Sections

8 Detailed Examples Of Giving Employee Feedback

Jacob Shriar

8 feedback examples blog coverWhether we realize it or not, we’re always giving or receiving feedback.

Sometimes it’s explicit, like in a one-on-one meeting, or it’s implicit, through our tone of voice and body language.

We might not realize the image we’re giving off, so we need to be mindful of this.

Also, when receiving feedback, it’s natural to take it as a personal attack and shut yourself off as a result. Instead, try to look at the feedback as a learning opportunity and grow from it.

Before I go through 8 examples of how to give feedback correctly, let’s look at some important things to keep in mind when giving employee feedback.

Tips for more effective feedback

It’s amazing how much psychology and subtleties are involved in giving feedback.

While some of this might seem like overkill, it’s really not. People are more sensitive than you might think, so it’s important to be compassionate when giving your feedback.

  1. Focus on the behavior, not the person

    This is probably the most important tip. The feedback shouldn’t be a personal attack, but it should be helpful and meant to get them to improve a certain behavior.

    One idea that works well for this is to explain how the behavior makes you feel. By doing this, it forces you to focus on the behavior.

    For example:

    I noticed you haven’t shown up for the last two team meetings. I’m worried that you missed some important information. Can we meet to discuss what you missed?

    This is better than saying something like, “You obviously don’t care about this team since you don’t show up for the meetings.”

  2. Remember the feedback is simply your opinion

    Sometimes leaders will say something like “they feel,” “we think,” or something along the lines of making it look like everyone agrees with your feedback.

    This is done to both make the message more powerful and shift the blame away from you.

    While this might seem like a smart idea in theory, you should use “I” instead. It will allow the employee to empathize with you (especially if you include how it makes you feel).

    Again, remember that feedback is simply your opinion.

  3. Don’t do the feedback sandwich

    Many people will tell you that the feedback sandwich works to soften the blow of feedback and that it’s a great idea.

    Don’t do it.

    It’s really not a good idea. A research paper called Tell Me What I Did Wrong1 looked at how different people responded to feedback, and it found that the feedback sandwich doesn’t work most of the time.

    From the research paper:

    The negative feedback is often buried and not very specific.

    A much smarter idea is to just be straightforward. Employees will appreciate your honesty.

    The problem is that people only hear the positive part of the feedback and stop listening once you’ve gotten to the negative part.

  4. Don’t forget the positive

    When feedback is mostly negative, studies have shown that it discourages future effort.2

    Remember to highlight and recognize good effort to keep employees motivated. Don’t use it as part of a sandwich, but keep in mind that positive efforts need to be noticed.

  5. Follow up

    This one might seem obvious, but remember to follow up with whomever you gave feedback to.

    The feedback is pretty pointless unless the employee improves and gets better at what they do, so make sure to follow up after a certain amount of time to see how it’s going. Offer your support throughout the entire process.

Examples of feedback given correctly

Here are 8 examples of employee feedback that you can start using today.

  1. An employee seems disengaged

    If an employee is disengaged, to figure out if something is bothering them you’ll want to:

    • Show them you’re noticing/looking out for them
    • Tell them how it makes you feel
    • Offer help

    Here’s what you can say:

    I noticed you don’t seem as happy as you usually do, and obviously that makes me feel like I’m doing something wrong.

    Is everything okay? I think if we met once a week to make sure everything’s going okay, you’d be much happier.

  2. An employee didn’t deliver a project on time

    While this sucks, there’s not much you can do about it. No point in getting mad, just make sure that this doesn’t happen again. Everyone needs to be accountable for their work, so when giving feedback about this, you’ll want to:

    • Highlight why this is important
    • Motivate them for next time
    • Offer ideas to improve

    Here’s what you can say:

    The project wasn’t delivered on time, do you have any idea why?

    As you know, we’re trying to get everything organized for the new website, so if you’re late on a project, it slows down the rest of the team.

