Sections

7 First Steps To Increase Employee Engagement

Amy Cowen

As competition for talent heats up, one of the greatest challenges companies face today revolves around employee engagement. Employees are the core of every business. Even when all the strategic pieces of your business fit together, disgruntled and uninterested employees will lead to deep problems.

These questions that will lead to an understanding of your employee’s mindset:

  • Are your employees passionate about their jobs?
  • Do they come to the office happy and eager to work?

If your answer to either of those questions is no, or if you are unsure about the answer, you probably have disengaged employees. If you are coming to the sober realization that you do indeed have a disengaged workforce, there are simple steps you can take now to fix the problem.

Here are 7 first steps to increase employee engagement:

1. Keep employees in the loop

There is not much worse for morale than to keep employees guessing as to what is going on within your company. Schedule regular emails or, if you have the time, meetings in which you communicate openly with your employees. Keep them in the loop about current developments in the company, results and tasks ahead.

If you don’t, they will come to their own conclusions, which will probably be defeatist and unfounded. If you share information openly, they will feel included and appreciated instead, and are more likely to feel connected to their jobs and how they contribute to the overall company’s success.

2. Create an environment where input is appreciated

If you commandeer the decision-making process and don’t ask for input or ideas from your employees, they will not feel it is safe to contribute or to voice an opinion. This might hurt you the long run, as there is a possibility that a ground-breaking idea is not in your head, but in the minds of your subordinates.

Make sure to create a working environment in which everyone can speak their mind. Ask employees for feedback, during, and after the completion of, a project. Make sure to maintain an open-door policy and encourage people to drop in for a chat – as long as it is work-related.

3. Provide guidance

If you notice a member of your team is struggling with their assignment, show you care by offering help. This doesn’t have to be anything substantial; often a word of encouragement will be more than enough to help them power through. You might know something they don’t; a way to sort through some date quicker, or a more elegant way to write a particularly difficult draft – offer advice freely. Your employees will be grateful and know for a fact that you appreciate their hard work and are willing to help where you can.

4. Work-life balance – you can make a difference

Most people don’t live and breathe for their job; for many it’s a means to an end. A woman who works in your accounting office probably did a million tasks before she clocked in this morning, and she will do more after she clocks out. Make sure you provide some basic services on the premises that will make your employees’ lives easier. On-site laundry, dry cleaners, a convenience store or a day-care center will enable your employees to save valuable time they can then spend being a more productive member of your workforce.

5. Don’t make advancement talk taboo – always try to promote from within

Nobody wants to spend their life working as a junior developer or an assistant to the marketing manager. People have aspirations, and you should take them into account. Many managers don’t like to talk to their employees about their ambitions and desires. Don’t make the same mistake. Know what your employees are after and set them up for success.

It is important they can picture their future in your company. Then they will invest themselves more and will fight alongside you to grow and expand the business; it’s quite straightforward as people are more willing to sacrifice for something they have a stake in. This is why promoting from within is important. Whenever possible, screen your existing employees to see if you can find a fit for an important position. Give your own people a chance before hiring from outside.

6. Make constructive criticism a learning tool

No employee is flawless. When the time comes to criticize someone’s work, be tactful and respectful. Let them know they are neither the first nor the last to make a mistake, and be clear about what went wrong in the process. Review the work beforehand and have a ready solution for every mistake.

Brainstorm with the employee about how to avoid such mistakes in the future and turn the entire unpleasant conversation into a learning experience. They will be grateful you took the time to teach them something, instead of resorting to threats and bullying.

7. Compensate generously

When all’s said and done, you can be the best manager in the world and still your employees won’t be happy if they feel their work is not compensated accordingly. If you want to keep your star performers, check out what their colleagues are earning in your local area. The goal is to pay more in order to discourage them from moving on simply because of better monetary compensation. Keep in mind, while money is a motivator, it is not a powerful one. Underappreciated employees are more likely to leave you, regardless of the amount of money you give them.

Building an engaged work culture doesn’t happen overnight; these are the first steps to help your employees forge stronger ties to their job and to your company. Most of them don’t cost much more than being considerate; they simply require you to be more flexible and ready to step in and lead.

For more insight on how to retain top talent, see Employee Engagement Vs. Satisfaction: What Is The Difference?

Did you like today’s post? If so you’ll love our frequent newsletter! Sign up HERE and receive The Switch and Shift Change Playbook, by Shawn Murphy, as our thanks to you!

The post 7 First Steps to Increase Employee Engagement appeared first on Switch & Shift.

