Sections

All You Need To Know About HR Management: An Exclusive Interview With Jairo Fernandez

Savita V. Jayaram

Jairo Fernandez, Senior Vice President of HR - Asia Pacific and Japan at SAPThrough an exclusive conversation with Jairo Fernandez, senior vice president of HR in Asia Pacific and Japan at SAP, HR in Asia unravels different facets of human resources (HR). We discuss the challenges of creating an innovation-friendly workplace and learning culture; setting new standards, processes, and systems; integrating IT and HR to simplify people management;  grooming talent into future leaders; promoting women leadership in Asia, and a lot more.

How does your team combat attrition effectively as the global war for talent reaches its peak?

First of all, we look at our corporate culture. We know what makes our employees tick, and we know what will maintain their interest in being a part of our team: a strong company culture and a collaborative work environment. To retain and recruit new talent, we create and maintain a working environment where employees can have fun while enjoying the nature of their work and seeing that their contributions are meaningful. Furthermore, our organisation depends on innovation for growth and high performance. This depends on employee initiative, risk taking, and trust – all qualities that are nurtured by the organisation’s culture.

Tell us more about your workplace culture.

We have a diverse and inclusive culture that is critical to making SAP both a great place to work and a successful company. At SAP, we believe in constant workforce cultivation. By subscribing to the learning culture philosophy, everyone is a teacher and everyone is a learner. We have a well-articulated culture that is built around our five key behaviours that form the foundation of our business conduct and success.

Which Asia-Pacific market offers women the most opportunities? Do you think women are well-represented in leadership roles?

Across Asia Pacific and Japan, we aim to nurture a diverse and inclusive environment. We believe that that diversity is essential for enabling a culture of innovation, productivity, and creativity. In turn, SAP has committed itself to increasing its global number of women in management to 25% in 2017 (up from 18% in 2010). To ensure that SAP continues to further this aspect of diversity as part of our innovation strategy, SAP promotes women in leadership through professional development and mentoring programs, active retention of women in leadership roles, executive sponsorship, and ensuring that the shortlist for leadership positions is diverse.

One example of a professional development initiative is LEAP – the Leadership Excellence Acceleration Program. LEAP is a year-long targeted development journey focused on women who have the potential and desire to succeed in people management positions or reach new heights of excellence in people leadership. So far, we have around 90 women who are a part of this group. In Singapore, our efforts have been met with great success: 42% of our employees and 26% of our leaders are women.

What recent initiatives are encouraging better employee engagement?

In Singapore, we have just started the FitSAP initiative. This initiative encourages SAP employees to wear a wearable fitness device that can be synced to the FitSAP application – an app supported by wearable devices from FitBit, Jawbone, Withings, and MiFit. Data from individual devices is presented on a dashboard that tracks cumulative steps of all employees, average steps per day, distance covered, and participation rate. In addition, individual employees can also see how many steps they have taken this quarter and their rankings. Employees who clock an average of 8,000 steps per day for a quarter will earn 100 points in their flexible spending account.

With this initiative, we have managed to encourage healthy living and, of course, nurture friendly competition among employees who are trying to rank highest for steps taken per quarter!

How is your organization influencing diversity in the workplace?

Diversity is about leveraging the unique experiences and perspectives of all employees to better understand and serve our customers, drive innovation, and create a work environment where all employees are fully and passionately engaged to achieve our corporate objectives. We actively promote an environment that values differences in culture, race, ethnicity, age, gender, sexual orientation, gender identity or expression, and physical ability.

One example of how SAP influences diversity at the workplace is through our Autism at Work initiative. This initiative employs people with autism because we believe their strengths allow them to perform better at certain jobs. The ultimate goal of the program is to have 1% of the company’s total workforce represent people on the autism spectrum by 2020.

How is your company bridging the gender gap in pay parity and structure in APJ?

SAP is an equal opportunity employer in every respect. We rigorously track gender pay parity every year. Managers receive a report on pay-parity analysis before and after the salary review cycle, empowering them to make more-informed decisions.

At SAP, pay and rewards are based solely on merit. Our philosophy is to reward and recognize the right talent at the right time and secure a lasting connection between reward and performance. We put in an enormous amount of effort to make the reward mechanism transparent and ensure employees are aware of the criteria. Furthermore, variable pay is closely linked to individual performance and company’s performance which helps drive a high-performance culture and behavior among employees.

Take us through the HR interview selection and candidate screening process.

Our hiring policy is simple: We want the best talent who demonstrates long-term potential – not just a candidate who has the right set of skills and competencies, but also someone who brings the right attitude, values, and aspirations.

We have stringent interview selection and candidate screening processes for different levels within the organization. Beyond the role competencies, skills, technical evaluation, and people-manager interviews, we place emphasis on recruiting talents whose values and aspirations align with those of SAP. We believe cultural fit is a crucial ingredient for success in an employee’s career over the long run. Candidates who demonstrate the right potential are carefully handpicked by hiring managers and assessed for cultural fit.

How do you see emerging HR tech trends boosting the recruiting sphere and facilitating better payroll management?

We are helping businesses simplify the way they work to achieve business outcomes they never thought possible. With the use of technology for recruiting and payroll management, businesses have an opportunity to simplify their processes and increase their productivity. As for payroll, businesses can use solutions to streamline and centralize their payroll processes. Companies can realize the benefits and convenience of cloud delivery and the control of implementing and managing payroll in-house.

What people management practices in your region are motivating and empowering employees to be future leaders? 

To ensure a steady pipeline of senior leadership, we have established a robust talent and succession management process, where we identify potential successors to key positions early in their career and provide support, coaching, and opportunities to take on additional responsibility beyond their typical scope of work.We are also keen on developing its future leaders by providing a range of structured development programs to allow potential leaders to experience leadership positions.