    We’ll just make sure that for next time, you have more time and resources to finish on time. The new website is going to be sick! I think for next time, what you could do is schedule blocks of time maybe one day a week to make sure that you’re not overloaded with work towards the end.

    I tried that on my last project and it made a huge difference.

  3. An employee made a mistake with a client

    You want to do everything in your power to make sure this never happens again; the clients are too important.

    Mistakes happen, but everyone needs to have everything they need so that it doesn’t happen again. When giving feedback about this, you’ll want to go into detail explaining what happened so they’re better equipped:

    • Tell them not to worry; it can be fixed
    • Explain to them what happened so they understand for next time
    • Offer help

    Here’s what you can say:

    Not a big deal, but for next time, remember to update their billing information before you send them their access key.

    The way the access key number works is based on their billing info, so it’s super important. But don’t worry, we’ll just send them an apology email and do it manually right now.

    If you want to set up some time to go over how the software works, I’d be happy to show you; no problem.

  4. An employee was rude to a coworker

    Ideally, everyone on the team works well together and collaborates smoothly, but tension between coworkers is a natural thing that occurs often. You want to put a stop to this one quickly.

    • Explain why you’re talking to them and not the coworker
    • Don’t blame, listen to their side
    • Offer advice

    Here’s what you can say:

    Stacey asked me to have a chat with you about something you said earlier. I don’t think she was comfortable saying anything so I offered to do it.

    I’m curious, can you let me know what happened? I’m assuming it was a misunderstanding, but of course I want us all to get along.

    If it was me, I’d wait until the end of the day and then apologize to her, maybe ask to go eat lunch together to talk about it.

  5. An employee doesn’t get along with anyone

    This situation is a bit more troubling, but again, you’ll want to focus on the behavior rather than the person.

    • Be straightforward
    • Offer ideas for a workaround

    Here’s what you can say:

    I just wanted to let you know that I’ve gotten a few complaints recently from some people on the team.

    I wanted to chat with you directly about it to see if there was anything we can do. It might be because you’re stressed, but I think when you raise your voice it sometimes rubs people the wrong way, which might be why they’re perceiving it as rude.

    I wonder if working from home one day a week might help with some of the stress that you’re feeling.

  6. An employee didn’t set good goals

    This is a tricky one, because you don’t want to totally demotivate them; they might be upset enough that they didn’t hit their goals. Remember to:

    • Be positive
    • Be specific about what they could have done better

    Here’s what you can say:

    Seriously, great job with your goals this quarter. It’s fine that you didn’t achieve all of them; I just thought we could go through them to see where you could have done better.

    I think your goals might be too aggressive. For next time, I would set only 2 goals instead of 5. That way, you’ll be able to focus exclusively on those 2.

  7. An employee doesn’t take initiative

    When you’re giving feedback about this one, remember to:

    • Tell them how it affects you
    • Offer help and advice

    Here’s what you can say:

    I notice that you’re not taking as much initiative as you used to be. That makes me feel like I did something wrong. Did I say or do anything recently to upset you?

  8. An employee has poor time management

    Time management is a tough thing to get right and is a constant process of optimization. But if it’s becoming a problem, then you’ll need to give some feedback. When you’re giving feedback about this one, remember to:

    • Tell them how it affects the team
    • Offer tips

    Here’s what you can say:

    I’ve been noticing that you weren’t able to manage your time for the last 3 tasks.

    Other people on the team weren’t able to get their work done and so it created some issues for other departments. We’ll figure out how to get it fixed for next time, though.

    I used to have that problem too, but then I discovered a tool to help with that. Personally, I use a tool called RescueTime; it’s been a life-saver.

    I recommend trying it and seeing how you can optimize your time.

Any tips for giving employee feedback?

Have any tips to share with us? Let us know in the comments below!

Want more employee management strategies that get results? See 5 Ways To Facilitate Behavioral Changes Among Employees.