Comments

How To Design Your Company’s Digital Transformation

Sam Yen

The September issue of the Harvard Business Review features a cover story on design thinking’s coming of age. We have been applying design thinking within SAP for the past 10 years, and I’ve witnessed the growth of this human-centered approach to innovation first hand.

Design thinking is, as the HBR piece points out, “the best tool we have for … developing a responsive, flexible organizational culture.”

This means businesses are doing more to learn about their customers by interacting directly with them. We’re seeing this change in our work on d.forum — a community of design thinking champions and “disruptors” from across industries.

Meanwhile, technology is making it possible to know exponentially more about a customer. Businesses can now make increasingly accurate predictions about customers’ needs well into the future. The businesses best able to access and pull insights from this growing volume of data will win. That requires a fundamental change for our own industry; it necessitates a digital transformation.

So, how do we design this digital transformation?

It starts with the customer and an application of design thinking throughout an organization – blending business, technology and human values to generate innovation. Business is already incorporating design thinking, as the HBR cover story shows. We in technology need to do the same.

Design thinking plays an important role because it helps articulate what the end customer’s experience is going to be like. It helps focus all aspects of the business on understanding and articulating that future experience.

Once an organization is able to do that, the insights from that consumer experience need to be drawn down into the business, with the central question becoming: What does this future customer experience mean for us as an organization? What barriers do we need to remove? Do we need to organize ourselves differently? Does our process need to change – if it does, how? What kind of new technology do we need?

Then an organization must look carefully at roles within itself. What does this knowledge of the end customer’s future experience mean for an individual in human resources, for example, or finance? Those roles can then be viewed as end experiences unto themselves, with organizations applying design thinking to learn about the needs inherent to those roles. They can then change roles to better meet the end customer’s future needs. This end customer-centered approach is what drives change.

This also means design thinking is more important than ever for IT organizations.

We, in the IT industry, have been charged with being responsive to business, using technology to solve the problems business presents. Unfortunately, business sometimes views IT as the organization keeping the lights on. If we make the analogy of a store: business is responsible for the front office, focused on growing the business where consumers directly interact with products and marketing; while the perception is that IT focuses on the back office, keeping servers running and the distribution system humming. The key is to have business and IT align to meet the needs of the front office together.

Remember what I said about the growing availability of consumer data? The business best able to access and learn from that data will win. Those of us in IT organizations have the technology to make that win possible, but the way we are seen and our very nature needs to change if we want to remain relevant to business and participate in crafting the winning strategy.

We need to become more front office and less back office, proving to business that we are innovation partners in technology.

This means, in order to communicate with businesses today, we need to take a design thinking approach. We in IT need to show we have an understanding of the end consumer’s needs and experience, and we must align that knowledge and understanding with technological solutions. When this works — when the front office and back office come together in this way — it can lead to solutions that a company could otherwise never have realized.

There’s different qualities, of course, between front office and back office requirements. The back office is the foundation of a company and requires robustness, stability, and reliability. The front office, on the other hand, moves much more quickly. It is always changing with new product offerings and marketing campaigns. Technology must also show agility, flexibility, and speed. The business needs both functions to survive. This is a challenge for IT organizations, but it is not an impossible shift for us to make.

Here’s the breakdown of our challenge.

1. We need to better understand the real needs of the business.

This means learning more about the experience and needs of the end customer and then translating that information into technological solutions.

2. We need to be involved in more of the strategic discussions of the business.

Use the regular invitations to meetings with business as an opportunity to surface the deeper learning about the end consumer and the technology solutions that business may otherwise not know to ask for or how to implement.

The IT industry overall may not have a track record of operating in this way, but if we are not involved in the strategic direction of companies and shedding light on the future path, we risk not being considered innovation partners for the business.

We must collaborate with business, understand the strategic direction and highlight the technical challenges and opportunities. When we do, IT will become a hybrid organization – able to maintain the back office while capitalizing on the front office’s growing technical needs. We will highlight solutions that business could otherwise have missed, ushering in a digital transformation.

Digital transformation goes beyond just technology; it requires a mindset. See What It Really Means To Be A Digital Organization.

This story originally appeared on SAP Business Trends.

Top image via Shutterstock

Comments

Sam Yen

About Sam Yen

Sam Yen is the Chief Design Officer for SAP and the Managing Director of SAP Labs Silicon Valley. He is focused on driving a renewed commitment to design and user experience at SAP. Under his leadership, SAP further strengthens its mission of listening to customers´ needs leading to tangible results, including SAP Fiori, SAP Screen Personas and SAP´s UX design services.