For example, our Leadership Framework analyses the lifecycle of a leader at SAP. Developed in Asia Pacific Japan in 2014, the program increases the quality and standards of leadership practices. It serves as a useful resource for leaders across all levels to seek information on the topics around onboarding, leadership development, goal setting, talent acquisition, succession, promotion, and performance management.

With HR moving to the cloud, how do you envision the future in 2020 and beyond?

The exploding scale of computing, mobile, cloud, business networks, and connected technologies is rapidly changing the way we live and work. In just a few years, the Internet of Things is expected to have tens of billions of devices connected to one another as well as to cloud-based services. This change will provide opportunity and cause complexity.

HR teams that successfully navigate the complexity caused by the deluge of data will be the ones rewarded with a stronger bench of talent and a better-managed workforce. The key is to run simpler systems as they navigate through the changing dynamics of today’s workforce and embrace the future of work.

Tell us more about your employee leave policies and benefits offered in case of maternity/paternal leave?

Our employees go through several life milestones in their careers. So we want to make sure that the workplace is as family-oriented as possible. New mothers are entitled to 16 weeks of paid maternity leave and fathers are eligible for a week’s paid paternity leave. Beyond these fundamental pro-family policies, we also have a range of family-oriented initiatives. We host a Kids@Work day, where children are invited to the workplace during their school holidays to enjoy movie screenings, the arts, and sports competitions. This year, we also organised the SAP Beach Fiesta for our Singapore team that enabled the family and friends of SAP employees to join us for a fun-filled day at Sentosa Beach.

According to a recent news report, Japan’s talent mismatch ranks the most severe in Asia Pacific. What challenges are you encountering when hiring and retaining talent in Japan?

Japan is a tough talent market to crack, but hiring and talent retention is a key focus area across the world. Our mission is to identify and acquire the right talent who will help drive our company towards greater heights. To combat issues such as talent mismatch, we strongly believe in identifying the untapped potential of future managers and proactively groom them for future responsibilities. By grooming leaders in-house, we not only accelerate the development of our amazing talent and empower them to realize their full potentials, but we also ensure that these leaders are aligned with the company’s strategy.

We have also invested in our graduate hiring across many areas of our business in Japan to grow talent from within the company. This is proving to be a successful strategy for creating the internal bench strength needed to continue growing our business in Japan.

As one of the top 5 Great Places to Work in Singapore, what are your organization’s key strengths, challenges, and people management strategies that have helped your workforce upgrade their skills, making it to the top 5 spot?

A career at SAP is based on an interest in life-long learning, and we strive to provide a culture that nurtures it. It is our employees who fuel our innovation and ensure a sustainable future for the company, its customers, and society. This is precisely why we invest in and actively encourage talent development through challenging work assignments, collaboration with peers, and attending formalized programs geared at upgrading employees’ skill sets.

One example is the SAP Sales Academy program, which includes innovative classroom training at our world-class learning center in California; several months of on-the-job training and mentoring; and skills development in presentation delivery, teamwork, and knowledge of our offerings.

What is the future of HR in Asia Pacific and Japan?

Without a doubt, HR will move from being data-driven to being fact-driven. But at the core of it all, HR is essentially a people function. It is essential to balance business requirements with the need to engage your employees at the same time. Not only does HR need to be a trusted advisor and partner to the business function, but it should also serve as a promoter of talent across the company.

This article originally appeared on HR in Asia and was republished with the author’s permission.

Comments

Savita V. Jayaram

About Savita V. Jayaram

Savita V. Jayaram has been working as a journalist and writer for many international publications of repute. You can connect with her at savita@hrinasia.com. Feel free to share your feedback.

How To Design Your Company’s Digital Transformation

Sam Yen

The September issue of the Harvard Business Review features a cover story on design thinking’s coming of age. We have been applying design thinking within SAP for the past 10 years, and I’ve witnessed the growth of this human-centered approach to innovation first hand.

Design thinking is, as the HBR piece points out, “the best tool we have for … developing a responsive, flexible organizational culture.”

This means businesses are doing more to learn about their customers by interacting directly with them. We’re seeing this change in our work on d.forum — a community of design thinking champions and “disruptors” from across industries.

Meanwhile, technology is making it possible to know exponentially more about a customer. Businesses can now make increasingly accurate predictions about customers’ needs well into the future. The businesses best able to access and pull insights from this growing volume of data will win. That requires a fundamental change for our own industry; it necessitates a digital transformation.

So, how do we design this digital transformation?

It starts with the customer and an application of design thinking throughout an organization – blending business, technology and human values to generate innovation. Business is already incorporating design thinking, as the HBR cover story shows. We in technology need to do the same.

SCN SY.png

Design thinking plays an important role because it helps articulate what the end customer’s experience is going to be like. It helps focus all aspects of the business on understanding and articulating that future experience.

Once an organization is able to do that, the insights from that consumer experience need to be drawn down into the business, with the central question becoming: What does this future customer experience mean for us as an organization? What barriers do we need to remove? Do we need to organize ourselves differently? Does our process need to change – if it does, how? What kind of new technology do we need?

Then an organization must look carefully at roles within itself. What does this knowledge of the end customer’s future experience mean for an individual in human resources, for example, or finance? Those roles can then be viewed as end experiences unto themselves, with organizations applying design thinking to learn about the needs inherent to those roles. They can then change roles to better meet the end customer’s future needs. This end customer-centered approach is what drives change.

This also means design thinking is more important than ever for IT organizations.

We, in the IT industry, have been charged with being responsive to business, using technology to solve the problems business presents. Unfortunately, business sometimes views IT as the organization keeping the lights on. If we make the analogy of a store: business is responsible for the front office, focused on growing the business where consumers directly interact with products and marketing; while the perception is that IT focuses on the back office, keeping servers running and the distribution system humming. The key is to have business and IT align to meet the needs of the front office together.

Remember what I said about the growing availability of consumer data? The business best able to access and learn from that data will win. Those of us in IT organizations have the technology to make that win possible, but the way we are seen and our very nature needs to change if we want to remain relevant to business and participate in crafting the winning strategy.