Comments

How To Design Your Company’s Digital Transformation

Sam Yen

The September issue of the Harvard Business Review features a cover story on design thinking’s coming of age. We have been applying design thinking within SAP for the past 10 years, and I’ve witnessed the growth of this human-centered approach to innovation first hand.

Design thinking is, as the HBR piece points out, “the best tool we have for … developing a responsive, flexible organizational culture.”

This means businesses are doing more to learn about their customers by interacting directly with them. We’re seeing this change in our work on d.forum — a community of design thinking champions and “disruptors” from across industries.

Meanwhile, technology is making it possible to know exponentially more about a customer. Businesses can now make increasingly accurate predictions about customers’ needs well into the future. The businesses best able to access and pull insights from this growing volume of data will win. That requires a fundamental change for our own industry; it necessitates a digital transformation.

So, how do we design this digital transformation?

It starts with the customer and an application of design thinking throughout an organization – blending business, technology and human values to generate innovation. Business is already incorporating design thinking, as the HBR cover story shows. We in technology need to do the same.

SCN SY.png

Design thinking plays an important role because it helps articulate what the end customer’s experience is going to be like. It helps focus all aspects of the business on understanding and articulating that future experience.

Once an organization is able to do that, the insights from that consumer experience need to be drawn down into the business, with the central question becoming: What does this future customer experience mean for us as an organization? What barriers do we need to remove? Do we need to organize ourselves differently? Does our process need to change – if it does, how? What kind of new technology do we need?

Then an organization must look carefully at roles within itself. What does this knowledge of the end customer’s future experience mean for an individual in human resources, for example, or finance? Those roles can then be viewed as end experiences unto themselves, with organizations applying design thinking to learn about the needs inherent to those roles. They can then change roles to better meet the end customer’s future needs. This end customer-centered approach is what drives change.

This also means design thinking is more important than ever for IT organizations.

We, in the IT industry, have been charged with being responsive to business, using technology to solve the problems business presents. Unfortunately, business sometimes views IT as the organization keeping the lights on. If we make the analogy of a store: business is responsible for the front office, focused on growing the business where consumers directly interact with products and marketing; while the perception is that IT focuses on the back office, keeping servers running and the distribution system humming. The key is to have business and IT align to meet the needs of the front office together.

Remember what I said about the growing availability of consumer data? The business best able to access and learn from that data will win. Those of us in IT organizations have the technology to make that win possible, but the way we are seen and our very nature needs to change if we want to remain relevant to business and participate in crafting the winning strategy.

We need to become more front office and less back office, proving to business that we are innovation partners in technology.

This means, in order to communicate with businesses today, we need to take a design thinking approach. We in IT need to show we have an understanding of the end consumer’s needs and experience, and we must align that knowledge and understanding with technological solutions. When this works — when the front office and back office come together in this way — it can lead to solutions that a company could otherwise never have realized.

There’s different qualities, of course, between front office and back office requirements. The back office is the foundation of a company and requires robustness, stability, and reliability. The front office, on the other hand, moves much more quickly. It is always changing with new product offerings and marketing campaigns. Technology must also show agility, flexibility, and speed. The business needs both functions to survive. This is a challenge for IT organizations, but it is not an impossible shift for us to make.

Here’s the breakdown of our challenge.

1. We need to better understand the real needs of the business.

This means learning more about the experience and needs of the end customer and then translating that information into technological solutions.

2. We need to be involved in more of the strategic discussions of the business.

Use the regular invitations to meetings with business as an opportunity to surface the deeper learning about the end consumer and the technology solutions that business may otherwise not know to ask for or how to implement.

The IT industry overall may not have a track record of operating in this way, but if we are not involved in the strategic direction of companies and shedding light on the future path, we risk not being considered innovation partners for the business.

We must collaborate with business, understand the strategic direction and highlight the technical challenges and opportunities. When we do, IT will become a hybrid organization – able to maintain the back office while capitalizing on the front office’s growing technical needs. We will highlight solutions that business could otherwise have missed, ushering in a digital transformation.