How Productive Could You Be With 45 Minutes More Per Day?

Michael Rander

Chances are that you are already feeling your fair share of organizational complexity when navigating your current company, but have you ever considered just how much time is spent across all companies on managing complexity? According to a recent study by the Economist Intelligence Unit (EIU), the global impact of complexity is mind-blowing – and not in a good way.

The study revealed that 38% of respondents spent 16%-25% of their time just dealing with organizational complexity, and 17% spent a staggering 26%-50% of their time doing so. To put that into more concrete numbers, in the US alone, if executives could cut their time spent managing complexity in half, an estimated 8.6 million hours could be saved a week. That corresponds to 45 minutes per executive per day.

The potential productivity impact of every executive having 45 minutes more to work every single day is clearly significant, and considering that 55% say that their organization is either very or extremely complex, why are we then not making the reduction of complexity one or our top of mind issues?

The problem is that identifying the sources of complexity is complex in of itself. Key sources of complexity include organizational size, executive priorities, pace of innovation, decision-making processes, vastly increasing amounts of data to manage, organizational structures, and the pure culture of the company. As a consequence, answers are not universal by any means.

That being said, the negative productivity impact of complexity, regardless of the specific source, is felt similarly across a very large segment of the respondents, with 55% stating that complexity has taken a direct toll on profitability over the past three years.  This is such a serious problem that 8% of respondents actually slowed down their company growth in order to deal with complexity.

So, if complexity oftentimes impacts productivity and subsequently profitability, what are some of the more successful initiatives that companies are taking to combat these effects? Among the answers from the EIU survey, the following were highlighted among the most likely initiatives to reduce complexity and ultimately increase productivity:

  • Making it a company-wide goal to reduce complexity means that the executive level has to live and breathe simplification in order for the rest of the organization to get behind it. Changing behaviors across the organization requires strong leadership, commitment, and change management, and these initiatives ultimately lead to improved decision-making processes, which was reported by respondents as the top benefit of reducing complexity. From a leadership perspective this also requires setting appropriate metrics for measuring outcomes, and for metrics, productivity and efficiency were by far the most popular choices amongst respondents though strangely collaboration related metrics where not ranking high in spite of collaboration being a high level priority.
  • Promoting a culture of collaboration means enabling employees and management alike to collaborate not only within their teams but also across the organization, with partners, and with customers. Creating cross-functional roles to facilitate collaboration was cited by 56% as the most helpful strategy in achieving this goal.
  • More than half (54%) of respondents found the implementation of new technology and tools to be a successful step towards reducing complexity and improving productivity. Enabling collaboration, reducing information overload, building scenarios and prognoses, and enabling real-time decision-making are all key issues that technology can help to reduce complexity at all levels of the organization.

While these initiatives won’t help everyone, it is interesting to see that more than half of companies believe that if they could cut complexity in half they could be at least 11%-25% more productive. That nearly one in five respondents indicated that they could be 26%-50% more productive is a massive improvement.

The question then becomes whether we can make complexity and its impact on productivity not only more visible as a key issue for companies to address, but (even more importantly) also something that every company and every employee should be actively working to reduce. The potential productivity gains listed by respondents certainly provide food for thought, and few other corporate activities are likely to gain that level of ROI.

Just imagine having 45 minutes each and every day for actively pursuing new projects, getting innovative, collaborating, mentoring, learning, reducing stress, etc. What would you do? The vision is certainly compelling, and the question is are we as companies, leaders, and employees going to do something about it?

To read more about the EIU study, please see:

Feel free to follow me on Twitter: @michaelrander

Comments

About Michael Rander

Michael Rander is the Global Research Director for Future Of Work at SAP. He is an experienced project manager, strategic and competitive market researcher, operations manager as well as an avid photographer, athlete, traveler and entrepreneur. Share your thoughts with Michael on Twitter @michaelrander.

Heroes in the Race to Save Antibiotics

Dr. David Delaney, Joseph Miles, Walt Ellenberger, Saravana Chandran, and Stephanie Overby

Last August, a woman arrived at a Reno, Nevada, hospital and told the attending doctors that she had recently returned from an extended trip to India, where she had broken her right thighbone two years ago. The woman, who was in her 70s, had subsequently developed an infection in her thigh and hip for which she was hospitalized in India several times. The Reno doctors recognized that the infection was serious—and the visit to India, where antibiotic-resistant bacteria runs rampant, raised red flags.