We need to become more front office and less back office, proving to business that we are innovation partners in technology.

This means, in order to communicate with businesses today, we need to take a design thinking approach. We in IT need to show we have an understanding of the end consumer’s needs and experience, and we must align that knowledge and understanding with technological solutions. When this works — when the front office and back office come together in this way — it can lead to solutions that a company could otherwise never have realized.

There’s different qualities, of course, between front office and back office requirements. The back office is the foundation of a company and requires robustness, stability, and reliability. The front office, on the other hand, moves much more quickly. It is always changing with new product offerings and marketing campaigns. Technology must also show agility, flexibility, and speed. The business needs both functions to survive. This is a challenge for IT organizations, but it is not an impossible shift for us to make.

Here’s the breakdown of our challenge.

1. We need to better understand the real needs of the business.

This means learning more about the experience and needs of the end customer and then translating that information into technological solutions.

2. We need to be involved in more of the strategic discussions of the business.

Use the regular invitations to meetings with business as an opportunity to surface the deeper learning about the end consumer and the technology solutions that business may otherwise not know to ask for or how to implement.

The IT industry overall may not have a track record of operating in this way, but if we are not involved in the strategic direction of companies and shedding light on the future path, we risk not being considered innovation partners for the business.

We must collaborate with business, understand the strategic direction and highlight the technical challenges and opportunities. When we do, IT will become a hybrid organization – able to maintain the back office while capitalizing on the front office’s growing technical needs. We will highlight solutions that business could otherwise have missed, ushering in a digital transformation.

Digital transformation goes beyond just technology; it requires a mindset. See What It Really Means To Be A Digital Organization.

This story originally appeared on SAP Business Trends.

Top image via Shutterstock

Comments

Sam Yen

About Sam Yen

Sam Yen is the Chief Design Officer for SAP and the Managing Director of SAP Labs Silicon Valley. He is focused on driving a renewed commitment to design and user experience at SAP. Under his leadership, SAP further strengthens its mission of listening to customers´ needs leading to tangible results, including SAP Fiori, SAP Screen Personas and SAP´s UX design services.

How Productive Could You Be With 45 Minutes More Per Day?

Michael Rander

Chances are that you are already feeling your fair share of organizational complexity when navigating your current company, but have you ever considered just how much time is spent across all companies on managing complexity? According to a recent study by the Economist Intelligence Unit (EIU), the global impact of complexity is mind-blowing – and not in a good way.

The study revealed that 38% of respondents spent 16%-25% of their time just dealing with organizational complexity, and 17% spent a staggering 26%-50% of their time doing so. To put that into more concrete numbers, in the US alone, if executives could cut their time spent managing complexity in half, an estimated 8.6 million hours could be saved a week. That corresponds to 45 minutes per executive per day.

The potential productivity impact of every executive having 45 minutes more to work every single day is clearly significant, and considering that 55% say that their organization is either very or extremely complex, why are we then not making the reduction of complexity one or our top of mind issues?

The problem is that identifying the sources of complexity is complex in of itself. Key sources of complexity include organizational size, executive priorities, pace of innovation, decision-making processes, vastly increasing amounts of data to manage, organizational structures, and the pure culture of the company. As a consequence, answers are not universal by any means.

That being said, the negative productivity impact of complexity, regardless of the specific source, is felt similarly across a very large segment of the respondents, with 55% stating that complexity has taken a direct toll on profitability over the past three years.  This is such a serious problem that 8% of respondents actually slowed down their company growth in order to deal with complexity.

So, if complexity oftentimes impacts productivity and subsequently profitability, what are some of the more successful initiatives that companies are taking to combat these effects? Among the answers from the EIU survey, the following were highlighted among the most likely initiatives to reduce complexity and ultimately increase productivity:

  • Making it a company-wide goal to reduce complexity means that the executive level has to live and breathe simplification in order for the rest of the organization to get behind it. Changing behaviors across the organization requires strong leadership, commitment, and change management, and these initiatives ultimately lead to improved decision-making processes, which was reported by respondents as the top benefit of reducing complexity. From a leadership perspective this also requires setting appropriate metrics for measuring outcomes, and for metrics, productivity and efficiency were by far the most popular choices amongst respondents though strangely collaboration related metrics where not ranking high in spite of collaboration being a high level priority.
  • Promoting a culture of collaboration means enabling employees and management alike to collaborate not only within their teams but also across the organization, with partners, and with customers. Creating cross-functional roles to facilitate collaboration was cited by 56% as the most helpful strategy in achieving this goal.
  • More than half (54%) of respondents found the implementation of new technology and tools to be a successful step towards reducing complexity and improving productivity. Enabling collaboration, reducing information overload, building scenarios and prognoses, and enabling real-time decision-making are all key issues that technology can help to reduce complexity at all levels of the organization.

While these initiatives won’t help everyone, it is interesting to see that more than half of companies believe that if they could cut complexity in half they could be at least 11%-25% more productive. That nearly one in five respondents indicated that they could be 26%-50% more productive is a massive improvement.

The question then becomes whether we can make complexity and its impact on productivity not only more visible as a key issue for companies to address, but (even more importantly) also something that every company and every employee should be actively working to reduce. The potential productivity gains listed by respondents certainly provide food for thought, and few other corporate activities are likely to gain that level of ROI.

Just imagine having 45 minutes each and every day for actively pursuing new projects, getting innovative, collaborating, mentoring, learning, reducing stress, etc. What would you do? The vision is certainly compelling, and the question is are we as companies, leaders, and employees going to do something about it?

To read more about the EIU study, please see:

Feel free to follow me on Twitter: @michaelrander

Comments

Michael Rander

About Michael Rander

Michael Rander is the Global Research Director for Future Of Work at SAP. He is an experienced project manager, strategic and competitive market researcher, operations manager as well as an avid photographer, athlete, traveler and entrepreneur. Share your thoughts with Michael on Twitter @michaelrander.