Digital transformation goes beyond just technology; it requires a mindset. See What It Really Means To Be A Digital Organization.

This story originally appeared on SAP Business Trends.

Top image via Shutterstock

Comments

Sam Yen

About Sam Yen

Sam Yen is the Chief Design Officer for SAP and the Managing Director of SAP Labs Silicon Valley. He is focused on driving a renewed commitment to design and user experience at SAP. Under his leadership, SAP further strengthens its mission of listening to customers´ needs leading to tangible results, including SAP Fiori, SAP Screen Personas and SAP´s UX design services.

How Productive Could You Be With 45 Minutes More Per Day?

Michael Rander

Chances are that you are already feeling your fair share of organizational complexity when navigating your current company, but have you ever considered just how much time is spent across all companies on managing complexity? According to a recent study by the Economist Intelligence Unit (EIU), the global impact of complexity is mind-blowing – and not in a good way.

The study revealed that 38% of respondents spent 16%-25% of their time just dealing with organizational complexity, and 17% spent a staggering 26%-50% of their time doing so. To put that into more concrete numbers, in the US alone, if executives could cut their time spent managing complexity in half, an estimated 8.6 million hours could be saved a week. That corresponds to 45 minutes per executive per day.

The potential productivity impact of every executive having 45 minutes more to work every single day is clearly significant, and considering that 55% say that their organization is either very or extremely complex, why are we then not making the reduction of complexity one or our top of mind issues?

The problem is that identifying the sources of complexity is complex in of itself. Key sources of complexity include organizational size, executive priorities, pace of innovation, decision-making processes, vastly increasing amounts of data to manage, organizational structures, and the pure culture of the company. As a consequence, answers are not universal by any means.

That being said, the negative productivity impact of complexity, regardless of the specific source, is felt similarly across a very large segment of the respondents, with 55% stating that complexity has taken a direct toll on profitability over the past three years.  This is such a serious problem that 8% of respondents actually slowed down their company growth in order to deal with complexity.

So, if complexity oftentimes impacts productivity and subsequently profitability, what are some of the more successful initiatives that companies are taking to combat these effects? Among the answers from the EIU survey, the following were highlighted among the most likely initiatives to reduce complexity and ultimately increase productivity:

  • Making it a company-wide goal to reduce complexity means that the executive level has to live and breathe simplification in order for the rest of the organization to get behind it. Changing behaviors across the organization requires strong leadership, commitment, and change management, and these initiatives ultimately lead to improved decision-making processes, which was reported by respondents as the top benefit of reducing complexity. From a leadership perspective this also requires setting appropriate metrics for measuring outcomes, and for metrics, productivity and efficiency were by far the most popular choices amongst respondents though strangely collaboration related metrics where not ranking high in spite of collaboration being a high level priority.
  • Promoting a culture of collaboration means enabling employees and management alike to collaborate not only within their teams but also across the organization, with partners, and with customers. Creating cross-functional roles to facilitate collaboration was cited by 56% as the most helpful strategy in achieving this goal.
  • More than half (54%) of respondents found the implementation of new technology and tools to be a successful step towards reducing complexity and improving productivity. Enabling collaboration, reducing information overload, building scenarios and prognoses, and enabling real-time decision-making are all key issues that technology can help to reduce complexity at all levels of the organization.

While these initiatives won’t help everyone, it is interesting to see that more than half of companies believe that if they could cut complexity in half they could be at least 11%-25% more productive. That nearly one in five respondents indicated that they could be 26%-50% more productive is a massive improvement.

The question then becomes whether we can make complexity and its impact on productivity not only more visible as a key issue for companies to address, but (even more importantly) also something that every company and every employee should be actively working to reduce. The potential productivity gains listed by respondents certainly provide food for thought, and few other corporate activities are likely to gain that level of ROI.