When none of the 14 antibiotics the physicians used to treat the woman worked, they sent a sample of the bacterium to the U.S. Centers for Disease Control (CDC) for testing. The CDC confirmed the doctors’ worst fears: the woman had a class of microbe called carbapenem-resistant Enterobacteriaceae (CRE). Carbapenems are a powerful class of antibiotics used as last-resort treatment for multidrug-resistant infections. The CDC further found that, in this patient’s case, the pathogen was impervious to all 26 antibiotics approved by the U.S. Food and Drug Administration (FDA).

In other words, there was no cure.

This is just the latest alarming development signaling the end of the road for antibiotics as we know them. In September, the woman died from septic shock, in which an infection takes over and shuts down the body’s systems, according to the CDC’s Morbidity and Mortality Weekly Report.

Other antibiotic options, had they been available, might have saved the Nevada woman. But the solution to the larger problem won’t be a new drug. It will have to be an entirely new approach to the diagnosis of infectious disease, to the use of antibiotics, and to the monitoring of antimicrobial resistance (AMR)—all enabled by new technology.

But that new technology is not being implemented fast enough to prevent what former CDC director Tom Frieden has nicknamed nightmare bacteria. And the nightmare is becoming scarier by the year. A 2014 British study calculated that 700,000 people die globally each year because of AMR. By 2050, the global cost of antibiotic resistance could grow to 10 million deaths and US$100 trillion a year, according to a 2014 estimate. And the rate of AMR is growing exponentially, thanks to the speed with which humans serving as hosts for these nasty bugs can move among healthcare facilities—or countries. In the United States, for example, CRE had been seen only in North Carolina in 2000; today it’s nationwide.

Abuse and overuse of antibiotics in healthcare and livestock production have enabled bacteria to both mutate and acquire resistant genes from other organisms, resulting in truly pan-drug resistant organisms. As ever-more powerful superbugs continue to proliferate, we are potentially facing the deadliest and most costly human-made catastrophe in modern times.

“Without urgent, coordinated action by many stakeholders, the world is headed for a post-antibiotic era, in which common infections and minor injuries which have been treatable for decades can once again kill,” said Dr. Keiji Fukuda, assistant director-general for health security for the World Health Organization (WHO).

Even if new antibiotics could solve the problem, there are obstacles to their development. For one thing, antibiotics have complex molecular structures, which slows the discovery process. Further, they aren’t terribly lucrative for pharmaceutical manufacturers: public health concerns call for new antimicrobials to be financially accessible to patients and used conservatively precisely because of the AMR issue, which reduces the financial incentives to create new compounds. The last entirely new class of antibiotic was introduced 30 year ago. Finally, bacteria will develop resistance to new antibiotics as well if we don’t adopt new approaches to using them.

Technology can play the lead role in heading off this disaster. Vast amounts of data from multiple sources are required for better decision making at all points in the process, from tracking or predicting antibiotic-resistant disease outbreaks to speeding the potential discovery of new antibiotic compounds. However, microbes will quickly adapt and resist new medications, too, if we don’t also employ systems that help doctors diagnose and treat infection in a more targeted and judicious way.

Indeed, digital tools can help in all four actions that the CDC recommends for combating AMR: preventing infections and their spread, tracking resistance patterns, improving antibiotic use, and developing new diagnostics and treatment.

Meanwhile, individuals who understand both the complexities of AMR and the value of technologies like machine learning, human-computer interaction (HCI), and mobile applications are working to develop and advocate for solutions that could save millions of lives.

Keeping an Eye Out for Outbreaks

Like others who are leading the fight against AMR, Dr. Steven Solomon has no illusions about the difficulty of the challenge. “It is the single most complex problem in all of medicine and public health—far outpacing the complexity and the difficulty of any other problem that we face,” says Solomon, who is a global health consultant and former director of the CDC’s Office of Antimicrobial Resistance.

Solomon wants to take the battle against AMR beyond the laboratory. In his view, surveillance—tracking and analyzing various data on AMR—is critical, particularly given how quickly and widely it spreads. But surveillance efforts are currently fraught with shortcomings. The available data is fragmented and often not comparable. Hospitals fail to collect the representative samples necessary for surveillance analytics, collecting data only on those patients who experience resistance and not on those who get better. Laboratories use a wide variety of testing methods, and reporting is not always consistent or complete.

