Communication service provider. Prior to this role Daniel has held several prominent leadership roles including serving as CEO of United Visual. Parent company to United Visual Systems, United Visual Productions, and United GlobalComm; a family of companies focused on Visual Communications and Audio Visual Technologies. Daniel is also widely published and active in the Social Media Community. He is the Author of Amazon Best Selling Business Book "The Millennial CEO." Daniel also Co-Founded the Global online Community 12 Most and was recognized by the Huffington Post as one of the 100 Business and Leadership Accounts to Follow on Twitter. Newman is an Adjunct Professor of Management at North Central College. He attained his undergraduate degree in Marketing at Northern Illinois University and an Executive MBA from North Central College in Naperville, IL. Newman currently resides in Aurora, Illinois with his wife (Lisa) and his two daughters (Hailey 9, Avery 5). A Chicago native all of his life, Newman is an avid golfer, a fitness fan, and a classically trained pianist

When Good Is Good Enough: Guiding Business Users On BI Practices

Ina Felsheim

Image_part2-300x200In Part One of this blog series, I talked about changing your IT culture to better support self-service BI and data discovery. Absolutely essential. However, your work is not done!

Self-service BI and data discovery will drive the number of users using the BI solutions to rapidly expand. Yet all of these more casual users will not be well versed in BI and visualization best practices.

When your user base rapidly expands to more casual users, you need to help educate them on what is important. For example, one IT manager told me that his casual BI users were making visualizations with very difficult-to-read charts and customizing color palettes to incredible degrees.

I had a similar experience when I was a technical writer. One of our lead writers was so concerned with readability of every sentence that he was going through the 300+ page manuals (yes, they were printed then) and manually adjusting all of the line breaks and page breaks. (!) Yes, readability was incrementally improved. But now any number of changes–technical capabilities, edits, inserting larger graphics—required re-adjusting all of those manual “optimizations.” The time it took just to do the additional optimization was incredible, much less the maintenance of these optimizations! Meanwhile, the technical writing team was falling behind on new deliverables.

The same scenario applies to your new casual BI users. This new group needs guidance to help them focus on the highest value practices:

  • Customization of color and appearance of visualizations: When is this customization necessary for a management deliverable, versus indulging an OCD tendency? I too have to stop myself from obsessing about the font, line spacing, and that a certain blue is just a bit different than another shade of blue. Yes, these options do matter. But help these casual users determine when that time is well spent.
  • Proper visualizations: When is a spinning 3D pie chart necessary to grab someone’s attention? BI professionals would firmly say “NEVER!” But these casual users do not have a lot of depth on BI best practices. Give them a few simple guidelines as to when “flash” needs to subsume understanding. Consider offering a monthly one-hour Lunch and Learn that shows them how to create impactful, polished visuals. Understanding if their visualizations are going to be viewed casually on the way to a meeting, or dissected at a laptop, also helps determine how much time to spend optimizing a visualization. No, you can’t just mandate that they all read Tufte.
  • Predictive: Provide advanced analytics capabilities like forecasting and regression directly in their casual BI tools. Using these capabilities will really help them wow their audience with substance instead of flash.
  • Feature requests: Make sure you understand the motivation and business value behind some of the casual users’ requests. These casual users are less likely to understand the implications of supporting specific requests across an enterprise, so make sure you are collaborating on use cases and priorities for substantive requests.

By working with your casual BI users on the above points, you will be able to collectively understand when the absolute exact request is critical (and supports good visualization practices), and when it is an “optimization” that may impact productivity. In many cases, “good” is good enough for the fast turnaround of data discovery.

Next week, I’ll wrap this series up with hints on getting your casual users to embrace the “we” not “me” mentality.

Read Part One of this series: Changing The IT Culture For Self-Service BI Success.

Follow me on Twitter: @InaSAP

Comments

The Future of Cybersecurity: Trust as Competitive Advantage

Justin Somaini and Dan Wellers

 

The cost of data breaches will reach US$2.1 trillion globally by 2019—nearly four times the cost in 2015.

Cyberattacks could cost up to $90 trillion in net global economic benefits by 2030 if cybersecurity doesn’t keep pace with growing threat levels.

Cyber insurance premiums could increase tenfold to $20 billion annually by 2025.

Cyberattacks are one of the top 10 global risks of highest concern for the next decade.


Companies are collaborating with a wider network of partners, embracing distributed systems, and meeting new demands for 24/7 operations.

But the bad guys are sharing intelligence, harnessing emerging technologies, and working round the clock as well—and companies are giving them plenty of weaknesses to exploit.

  • 33% of companies today are prepared to prevent a worst-case attack.
  • 25% treat cyber risk as a significant corporate risk.
  • 80% fail to assess their customers and suppliers for cyber risk.

The ROI of Zero Trust

Perimeter security will not be enough. As interconnectivity increases so will the adoption of zero-trust networks, which place controls around data assets and increases visibility into how they are used across the digital ecosystem.