Just imagine having 45 minutes each and every day for actively pursuing new projects, getting innovative, collaborating, mentoring, learning, reducing stress, etc. What would you do? The vision is certainly compelling, and the question is are we as companies, leaders, and employees going to do something about it?

To read more about the EIU study, please see:

Feel free to follow me on Twitter: @michaelrander

Comments

About Michael Rander

Michael Rander is the Global Research Director for Future Of Work at SAP. He is an experienced project manager, strategic and competitive market researcher, operations manager as well as an avid photographer, athlete, traveler and entrepreneur. Share your thoughts with Michael on Twitter @michaelrander.

How AI Can End Bias

Yvonne Baur, Brenda Reid, Steve Hunt, and Fawn Fitter

We humans make sense of the world by looking for patterns, filtering them through what we think we already know, and making decisions accordingly. When we talk about handing decisions off to artificial intelligence (AI), we expect it to do the same, only better.

Machine learning does, in fact, have the potential to be a tremendous force for good. Humans are hindered by both their unconscious assumptions and their simple inability to process huge amounts of information. AI, on the other hand, can be taught to filter irrelevancies out of the decision-making process, pluck the most suitable candidates from a haystack of résumés, and guide us based on what it calculates is objectively best rather than simply what we’ve done in the past.

In other words, AI has the potential to help us avoid bias in hiring, operations, customer service, and the broader business and social communities—and doing so makes good business sense. For one thing, even the most unintentional discrimination can cost a company significantly, in both money and brand equity. The mere fact of having to defend against an accusation of bias can linger long after the issue itself is settled.

Beyond managing risk related to legal and regulatory issues, though, there’s a broader argument for tackling bias: in a relentlessly competitive and global economy, no organization can afford to shut itself off from broader input, more varied experiences, a wider range of talent, and larger potential markets.

That said, the algorithms that drive AI don’t reveal pure, objective truth just because they’re mathematical. Humans must tell AI what they consider suitable, teach it which information is relevant, and indicate that the outcomes they consider best—ethically, legally, and, of course, financially—are those that are free from bias, conscious or otherwise. That’s the only way AI can help us create systems that are fair, more productive, and ultimately better for both business and the broader society.

Bias: Bad for Business

When people talk about AI and machine learning, they usually mean algorithms that learn over time as they process large data sets. Organizations that have gathered vast amounts of data can use these algorithms to apply sophisticated mathematical modeling techniques to see if the results can predict future outcomes, such as fluctuations in the price of materials or traffic flows around a port facility. Computers are ideally suited to processing these massive data volumes to reveal patterns and interactions that might help organizations get ahead of their competitors. As we gather more types and sources of data with which to train increasingly complex algorithms, interest in AI will become even more intense.

Using AI for automated decision making is becoming more common, at least for simple tasks, such as recommending additional products at the point of sale based on a customer’s current and past purchases. The hope is that AI will be able to take on the process of making increasingly sophisticated decisions, such as suggesting entirely new markets where a company could be profitable, or finding the most qualified candidates for jobs by helping HR look beyond the expected demographics.

As AI takes on these increasingly complex decisions, it can help reduce bias, conscious or otherwise. By exposing a bias, algorithms allow us to lessen the impact of that bias on our decisions and actions. They enable us to make decisions that reflect objective data instead of untested assumptions; they reveal imbalances; and they alert people to their cognitive blind spots so they can make more accurate, unbiased decisions.

Imagine, for example, a major company that realizes that its past hiring practices were biased against women and that would benefit from having more women in its management pipeline. AI can help the company analyze its past job postings for gender-biased language, which might have discouraged some applicants. Future postings could be more gender neutral, increasing the number of female applicants who get past the initial screenings.

AI can also support people in making less-biased decisions. For example, a company is considering two candidates for an influential management position: one man and one woman. The final hiring decision lies with a hiring manager who, when they learn that the female candidate has a small child at home, assumes that she would prefer a part-time schedule.