Surveillance can serve as an early warning system. But weaknesses in these systems have caused public health officials to consistently underestimate the impact of AMR in loss of lives and financial costs. That’s why improving surveillance must be a top priority, says Solomon, who previously served as chair of the U.S. Federal Interagency Task Force on AMR and has been tracking the advance of AMR since he joined the U.S. Public Health Service in 1981.

A Collaborative Diagnosis

Ineffective surveillance has also contributed to huge growth in the use of antibiotics when they aren’t warranted. Strong patient demand and financial incentives for prescribing physicians are blamed for antibiotics abuse in China. India has become the largest consumer of antibiotics on the planet, in part because they are prescribed or sold for diarrheal diseases and upper respiratory infections for which they have limited value. And many countries allow individuals to purchase antibiotics over the counter, exacerbating misuse and overuse.

In the United States, antibiotics are improperly prescribed 50% of the time, according to CDC estimates. One study of adult patients visiting U.S. doctors to treat respiratory problems found that more than two-thirds of antibiotics were prescribed for conditions that were not infections at all or for infections caused by viruses—for which an antibiotic would do nothing. That’s 27 million courses of antibiotics wasted a year—just for respiratory problems—in the United States alone.

And even in countries where there are national guidelines for prescribing antibiotics, those guidelines aren’t always followed. A study published in medical journal Family Practice showed that Swedish doctors, both those trained in Sweden and those trained abroad, inconsistently followed rules for prescribing antibiotics.

Solomon strongly believes that, worldwide, doctors need to expand their use of technology in their offices or at the bedside to guide them through a more rational approach to antibiotic use. Doctors have traditionally been reluctant to adopt digital technologies, but Solomon thinks that the AMR crisis could change that. New digital tools could help doctors and hospitals integrate guidelines for optimal antibiotic prescribing into their everyday treatment routines.

“Human-computer interactions are critical, as the amount of information available on antibiotic resistance far exceeds the ability of humans to process it,” says Solomon. “It offers the possibility of greatly enhancing the utility of computer-assisted physician order entry (CPOE), combined with clinical decision support.” Healthcare facilities could embed relevant information and protocols at the point of care, guiding the physician through diagnosis and prescription and, as a byproduct, facilitating the collection and reporting of antibiotic use.

Cincinnati Children’s Hospital’s antibiotic stewardship division has deployed a software program that gathers information from electronic medical records, order entries, computerized laboratory and pathology reports, and more. The system measures baseline antimicrobial use, dosing, duration, costs, and use patterns. It also analyzes bacteria and trends in their susceptibilities and helps with clinical decision making and prescription choices. The goal, says Dr. David Haslam, who heads the program, is to decrease the use of “big gun” super antibiotics in favor of more targeted treatment.

While this approach is not yet widespread, there is consensus that incorporating such clinical-decision support into electronic health records will help improve quality of care, contain costs, and reduce overtreatment in healthcare overall—not just in AMR. A 2013 randomized clinical trial finds that doctors who used decision-support tools were significantly less likely to order antibiotics than those in the control group and prescribed 50% fewer broad-spectrum antibiotics.

Putting mobile devices into doctors’ hands could also help them accept decision support, believes Solomon. Last summer, Scotland’s National Health Service developed an antimicrobial companion app to give practitioners nationwide mobile access to clinical guidance, as well as an audit tool to support boards in gathering data for local and national use.

“The immediacy and the consistency of the input to physicians at the time of ordering antibiotics may significantly help address the problem of overprescribing in ways that less-immediate interventions have failed to do,” Solomon says. In addition, handheld devices with so-called lab-on-a-chip  technology could be used to test clinical specimens at the bedside and transmit the data across cellular or satellite networks in areas where infrastructure is more limited.

Artificial intelligence (AI) and machine learning can also become invaluable technology collaborators to help doctors more precisely diagnose and treat infection. In such a system, “the physician and the AI program are really ‘co-prescribing,’” says Solomon. “The AI can handle so much more information than the physician and make recommendations that can incorporate more input on the type of infection, the patient’s physiologic status and history, and resistance patterns of recent isolates in that ward, in that hospital, and in the community.”

Speed Is Everything

Growing bacteria in a dish has never appealed to Dr. James Davis, a computational biologist with joint appointments at Argonne National Laboratory and the University of Chicago Computation Institute. The first of a growing breed of computational biologists, Davis chose a PhD advisor in 2004 who was steeped in bioinformatics technology “because you could see that things were starting to change,” he says. He was one of the first in his microbiology department to submit a completely “dry” dissertation—that is, one that was all digital with nothing grown in a lab.