How AI Can End Bias

Yvonne Baur, Brenda Reid, Steve Hunt, and Fawn Fitter

We humans make sense of the world by looking for patterns, filtering them through what we think we already know, and making decisions accordingly. When we talk about handing decisions off to artificial intelligence (AI), we expect it to do the same, only better.

Machine learning does, in fact, have the potential to be a tremendous force for good. Humans are hindered by both their unconscious assumptions and their simple inability to process huge amounts of information. AI, on the other hand, can be taught to filter irrelevancies out of the decision-making process, pluck the most suitable candidates from a haystack of résumés, and guide us based on what it calculates is objectively best rather than simply what we’ve done in the past.

In other words, AI has the potential to help us avoid bias in hiring, operations, customer service, and the broader business and social communities—and doing so makes good business sense. For one thing, even the most unintentional discrimination can cost a company significantly, in both money and brand equity. The mere fact of having to defend against an accusation of bias can linger long after the issue itself is settled.

Beyond managing risk related to legal and regulatory issues, though, there’s a broader argument for tackling bias: in a relentlessly competitive and global economy, no organization can afford to shut itself off from broader input, more varied experiences, a wider range of talent, and larger potential markets.

That said, the algorithms that drive AI don’t reveal pure, objective truth just because they’re mathematical. Humans must tell AI what they consider suitable, teach it which information is relevant, and indicate that the outcomes they consider best—ethically, legally, and, of course, financially—are those that are free from bias, conscious or otherwise. That’s the only way AI can help us create systems that are fair, more productive, and ultimately better for both business and the broader society.

Bias: Bad for Business

When people talk about AI and machine learning, they usually mean algorithms that learn over time as they process large data sets. Organizations that have gathered vast amounts of data can use these algorithms to apply sophisticated mathematical modeling techniques to see if the results can predict future outcomes, such as fluctuations in the price of materials or traffic flows around a port facility. Computers are ideally suited to processing these massive data volumes to reveal patterns and interactions that might help organizations get ahead of their competitors. As we gather more types and sources of data with which to train increasingly complex algorithms, interest in AI will become even more intense.

Using AI for automated decision making is becoming more common, at least for simple tasks, such as recommending additional products at the point of sale based on a customer’s current and past purchases. The hope is that AI will be able to take on the process of making increasingly sophisticated decisions, such as suggesting entirely new markets where a company could be profitable, or finding the most qualified candidates for jobs by helping HR look beyond the expected demographics.

As AI takes on these increasingly complex decisions, it can help reduce bias, conscious or otherwise. By exposing a bias, algorithms allow us to lessen the impact of that bias on our decisions and actions. They enable us to make decisions that reflect objective data instead of untested assumptions; they reveal imbalances; and they alert people to their cognitive blind spots so they can make more accurate, unbiased decisions.

Imagine, for example, a major company that realizes that its past hiring practices were biased against women and that would benefit from having more women in its management pipeline. AI can help the company analyze its past job postings for gender-biased language, which might have discouraged some applicants. Future postings could be more gender neutral, increasing the number of female applicants who get past the initial screenings.

AI can also support people in making less-biased decisions. For example, a company is considering two candidates for an influential management position: one man and one woman. The final hiring decision lies with a hiring manager who, when they learn that the female candidate has a small child at home, assumes that she would prefer a part-time schedule.

That assumption may be well intentioned, but it runs counter to the outcome the company is looking for. An AI could apply corrective pressure by reminding the hiring manager that all qualifications being equal, the female candidate is an objectively good choice who meets the company’s criteria. The hope is that the hiring manager will realize their unfounded assumption and remove it from their decision-making process.

At the same time, by tracking the pattern of hiring decisions this manager makes, the AI could alert them—and other people in HR—that the company still has some remaining hidden biases against female candidates to address.

Look for Where Bias Already Exists

In other words, if we want AI to counter the effects of a biased world, we have to begin by acknowledging that the world is biased. And that starts in a surprisingly low-tech spot: identifying any biases baked into your own organization’s current processes. From there, you can determine how to address those biases and improve outcomes.

There are many scenarios where humans can collaborate with AI to prevent or even reverse bias, says Jason Baldridge, a former associate professor of computational linguistics at the University of Texas at Austin and now co-founder of People Pattern, a startup for predictive demographics using social media analytics. In the highly regulated financial services industry, for example, Baldridge says banks are required to ensure that their algorithmic choices are not based on input variables that correlate with protected demographic variables (like race and gender). The banks also have to prove to regulators that their mathematical models don’t focus on patterns that disfavor specific demographic groups, he says. What’s more, they have to allow outside data scientists to assess their models for code or data that might have a discriminatory effect. As a result, banks are more evenhanded in their lending.

Code Is Only Human

The reason for these checks and balances is clear: the algorithms that drive AI are built by humans, and humans choose the data with which to shape and train the resulting models. Because humans are prone to bias, we have to be careful that we are neither simply confirming existing biases nor introducing new ones when we develop AI models and feed them data.

“From the perspective of a business leader who wants to do the right thing, it’s a design question,” says Cathy O’Neil, whose best-selling book Weapons of Math Destruction was long-listed for the 2016 National Book Award. “You wouldn’t let your company design a car and send it out in the world without knowing whether it’s safe. You have to design it with safety standards in mind,” she says. “By the same token, algorithms have to be designed with fairness and legality in mind, with standards that are understandable to everyone, from the business leader to the people being scored.” (To learn more from O’Neil about transparency in algorithms, read Thinkers in this issue.)

Don’t Do What You’ve Always Done

To eliminate bias, you must first make sure that the data you’re using to train the algorithm is itself free of bias, or, rather, that the algorithm can recognize bias in that data and bring the bias to a human’s attention.