That assumption may be well intentioned, but it runs counter to the outcome the company is looking for. An AI could apply corrective pressure by reminding the hiring manager that all qualifications being equal, the female candidate is an objectively good choice who meets the company’s criteria. The hope is that the hiring manager will realize their unfounded assumption and remove it from their decision-making process.

At the same time, by tracking the pattern of hiring decisions this manager makes, the AI could alert them—and other people in HR—that the company still has some remaining hidden biases against female candidates to address.

Look for Where Bias Already Exists

In other words, if we want AI to counter the effects of a biased world, we have to begin by acknowledging that the world is biased. And that starts in a surprisingly low-tech spot: identifying any biases baked into your own organization’s current processes. From there, you can determine how to address those biases and improve outcomes.

There are many scenarios where humans can collaborate with AI to prevent or even reverse bias, says Jason Baldridge, a former associate professor of computational linguistics at the University of Texas at Austin and now co-founder of People Pattern, a startup for predictive demographics using social media analytics. In the highly regulated financial services industry, for example, Baldridge says banks are required to ensure that their algorithmic choices are not based on input variables that correlate with protected demographic variables (like race and gender). The banks also have to prove to regulators that their mathematical models don’t focus on patterns that disfavor specific demographic groups, he says. What’s more, they have to allow outside data scientists to assess their models for code or data that might have a discriminatory effect. As a result, banks are more evenhanded in their lending.

Code Is Only Human

The reason for these checks and balances is clear: the algorithms that drive AI are built by humans, and humans choose the data with which to shape and train the resulting models. Because humans are prone to bias, we have to be careful that we are neither simply confirming existing biases nor introducing new ones when we develop AI models and feed them data.

“From the perspective of a business leader who wants to do the right thing, it’s a design question,” says Cathy O’Neil, whose best-selling book Weapons of Math Destruction was long-listed for the 2016 National Book Award. “You wouldn’t let your company design a car and send it out in the world without knowing whether it’s safe. You have to design it with safety standards in mind,” she says. “By the same token, algorithms have to be designed with fairness and legality in mind, with standards that are understandable to everyone, from the business leader to the people being scored.” (To learn more from O’Neil about transparency in algorithms, read Thinkers in this issue.)

Don’t Do What You’ve Always Done

To eliminate bias, you must first make sure that the data you’re using to train the algorithm is itself free of bias, or, rather, that the algorithm can recognize bias in that data and bring the bias to a human’s attention.

SAP has been working on an initiative that tackles this issue directly by spotting and categorizing gendered terminology in old job postings. Nothing as overt as No women need apply, which everyone knows is discriminatory, but phrases like outspoken and aggressively pursuing opportunities, which are proven to attract male job applicants and repel female applicants, and words like caring and flexible, which do the opposite.

Once humans categorize this language and feed it into an algorithm, the AI can learn to flag words that imply bias and suggest gender-neutral alternatives. Unfortunately, this de-biasing process currently requires too much human intervention to scale easily, but as the amount of available de-biased data grows, this will become far less of a limitation in developing AI for HR.

Similarly, companies should look for specificity in how their algorithms search for new talent. According to O’Neil, there’s no one-size-fits-all definition of the best engineer; there’s only the best engineer for a particular role or project at a particular time. That’s the needle in the haystack that AI is well suited to find.

Look Beyond the Obvious

AI could be invaluable in radically reducing deliberate and unconscious discrimination in the workplace. However, the more data your company analyzes, the more likely it is that you will deal with stereotypes, O’Neil says. If you’re looking for math professors, for example, and you load your hiring algorithm with all the data you can find about math professors, your algorithm may give a lower score to a black female candidate living in Harlem simply because there are fewer black female mathematicians in your data set. But if that candidate has a PhD in math from Cornell, and if you’ve trained your AI to prioritize that criterion, the algorithm will bump her up the list of candidates rather than summarily ruling out a potentially high-value hire on the spurious basis of race and gender.