Upon graduation, Davis wanted to see if it was possible to predict whether an organism would be susceptible or resistant to a given antibiotic, leading him to explore the potential of machine learning to predict AMR.

As the availability of cheap computing power has gone up and the cost of genome sequencing has gone down, it has become possible to sequence a pathogen sample in order to detect its AMR resistance mechanisms. This could allow doctors to identify the nature of an infection in minutes instead of hours or days, says Davis.

Davis is part of a team creating a giant database of bacterial genomes with AMR metadata for the Pathosystems Resource Integration Center (PATRIC), funded by the U.S. National Institute of Allergy and Infectious Diseases to collect data on priority pathogens, such as tuberculosis and gonorrhea.

Because the current inability to identify microbes quickly is one of the biggest roadblocks to making an accurate diagnosis, the team’s work is critically important. The standard method for identifying drug resistance is to take a sample from a wound, blood, or urine and expose the resident bacteria to various antibiotics. If the bacterial colony continues to divide and thrive despite the presence of a normally effective drug, it indicates resistance. The process typically takes between 16 and 20 hours, itself an inordinate amount of time in matters of life and death. For certain strains of antibiotic-resistant tuberculosis, though, such testing can take a week. While physicians are waiting for test results, they often prescribe broad-spectrum antibiotics or make a best guess about what drug will work based on their knowledge of what’s happening in their hospital, “and in the meantime, you either get better,” says Davis, “or you don’t.”

At PATRIC, researchers are using machine-learning classifiers to identify regions of the genome involved in antibiotic resistance that could form the foundation for a “laboratory free” process for predicting resistance. Being able to identify the genetic mechanisms of AMR and predict the behavior of bacterial pathogens without petri dishes could inform clinical decision making and improve reaction time. Thus far, the researchers have developed machine-learning classifiers for identifying antibiotic resistance in Acinetobacter baumannii (a big player in hospital-acquired infection), methicillin-resistant Staphylococcus aureus (a.k.a. MRSA, a worldwide problem), and Streptococcus pneumoniae (a leading cause of bacterial meningitis), with accuracies ranging from 88% to 99%.

Houston Methodist Hospital, which uses the PATRIC database, is researching multidrug-resistant bacteria, specifically MRSA. Not only does resistance increase the cost of care, but people with MRSA are 64% more likely to die than people with a nonresistant form of the infection, according to WHO. Houston Methodist is investigating the molecular genetic causes of drug resistance in MRSA in order to identify new treatment approaches and help develop novel antimicrobial agents.

The Hunt for a New Class of Antibiotics

There are antibiotic-resistant bacteria, and then there’s Clostridium difficile—a.k.a. C. difficile—a bacterium that attacks the intestines even in young and healthy patients in hospitals after the use of antibiotics.

It is because of C. difficile that Dr. L. Clifford McDonald jumped into the AMR fight. The epidemiologist was finishing his work analyzing the spread of SARS in Toronto hospitals in 2004 when he turned his attention to C. difficile, convinced that the bacteria would become more common and more deadly. He was right, and today he’s at the forefront of treating the infection and preventing the spread of AMR as senior advisor for science and integrity in the CDC’s Division of Healthcare Quality Promotion. “[AMR] is an area that we’re funding heavily…insofar as the CDC budget can fund anything heavily,” says McDonald, whose group has awarded $14 million in contracts for innovative anti-AMR approaches.

Developing new antibiotics is a major part of the AMR battle. The majority of new antibiotics developed in recent years have been variations of existing drug classes. It’s been three decades since the last new class of antibiotics was introduced. Less than 5% of venture capital in pharmaceutical R&D is focused on antimicrobial development. A 2008 study found that less than 10% of the 167 antibiotics in development at the time had a new “mechanism of action” to deal with multidrug resistance. “The low-hanging fruit [of antibiotic development] has been picked,” noted a WHO report.

Researchers will have to dig much deeper to develop novel medicines. Machine learning could help drug developers sort through much larger data sets and go about the capital-intensive drug development process in a more prescriptive fashion, synthesizing those molecules most likely to have an impact.

McDonald believes that it will become easier to find new antibiotics if we gain a better understanding of the communities of bacteria living in each of us—as many as 1,000 different types of microbes live in our intestines, for example. Disruption to those microbial communities—our “microbiome”—can herald AMR. McDonald says that Big Data and machine learning will be needed to unlock our microbiomes, and that’s where much of the medical community’s investment is going.