SAP has been working on an initiative that tackles this issue directly by spotting and categorizing gendered terminology in old job postings. Nothing as overt as No women need apply, which everyone knows is discriminatory, but phrases like outspoken and aggressively pursuing opportunities, which are proven to attract male job applicants and repel female applicants, and words like caring and flexible, which do the opposite.

Once humans categorize this language and feed it into an algorithm, the AI can learn to flag words that imply bias and suggest gender-neutral alternatives. Unfortunately, this de-biasing process currently requires too much human intervention to scale easily, but as the amount of available de-biased data grows, this will become far less of a limitation in developing AI for HR.

Similarly, companies should look for specificity in how their algorithms search for new talent. According to O’Neil, there’s no one-size-fits-all definition of the best engineer; there’s only the best engineer for a particular role or project at a particular time. That’s the needle in the haystack that AI is well suited to find.

Look Beyond the Obvious

AI could be invaluable in radically reducing deliberate and unconscious discrimination in the workplace. However, the more data your company analyzes, the more likely it is that you will deal with stereotypes, O’Neil says. If you’re looking for math professors, for example, and you load your hiring algorithm with all the data you can find about math professors, your algorithm may give a lower score to a black female candidate living in Harlem simply because there are fewer black female mathematicians in your data set. But if that candidate has a PhD in math from Cornell, and if you’ve trained your AI to prioritize that criterion, the algorithm will bump her up the list of candidates rather than summarily ruling out a potentially high-value hire on the spurious basis of race and gender.

To further improve the odds that AI will be useful, companies have to go beyond spotting relationships between data and the outcomes they care about. It doesn’t take sophisticated predictive modeling to determine, for example, that women are disproportionately likely to jump off the corporate ladder at the halfway point because they’re struggling with work/life balance.

Many companies find it all too easy to conclude that women simply aren’t qualified for middle management. However, a company committed to smart talent management will instead ask what it is about these positions that makes them incompatible with women’s lives. It will then explore what it can change so that it doesn’t lose talent and institutional knowledge that will cost the company far more to replace than to retain.

That company may even apply a second layer of machine learning that looks at its own suggestions and makes further recommendations: “It looks like you’re trying to do X, so consider doing Y,” where X might be promoting more women, making the workforce more ethnically diverse, or improving retention statistics, and Y is redefining job responsibilities with greater flexibility, hosting recruiting events in communities of color, or redesigning benefits packages based on what similar companies offer.

Context Matters—and Context Changes

Even though AI learns—and maybe because it learns—it can never be considered “set it and forget it” technology. To remain both accurate and relevant, it has to be continually trained to account for changes in the market, your company’s needs, and the data itself.

Sources for language analysis, for example, tend to be biased toward standard American English, so if you’re building models to analyze social media posts or conversational language input, Baldridge says, you have to make a deliberate effort to include and correct for slang and nonstandard dialects. Standard English applies the word sick to someone having health problems, but it’s also a popular slang term for something good or impressive, which could lead to an awkward experience if someone confuses the two meanings, to say the least. Correcting for that, or adding more rules to the algorithm, such as “The word sick appears in proximity to positive emoji,” takes human oversight.

Moving Forward with AI

Today, AI excels at making biased data obvious, but that isn’t the same as eliminating it. It’s up to human beings to pay attention to the existence of bias and enlist AI to help avoid it. That goes beyond simply implementing AI to insisting that it meet benchmarks for positive impact. The business benefits of taking this step are—or soon will be—obvious.

In IDC FutureScapes’ webcast “Worldwide Big Data, Business Analytics, and Cognitive Software 2017 Predictions,” research director David Schubmehl predicted that by 2020 perceived bias and lack of evidentiary transparency in cognitive/AI solutions will create an activist backlash movement, with up to 10% of users backing away from the technology. However, Schubmehl also speculated that consumer and enterprise users of machine learning will be far more likely to trust AI’s recommendations and decisions if they understand how those recommendations and decisions are made. That means knowing what goes into the algorithms, how they arrive at their conclusions, and whether they deliver desired outcomes that are also legally and ethically fair.

Clearly, organizations that can address this concern explicitly will have a competitive advantage, but simply stating their commitment to using AI for good may not be enough. They also may wish to support academic efforts to research AI and bias, such as the annual Fairness, Accountability, and Transparency in Machine Learning (FATML) workshop, which was held for the third time in November 2016.

O’Neil, who blogs about data science and founded the Lede Program for Data Journalism, an intensive certification program at Columbia University, is going one step further. She is attempting to create an entirely new industry dedicated to auditing and monitoring algorithms to ensure that they not only reveal bias but actively eliminate it. She proposes the formation of groups of data scientists that evaluate supply chains for signs of forced labor, connect children at risk of abuse with resources to support their families, or alert people through a smartphone app when their credit scores are used to evaluate eligibility for something other than a loan.

As we begin to entrust AI with more complex and consequential decisions, organizations may also want to be proactive about ensuring that their algorithms do good—so that their companies can use AI to do well. D!

Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.


About the Authors:

Yvonne Baur is Head of Predictive Analytics for Sap SuccessFactors solutions.

Brenda Reid is Vice President of Product Management for Sap SuccessFactors solutions.

Steve Hunt is Senior Vice President of Human Capital Management Research for Sap SuccessFactors solutions.

Fawn Fitter is a freelance writer specializing in business and technology.

Comments

Tags:

Donuts, Content Management and Information Governance

Ina Felsheim

I was on vacation for two weeks, which was awesome, and my girls mainly wanted to do two things:

I had my own list of projects, too. The big one was installing glass tile on the kitchen backsplash. (Grout everywhere. That’s all I’m saying.)

After two weeks of glorious holiday, I sat down to take stock. The old technical writer in me came creeping out, and I began to count how many sets of instructions we followed over the course of the two weeks—more than 15, definitely. And the amazing thing? They were all right. Every. Last. One. From proper application of fabric paint to proper frying temperature for homemade donuts, to putting together a shoe rack that came in 20 pieces.