To further improve the odds that AI will be useful, companies have to go beyond spotting relationships between data and the outcomes they care about. It doesn’t take sophisticated predictive modeling to determine, for example, that women are disproportionately likely to jump off the corporate ladder at the halfway point because they’re struggling with work/life balance.

Many companies find it all too easy to conclude that women simply aren’t qualified for middle management. However, a company committed to smart talent management will instead ask what it is about these positions that makes them incompatible with women’s lives. It will then explore what it can change so that it doesn’t lose talent and institutional knowledge that will cost the company far more to replace than to retain.

That company may even apply a second layer of machine learning that looks at its own suggestions and makes further recommendations: “It looks like you’re trying to do X, so consider doing Y,” where X might be promoting more women, making the workforce more ethnically diverse, or improving retention statistics, and Y is redefining job responsibilities with greater flexibility, hosting recruiting events in communities of color, or redesigning benefits packages based on what similar companies offer.

Context Matters—and Context Changes

Even though AI learns—and maybe because it learns—it can never be considered “set it and forget it” technology. To remain both accurate and relevant, it has to be continually trained to account for changes in the market, your company’s needs, and the data itself.

Sources for language analysis, for example, tend to be biased toward standard American English, so if you’re building models to analyze social media posts or conversational language input, Baldridge says, you have to make a deliberate effort to include and correct for slang and nonstandard dialects. Standard English applies the word sick to someone having health problems, but it’s also a popular slang term for something good or impressive, which could lead to an awkward experience if someone confuses the two meanings, to say the least. Correcting for that, or adding more rules to the algorithm, such as “The word sick appears in proximity to positive emoji,” takes human oversight.

Moving Forward with AI

Today, AI excels at making biased data obvious, but that isn’t the same as eliminating it. It’s up to human beings to pay attention to the existence of bias and enlist AI to help avoid it. That goes beyond simply implementing AI to insisting that it meet benchmarks for positive impact. The business benefits of taking this step are—or soon will be—obvious.

In IDC FutureScapes’ webcast “Worldwide Big Data, Business Analytics, and Cognitive Software 2017 Predictions,” research director David Schubmehl predicted that by 2020 perceived bias and lack of evidentiary transparency in cognitive/AI solutions will create an activist backlash movement, with up to 10% of users backing away from the technology. However, Schubmehl also speculated that consumer and enterprise users of machine learning will be far more likely to trust AI’s recommendations and decisions if they understand how those recommendations and decisions are made. That means knowing what goes into the algorithms, how they arrive at their conclusions, and whether they deliver desired outcomes that are also legally and ethically fair.

Clearly, organizations that can address this concern explicitly will have a competitive advantage, but simply stating their commitment to using AI for good may not be enough. They also may wish to support academic efforts to research AI and bias, such as the annual Fairness, Accountability, and Transparency in Machine Learning (FATML) workshop, which was held for the third time in November 2016.

O’Neil, who blogs about data science and founded the Lede Program for Data Journalism, an intensive certification program at Columbia University, is going one step further. She is attempting to create an entirely new industry dedicated to auditing and monitoring algorithms to ensure that they not only reveal bias but actively eliminate it. She proposes the formation of groups of data scientists that evaluate supply chains for signs of forced labor, connect children at risk of abuse with resources to support their families, or alert people through a smartphone app when their credit scores are used to evaluate eligibility for something other than a loan.

As we begin to entrust AI with more complex and consequential decisions, organizations may also want to be proactive about ensuring that their algorithms do good—so that their companies can use AI to do well. D!

Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.


About the Authors:

Yvonne Baur is Head of Predictive Analytics for Sap SuccessFactors solutions.

Brenda Reid is Vice President of Product Management for Sap SuccessFactors solutions.

Steve Hunt is Senior Vice President of Human Capital Management Research for Sap SuccessFactors solutions.