He predicts that within five years, hospitals will take fecal samples or skin swabs and sequence the microorganisms in them as a kind of pulse check on antibiotic resistance. “Just doing the bioinformatics to sort out what’s there and the types of antibiotic resistance that might be in that microbiome is a Big Data challenge,” McDonald says. “The only way to make sense of it, going forward, will be advanced analytic techniques, which will no doubt include machine learning.”

Reducing Resistance on the Farm

Bringing information closer to where it’s needed could also help reduce agriculture’s contribution to the antibiotic resistance problem. Antibiotics are widely given to livestock to promote growth or prevent disease. In the United States, more kilograms of antibiotics are administered to animals than to people, according to data from the FDA.

One company has developed a rapid, on-farm diagnostics tool to provide livestock producers with more accurate disease detection to make more informed management and treatment decisions, which it says has demonstrated a 47% to 59% reduction in antibiotic usage. Such systems, combined with pressure or regulations to reduce antibiotic use in meat production, could also help turn the AMR tide.

Breaking Down Data Silos Is the First Step

Adding to the complexity of the fight against AMR is the structure and culture of the global healthcare system itself. Historically, healthcare has been a siloed industry, notorious for its scattered approach focused on transactions rather than healthy outcomes or the true value of treatment. There’s no definitive data on the impact of AMR worldwide; the best we can do is infer estimates from the information that does exist.

The biggest issue is the availability of good data to share through mobile solutions, to drive HCI clinical-decision support tools, and to feed supercomputers and machine-learning platforms. “We have a fragmented healthcare delivery system and therefore we have fragmented information. Getting these sources of data all into one place and then enabling them all to talk to each other has been problematic,” McDonald says.

Collecting, integrating, and sharing AMR-related data on a national and ultimately global scale will be necessary to better understand the issue. HCI and mobile tools can help doctors, hospitals, and public health authorities collect more information while advanced analytics, machine learning, and in-memory computing can enable them to analyze that data in close to real time. As a result, we’ll better understand patterns of resistance from the bedside to the community and up to national and international levels, says Solomon. The good news is that new technology capabilities like AI and new potential streams of data are coming online as an era of data sharing in healthcare is beginning to dawn, adds McDonald.

The ideal goal is a digitally enabled virtuous cycle of information and treatment that could save millions of dollars, lives, and perhaps even civilization if we can get there. D!

Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.


About the Authors:

Dr. David Delaney is Chief Medical Officer for SAP.

Joseph Miles is Global Vice President, Life Sciences, for SAP.

Walt Ellenberger is Senior Director Business Development, Healthcare Transformation and Innovation, for SAP.

Saravana Chandran is Senior Director, Advanced Analytics, for SAP.

Stephanie Overby is an independent writer and editor focused on the intersection of business and technology.

Comments

Tags:

4 Traits Set Digital Leaders Apart From 97% Of The Competition

Vivek Bapat

Like the classic parable of the blind man and the elephant, it seems everyone has a unique take on digital transformation. Some equate digital transformation with emerging technologies, placing their bets on as the Internet of Things, machine learning, and artificial intelligence. Others see it as a way to increase efficiencies and change business processes to accelerate product to market. Some others think of it is a means of strategic differentiation, innovating new business models for serving and engaging their customers. Despite the range of viewpoints, many businesses are still challenged with pragmatically evolving digital in ways that are meaningful, industry-disruptive, and market-leading.

According to a recent study of more than 3,000 senior executives across 17 countries and regions, only a paltry three percent of businesses worldwide have successfully completed enterprise-wide digital transformation initiatives, even though 84% of C-level executives ranks such efforts as “critically important” to the fundamental sustenance of their business.

The most comprehensive global study of its kind, the SAP Center for Business Insight report “SAP Digital Transformation Executive Study: 4 Ways Leaders Set Themselves Apart,” in collaboration with Oxford Economics, identified the challenges, opportunities, value, and key technologies driving digital transformation. The findings specifically analyzed the performance of “digital leaders” – those who are connecting people, things, and businesses more intelligently, more effectively, and creating punctuated change faster than their less advanced rivals.

After analyzing the data, it was eye-opening to see that only three percent of companies (top 100) are successfully realizing their full potential through digital transformation. However, even more remarkable was that these leaders have four fundamental traits in common, regardless of their region of operation, their size, their organizational structure, or their industry.

We distilled these traits in the hope that others in the early stages of transformation or that are still struggling to find their bearings can embrace these principles in order to succeed. Ultimately I see these leaders as true ambidextrous organizations, managing evolutionary and revolutionary change simultaneously, willing to embrace innovation – not just on the edges of their business, but firmly into their core.