A Layered Approach

Companies that embrace trust as a competitive advantage will build robust security on three core tenets:

  • Prevention: Evolving defensive strategies from security policies and educational approaches to access controls
  • Detection: Deploying effective systems for the timely detection and notification of intrusions
  • Reaction: Implementing incident response plans similar to those for other disaster recovery scenarios

They’ll build security into their digital ecosystems at three levels:

  1. Secure products. Security in all applications to protect data and transactions
  2. Secure operations. Hardened systems, patch management, security monitoring, end-to-end incident handling, and a comprehensive cloud-operations security framework
  3. Secure companies. A security-aware workforce, end-to-end physical security, and a thorough business continuity framework

Against Digital Armageddon

Experts warn that the worst-case scenario is a state of perpetual cybercrime and cyber warfare, vulnerable critical infrastructure, and trillions of dollars in losses. A collaborative approach will be critical to combatting this persistent global threat with implications not just for corporate and personal data but also strategy, supply chains, products, and physical operations.


Download the executive brief The Future of Cybersecurity: Trust as Competitive Advantage.


Comments

Tags:

How Digital Transformation Is Rewriting Business Models

Ginger Shimp

Everybody knows someone who has a stack of 3½-inch floppies in a desk drawer “just in case we may need them someday.” While that might be amusing, the truth is that relatively few people are confident that they’re making satisfactory progress on their digital journey. The boundaries between the digital and physical worlds continue to blur — with profound implications for the way we do business. Virtually every industry and every enterprise feels the effects of this ongoing digital transformation, whether from its own initiative or due to pressure from competitors.

What is digital transformation? It’s the wholesale reimagining and reinvention of how businesses operate, enabled by today’s advanced technology. Businesses have always changed with the times, but the confluence of technologies such as mobile, cloud, social, and Big Data analytics has accelerated the pace at which today’s businesses are evolving — and the degree to which they transform the way they innovate, operate, and serve customers.

The process of digital transformation began decades ago. Think back to how word processing fundamentally changed the way we write, or how email transformed the way we communicate. However, the scale of transformation currently underway is drastically more significant, with dramatically higher stakes. For some businesses, digital transformation is a disruptive force that leaves them playing catch-up. For others, it opens to door to unparalleled opportunities.

Upending traditional business models

To understand how the businesses that embrace digital transformation can ultimately benefit, it helps to look at the changes in business models currently in process.

Some of the more prominent examples include:

  • A focus on outcome-based models — Open the door to business value to customers as determined by the outcome or impact on the customer’s business.
  • Expansion into new industries and markets — Extend the business’ reach virtually anywhere — beyond strictly defined customer demographics, physical locations, and traditional market segments.
  • Pervasive digitization of products and services — Accelerate the way products and services are conceived, designed, and delivered with no barriers between customers and the businesses that serve them.
  • Ecosystem competition — Create a more compelling value proposition in new markets through connections with other companies to enhance the value available to the customer.
  • Access a shared economy — Realize more value from underutilized sources by extending access to other business entities and customers — with the ability to access the resources of others.
  • Realize value from digital platforms — Monetize the inherent, previously untapped value of customer relationships to improve customer experiences, collaborate more effectively with partners, and drive ongoing innovation in products and services,

In other words, the time-tested assumptions about how to identify customers, develop and market products and services, and manage organizations may no longer apply. Every aspect of business operations — from forecasting demand to sourcing materials to recruiting and training staff to balancing the books — is subject to this wave of reinvention.

The question is not if, but when

These new models aren’t predictions of what could happen. They’re already realities for innovative, fast-moving companies across the globe. In this environment, playing the role of late adopter can put a business at a serious disadvantage. Ready or not, digital transformation is coming — and it’s coming fast.

Is your company ready for this sea of change in business models? At SAP, we’ve helped thousands of organizations embrace digital transformation — and turn the threat of disruption into new opportunities for innovation and growth. We’d relish the opportunity to do the same for you. Our Digital Readiness Assessment can help you see where you are in the journey and map out the next steps you’ll need to take.

Up next I’ll discuss the impact of digital transformation on processes and work. Until then, you can read more on how digital transformation is impacting your industry.

Comments

About Ginger Shimp

With more than 20 years’ experience in marketing, Ginger Shimp has been with SAP since 2004. She has won numerous awards and honors at SAP, including being designated “Top Talent” for two consecutive years. Not only is she a Professional Certified Marketer with the American Marketing Association, but she's also earned her Connoisseur's Certificate in California Reds from the Chicago Wine School. She holds a bachelor's degree in journalism from the University of San Francisco, and an MBA in marketing and managerial economics from the Kellogg Graduate School of Management at Northwestern University. Personally, Ginger is the proud mother of a precocious son and happy wife of one of YouTube's 10 EDU Gurus, Ed Shimp.