I’m pretty sure this wouldn’t have happened five years ago. The difference comes from an increased awareness in the importance of great user assistance. Without successful “use,” who’s going to evangelize your product?

Information Governance: Part of a Larger Food Pyramid

In EIM, we have a well-seasoned group of information developers. They apply information governance principles every day:

  • Create a single source of master information (in this case, product step-by-step instructions)
  • Manage versioning of master information (as product updates happen)
  • Survey end-users of the information to gauge quality, freshness, and applicability of master information
  • Establish master information Responsible, Accountable, Consulted, or Informed (RACI) models for owners, reviewers, and informed stakeholders.

Sometimes, we group this knowledge management work into other categories, like content management. However, information governance needs to also be inclusive of these activities; otherwise, how can we be successful? No one can live on donuts alone!

Does your information governance program include content management? Do you have comments about the quality of EIM user assistance (online help, PDFs, printed documentation, etc.)?

Comments

Andre Smith

About Andre Smith

An Internet, Marketing and E-Commerce specialist with several years of experience in the industry. He has watched as the world of online business has grown and adapted to new technologies, and he has made it his mission to help keep businesses informed and up to date.

Tags:

awareness

Donuts, Content Management and Information Governance

Ina Felsheim

I was on vacation for two weeks, which was awesome, and my girls mainly wanted to do two things:

I had my own list of projects, too. The big one was installing glass tile on the kitchen backsplash. (Grout everywhere. That’s all I’m saying.)

After two weeks of glorious holiday, I sat down to take stock. The old technical writer in me came creeping out, and I began to count how many sets of instructions we followed over the course of the two weeks—more than 15, definitely. And the amazing thing? They were all right. Every. Last. One. From proper application of fabric paint to proper frying temperature for homemade donuts, to putting together a shoe rack that came in 20 pieces.

I’m pretty sure this wouldn’t have happened five years ago. The difference comes from an increased awareness in the importance of great user assistance. Without successful “use,” who’s going to evangelize your product?

Information Governance: Part of a Larger Food Pyramid

In EIM, we have a well-seasoned group of information developers. They apply information governance principles every day:

  • Create a single source of master information (in this case, product step-by-step instructions)
  • Manage versioning of master information (as product updates happen)
  • Survey end-users of the information to gauge quality, freshness, and applicability of master information
  • Establish master information Responsible, Accountable, Consulted, or Informed (RACI) models for owners, reviewers, and informed stakeholders.

Sometimes, we group this knowledge management work into other categories, like content management. However, information governance needs to also be inclusive of these activities; otherwise, how can we be successful? No one can live on donuts alone!

Does your information governance program include content management? Do you have comments about the quality of EIM user assistance (online help, PDFs, printed documentation, etc.)?

Comments

Jay Tchakarov

About Jay Tchakarov

Jay Tchakarov is vice president of Product Management and Marketing at HighRadius Corporation. As part of HighRadius’ executive team, he is responsible for defining HighRadius’ Credit and A/R products and for educating the market about the value of automation and advanced technologies. He and his team work closely with sales, consultants, and customers to make sure the products address critical pain points and provide quantifiable, high-value solutions. Jay has more than 15 years of experience in software development, product management, and marketing, and numerous successful product launches. Jay graduated summa cum laude and received a Bachelor of Science in Computer Science from the University of Louisiana at Lafayette, a Master of Science in Computer Science from the University of Illinois at Urbana-Champaign, and an MBA from Rice University.

Tags:

awareness

Donuts, Content Management and Information Governance

Ina Felsheim

I was on vacation for two weeks, which was awesome, and my girls mainly wanted to do two things:

I had my own list of projects, too. The big one was installing glass tile on the kitchen backsplash. (Grout everywhere. That’s all I’m saying.)

After two weeks of glorious holiday, I sat down to take stock. The old technical writer in me came creeping out, and I began to count how many sets of instructions we followed over the course of the two weeks—more than 15, definitely. And the amazing thing? They were all right. Every. Last. One. From proper application of fabric paint to proper frying temperature for homemade donuts, to putting together a shoe rack that came in 20 pieces.

I’m pretty sure this wouldn’t have happened five years ago. The difference comes from an increased awareness in the importance of great user assistance. Without successful “use,” who’s going to evangelize your product?

Information Governance: Part of a Larger Food Pyramid

In EIM, we have a well-seasoned group of information developers. They apply information governance principles every day:

  • Create a single source of master information (in this case, product step-by-step instructions)
  • Manage versioning of master information (as product updates happen)
  • Survey end-users of the information to gauge quality, freshness, and applicability of master information
  • Establish master information Responsible, Accountable, Consulted, or Informed (RACI) models for owners, reviewers, and informed stakeholders.

Sometimes, we group this knowledge management work into other categories, like content management. However, information governance needs to also be inclusive of these activities; otherwise, how can we be successful? No one can live on donuts alone!

Does your information governance program include content management? Do you have comments about the quality of EIM user assistance (online help, PDFs, printed documentation, etc.)?

Comments

Derek Klobucher

About Derek Klobucher

Derek Klobucher is a Brand Journalist, Content Marketer and Master Digital Storyteller at SAP. His responsibilities include conceiving, developing and conducting global, company-wide employee brand journalism training; managing content, promotion and strategy for social networks and online media; and mentoring SAP employees, contractors and interns to optimize blogging and social media efforts.

Tags:

awareness

Donuts, Content Management and Information Governance

Ina Felsheim

I was on vacation for two weeks, which was awesome, and my girls mainly wanted to do two things:

I had my own list of projects, too. The big one was installing glass tile on the kitchen backsplash. (Grout everywhere. That’s all I’m saying.)

After two weeks of glorious holiday, I sat down to take stock. The old technical writer in me came creeping out, and I began to count how many sets of instructions we followed over the course of the two weeks—more than 15, definitely. And the amazing thing? They were all right. Every. Last. One. From proper application of fabric paint to proper frying temperature for homemade donuts, to putting together a shoe rack that came in 20 pieces.