Here are the four traits that set these leaders apart from the rest:

Trait #1: They see digital transformation as truly transformational

An overwhelming majority (96%) of digital leaders view digital transformation as a core business goal that requires a unified digital mindset across the entire enterprise. But instead of allowing individual functions to change at their own pace, digital leaders prefer to evolve the organization to help ensure the success of their digital strategies.

The study found that 56% of these businesses regularly shift their organizational structure, which includes processes, partners, suppliers, and customers, compared to 10% of remaining companies. Plus, 70% actively bring lines of business together through cross-functional processes and technologies.

By creating a firm foundation for transformation, digital leaders are further widening the gap between themselves and their less advanced competitors as they innovate business models that can mitigate emerging risks and seize new opportunities quickly.

Trait #2: They focus on transforming customer-facing functions first

Although most companies believe technology, the pace of change, and growing global competition are the key global trends that will affect everything for years to come, digital leaders are expanding their frame of mind to consider the influence of customer empowerment. Executives who build a momentum of breakthrough innovation and industry transformation are the ones that are moving beyond the high stakes of the market to the activation of complete, end-to-end customer experiences.

In fact, 92% of digital leaders have established sophisticated digital transformation strategies and processes to drive transformational change in customer satisfaction and engagement, compared to 22% of their less mature counterparts. As a result, 70% have realized significant or transformational value from these efforts.

Trait #3: They create a virtuous cycle of digital talent

There’s little doubt that the competition for qualified talent is fierce. But for nearly three-quarters of companies that demonstrate digital-transformation leadership, it is easier to attract and retain talent because they are five times more likely to leverage digitization to change their talent management efforts.

The impact of their efforts goes beyond empowering recruiters to identify best-fit candidates, highlight risk factors and hiring errors, and predict long-term talent needs. Nearly half (48%) of digital leaders understand that they must invest heavily in the development of digital skills and technology to drive revenue, retain productive employees, and create new roles to keep up with their digital maturity over the next two years, compared to 30% of all surveyed executives.

Trait #4: They invest in next-generation technology using a bimodal architecture

A couple years ago, Peter Sondergaard, senior vice president at Gartner and global head of research, observed that “CIOs can’t transform their old IT organization into a digital startup, but they can turn it into a bi-modal IT organization. Forty-five percent of CIOs state they currently have a fast mode of operation, and we predict that 75% of IT organizations will be bimodal in some way by 2017.”

Based on the results of the SAP Center for Business Insight study, Sondergaard’s prediction was spot on. As digital leaders dive into advanced technologies, 72% are using a digital twin of the conventional IT organization to operate efficiently without disruption while refining innovative scenarios to resolve business challenges and integrate them to stay ahead of the competition. Unfortunately, only 30% of less advanced businesses embrace this view.

Working within this bimodal architecture is emboldening digital leaders to take on incredibly progressive technology. For example, the study found that 50% of these firms are using artificial intelligence and machine learning, compared to seven percent of all respondents. They are also leading the adoption curve of Big Data solutions and analytics (94% vs. 60%) and the Internet of Things (76% vs. 52%).

Digital leadership is a practice of balance, not pure digitization

Most executives understand that digital transformation is a critical driver of revenue growth, profitability, and business expansion. However, as digital leaders are proving, digital strategies must deliver a balance of organizational flexibility, forward-looking technology adoption, and bold change. And clearly, this approach is paying dividends for them. They are growing market share, increasing customer satisfaction, improving employee engagement, and, perhaps more important, achieving more profitability than ever before.

For any company looking to catch up to digital leaders, the conversation around digital transformation needs to change immediately to combat three deadly sins: Stop investing in one-off, isolated projects hidden in a single organization. Stop viewing IT as an enabler instead of a strategic partner. Stop walling off the rest of the business from siloed digital successes.

As our study shows, companies that treat their digital transformation as an all-encompassing, all-sharing, and all-knowing business imperative will be the ones that disrupt the competitive landscape and stay ahead of a constantly evolving economy.

Follow me on twitter @vivek_bapat 

For more insight on digital leaders, check out the SAP Center for Business Insight report, conducted in collaboration with Oxford Economics,SAP Digital Transformation Executive Study: 4 Ways Leaders Set Themselves Apart.”

Comments

About Vivek Bapat

Vivek Bapat is the Senior Vice President, Global Head of Marketing Strategy and Thought Leadership, at SAP. He leads SAP's Global Marketing Strategy, Messaging, Positioning and related Thought Leadership initiatives.