I’m pretty sure this wouldn’t have happened five years ago. The difference comes from an increased awareness in the importance of great user assistance. Without successful “use,” who’s going to evangelize your product?

Information Governance: Part of a Larger Food Pyramid

In EIM, we have a well-seasoned group of information developers. They apply information governance principles every day:

  • Create a single source of master information (in this case, product step-by-step instructions)
  • Manage versioning of master information (as product updates happen)
  • Survey end-users of the information to gauge quality, freshness, and applicability of master information
  • Establish master information Responsible, Accountable, Consulted, or Informed (RACI) models for owners, reviewers, and informed stakeholders.

Sometimes, we group this knowledge management work into other categories, like content management. However, information governance needs to also be inclusive of these activities; otherwise, how can we be successful? No one can live on donuts alone!

Does your information governance program include content management? Do you have comments about the quality of EIM user assistance (online help, PDFs, printed documentation, etc.)?

Comments

Tiffany Rowe

About Tiffany Rowe

Tiffany Rowe is a marketing administrator who assists in contributing resourceful content. Tiffany prides herself in her ability to provide high-quality content that readers will find valuable.

Tags:

awareness

Donuts, Content Management and Information Governance

Ina Felsheim

I was on vacation for two weeks, which was awesome, and my girls mainly wanted to do two things:

I had my own list of projects, too. The big one was installing glass tile on the kitchen backsplash. (Grout everywhere. That’s all I’m saying.)

After two weeks of glorious holiday, I sat down to take stock. The old technical writer in me came creeping out, and I began to count how many sets of instructions we followed over the course of the two weeks—more than 15, definitely. And the amazing thing? They were all right. Every. Last. One. From proper application of fabric paint to proper frying temperature for homemade donuts, to putting together a shoe rack that came in 20 pieces.

I’m pretty sure this wouldn’t have happened five years ago. The difference comes from an increased awareness in the importance of great user assistance. Without successful “use,” who’s going to evangelize your product?

Information Governance: Part of a Larger Food Pyramid

In EIM, we have a well-seasoned group of information developers. They apply information governance principles every day:

  • Create a single source of master information (in this case, product step-by-step instructions)
  • Manage versioning of master information (as product updates happen)
  • Survey end-users of the information to gauge quality, freshness, and applicability of master information
  • Establish master information Responsible, Accountable, Consulted, or Informed (RACI) models for owners, reviewers, and informed stakeholders.

Sometimes, we group this knowledge management work into other categories, like content management. However, information governance needs to also be inclusive of these activities; otherwise, how can we be successful? No one can live on donuts alone!

Does your information governance program include content management? Do you have comments about the quality of EIM user assistance (online help, PDFs, printed documentation, etc.)?

Comments

Tags:

awareness

Donuts, Content Management and Information Governance

Ina Felsheim

I was on vacation for two weeks, which was awesome, and my girls mainly wanted to do two things:

I had my own list of projects, too. The big one was installing glass tile on the kitchen backsplash. (Grout everywhere. That’s all I’m saying.)

After two weeks of glorious holiday, I sat down to take stock. The old technical writer in me came creeping out, and I began to count how many sets of instructions we followed over the course of the two weeks—more than 15, definitely. And the amazing thing? They were all right. Every. Last. One. From proper application of fabric paint to proper frying temperature for homemade donuts, to putting together a shoe rack that came in 20 pieces.

I’m pretty sure this wouldn’t have happened five years ago. The difference comes from an increased awareness in the importance of great user assistance. Without successful “use,” who’s going to evangelize your product?

Information Governance: Part of a Larger Food Pyramid

In EIM, we have a well-seasoned group of information developers. They apply information governance principles every day:

  • Create a single source of master information (in this case, product step-by-step instructions)
  • Manage versioning of master information (as product updates happen)
  • Survey end-users of the information to gauge quality, freshness, and applicability of master information
  • Establish master information Responsible, Accountable, Consulted, or Informed (RACI) models for owners, reviewers, and informed stakeholders.

Sometimes, we group this knowledge management work into other categories, like content management. However, information governance needs to also be inclusive of these activities; otherwise, how can we be successful? No one can live on donuts alone!

Does your information governance program include content management? Do you have comments about the quality of EIM user assistance (online help, PDFs, printed documentation, etc.)?

Comments

Andreas Heckmann

About Andreas Heckmann

Andreas Heckmann is head of Product Support at SAP. You can follow him on Twitter, LinkedIn, and WeChat at AndHeckmann.

Tags:

awareness

Donuts, Content Management and Information Governance

Ina Felsheim

I was on vacation for two weeks, which was awesome, and my girls mainly wanted to do two things:

I had my own list of projects, too. The big one was installing glass tile on the kitchen backsplash. (Grout everywhere. That’s all I’m saying.)

After two weeks of glorious holiday, I sat down to take stock. The old technical writer in me came creeping out, and I began to count how many sets of instructions we followed over the course of the two weeks—more than 15, definitely. And the amazing thing? They were all right. Every. Last. One. From proper application of fabric paint to proper frying temperature for homemade donuts, to putting together a shoe rack that came in 20 pieces.

I’m pretty sure this wouldn’t have happened five years ago. The difference comes from an increased awareness in the importance of great user assistance. Without successful “use,” who’s going to evangelize your product?

Information Governance: Part of a Larger Food Pyramid

In EIM, we have a well-seasoned group of information developers. They apply information governance principles every day:

  • Create a single source of master information (in this case, product step-by-step instructions)
  • Manage versioning of master information (as product updates happen)
  • Survey end-users of the information to gauge quality, freshness, and applicability of master information
  • Establish master information Responsible, Accountable, Consulted, or Informed (RACI) models for owners, reviewers, and informed stakeholders.

Sometimes, we group this knowledge management work into other categories, like content management. However, information governance needs to also be inclusive of these activities; otherwise, how can we be successful? No one can live on donuts alone!

Does your information governance program include content management? Do you have comments about the quality of EIM user assistance (online help, PDFs, printed documentation, etc.)?

Comments

Joerg Koesters

About Joerg Koesters

Joerg Koesters is the Head of Retail Marketing and Communication at SAP. He is a Technology Marketing executive with 20 years of experience in Marketing, Sales and Consulting, Joerg has deep knowledge in retail and consumer products having worked both in the industry and in the technology sector.

Tags:

awareness

Donuts, Content Management and Information Governance

Ina Felsheim

I was on vacation for two weeks, which was awesome, and my girls mainly wanted to do two things:

I had my own list of projects, too. The big one was installing glass tile on the kitchen backsplash. (Grout everywhere. That’s all I’m saying.)

After two weeks of glorious holiday, I sat down to take stock. The old technical writer in me came creeping out, and I began to count how many sets of instructions we followed over the course of the two weeks—more than 15, definitely. And the amazing thing? They were all right. Every. Last. One. From proper application of fabric paint to proper frying temperature for homemade donuts, to putting together a shoe rack that came in 20 pieces.

I’m pretty sure this wouldn’t have happened five years ago. The difference comes from an increased awareness in the importance of great user assistance. Without successful “use,” who’s going to evangelize your product?

Information Governance: Part of a Larger Food Pyramid

In EIM, we have a well-seasoned group of information developers. They apply information governance principles every day:

  • Create a single source of master information (in this case, product step-by-step instructions)
  • Manage versioning of master information (as product updates happen)
  • Survey end-users of the information to gauge quality, freshness, and applicability of master information
  • Establish master information Responsible, Accountable, Consulted, or Informed (RACI) models for owners, reviewers, and informed stakeholders.

Sometimes, we group this knowledge management work into other categories, like content management. However, information governance needs to also be inclusive of these activities; otherwise, how can we be successful? No one can live on donuts alone!

Does your information governance program include content management? Do you have comments about the quality of EIM user assistance (online help, PDFs, printed documentation, etc.)?

Comments

Henry Albrecht

About Henry Albrecht

Henry Albrecht is the CEO of Limeade, the corporate wellness technology company that measurably improves employee health, well-being and performance. Connect with Henry and the Limeade team on Twitter, Facebook and LinkedIn.

Tags:

awareness

Donuts, Content Management and Information Governance

Ina Felsheim

I was on vacation for two weeks, which was awesome, and my girls mainly wanted to do two things:

I had my own list of projects, too. The big one was installing glass tile on the kitchen backsplash. (Grout everywhere. That’s all I’m saying.)

After two weeks of glorious holiday, I sat down to take stock. The old technical writer in me came creeping out, and I began to count how many sets of instructions we followed over the course of the two weeks—more than 15, definitely. And the amazing thing? They were all right. Every. Last. One. From proper application of fabric paint to proper frying temperature for homemade donuts, to putting together a shoe rack that came in 20 pieces.

I’m pretty sure this wouldn’t have happened five years ago. The difference comes from an increased awareness in the importance of great user assistance. Without successful “use,” who’s going to evangelize your product?

Information Governance: Part of a Larger Food Pyramid

In EIM, we have a well-seasoned group of information developers. They apply information governance principles every day:

  • Create a single source of master information (in this case, product step-by-step instructions)
  • Manage versioning of master information (as product updates happen)
  • Survey end-users of the information to gauge quality, freshness, and applicability of master information
  • Establish master information Responsible, Accountable, Consulted, or Informed (RACI) models for owners, reviewers, and informed stakeholders.

Sometimes, we group this knowledge management work into other categories, like content management. However, information governance needs to also be inclusive of these activities; otherwise, how can we be successful? No one can live on donuts alone!

Does your information governance program include content management? Do you have comments about the quality of EIM user assistance (online help, PDFs, printed documentation, etc.)?

Comments

Tags:

awareness

Donuts, Content Management and Information Governance

Ina Felsheim

I was on vacation for two weeks, which was awesome, and my girls mainly wanted to do two things:

I had my own list of projects, too. The big one was installing glass tile on the kitchen backsplash. (Grout everywhere. That’s all I’m saying.)

After two weeks of glorious holiday, I sat down to take stock. The old technical writer in me came creeping out, and I began to count how many sets of instructions we followed over the course of the two weeks—more than 15, definitely. And the amazing thing? They were all right. Every. Last. One. From proper application of fabric paint to proper frying temperature for homemade donuts, to putting together a shoe rack that came in 20 pieces.

I’m pretty sure this wouldn’t have happened five years ago. The difference comes from an increased awareness in the importance of great user assistance. Without successful “use,” who’s going to evangelize your product?

Information Governance: Part of a Larger Food Pyramid

In EIM, we have a well-seasoned group of information developers. They apply information governance principles every day:

  • Create a single source of master information (in this case, product step-by-step instructions)
  • Manage versioning of master information (as product updates happen)
  • Survey end-users of the information to gauge quality, freshness, and applicability of master information
  • Establish master information Responsible, Accountable, Consulted, or Informed (RACI) models for owners, reviewers, and informed stakeholders.

Sometimes, we group this knowledge management work into other categories, like content management. However, information governance needs to also be inclusive of these activities; otherwise, how can we be successful? No one can live on donuts alone!

Does your information governance program include content management? Do you have comments about the quality of EIM user assistance (online help, PDFs, printed documentation, etc.)?

Comments

Timo Elliott

About Timo Elliott

Timo Elliott is the VP of Global Innovation Evangelist at SAP. Over the last 25 years, I've presented to Business and IT audiences in over 50 different countries around the world, on themes such as Digital Transformation, Big Data and Analytics, the Internet of Things, the future of Digital Marketing, and the challenges of technology culture change in organizations.

Tags:

awareness