Fawn Fitter is a freelance writer specializing in business and technology.

Comments

Tags:

2017: The Year Businesses Will Learn The True Meaning Of Digital Transformation

Hu Yoshida

Over the last 10 years, the exponential growth and power of technology have brought some fascinating, if not mind-bending, opportunities. Machines talk to one another with computer-connected humans on the other end observing, analyzing, and acting on the explosion of Big Data generated. Doctors use algorithms that mine patient history or genetic information to detect possible diagnoses and treatment. Cars are programmed with data-driven precision to direct drivers to the best-possible route to their destination. And even digital libraries for 3D parts are growing rapidly – possibly to the point where we can soon print whatever we need.

With all of this technology, it is common sense to believe that productivity would also rise over the same span of time. However, according to a recent 2016 productivity report released by the Organisation for Economic Co-operation and Development (OECD), this is, sadly, not the case. In fact, most advanced and emerging countries are experiencing declining growth that is cutting across nearly all sectors and affecting both large and small firms. But more interesting is the agency’s observation that this trend does not exclude areas where digital innovation is expected to improve information sharing, communication, and finance.

See how IT can help organizations shift to real-time operations. Read the EIU report.

Although nearly 5 billion people on our planet have a computer in their pocket or their hands at any moment of the day, our digital ways have not translated into productivity gains for the enterprise. The culprit? Businesses are not changing their processes to allow that technology to reach its full potential.

Technology alone does not bring real digital transformation

Every week, I hear how companies worldwide are so excited about their digital transformation initiatives. Some are developing their own applications or executing a new digital commerce strategy. Others may decide to deploy a new analytics tool. No matter the investment, there is always great hope for success. Yet, they often fall short because the focus is typically on how technology will change the business – not how the enterprise will change to fully embrace the digital innovation’s potential.

Take, for example, a bank’s decision to allow the loan process to be initiated through a mobile app or online store. The bank may receive the information from the consumer faster than ever before, but no real benefit is achieved if it still takes three weeks to approve or decline the loan request. Technology may be changing the customer experience online, but back-office processes are unaffected. The same old ways of work are still happening, and productivity is not improving. For a digital world where everything is supposed to be automatic and immediate, a customer will inevitably turn to a competitor that will approve the loan faster.

True digital transformation requires more than technology. Companies must evolve their processes with a keen focus on outcomes, not just infrastructure. All too often, they are focused on creating this sort of digital facade where it appears to be a digital experience for the customer, but, in reality, the back-office still has not caught up to support that level of digitization.

Deep digital transformation starts with process innovation

In the coming year, most companies will look to transition to real-time analytics that drives predictive decision-making and possibly draw from the Internet of Things. While this technology presents a clear opportunity for greater insight, organizations are no better off unless they transform business processes to act quickly on them.

Traditional data processes require days to move data from one database to another, process it, and generate reports in an easy-to-understand format. In-memory computing accelerates these processes from days and weeks to hours and minutes – paving the way for transformative power by moving decision-making closer to data generation. However, no matter how fast the analysis, no benefit is realized if downstream processes and decisions do not capitalize on the resulting insight. Like the loan process I mentioned earlier, you need to make sure that the back office and front office are aligned in order to produce improved business outcomes. Legacy systems and databases may still hinder the ability to achieve faster results, unless they are aligned with in-memory analytics.

The ability to modernize core systems with technologies like in-memory computing and innovative new applications can prove to be highly transformational. The key is to integrate these new technologies into an overall business architecture to support digital transformation and deliver real business improvements.

Are you ready to transform your business? Learn 4 Ways to Digitally Disrupt Your Business Without Destroying It.

Comments

Hu Yoshida

About Hu Yoshida

Hu Yoshida is responsible for defining the technical direction of Hitachi Data Systems. Currently, he leads the company's effort to help customers address data life cycle requirements and resolve compliance, governance and operational risk issues. He was instrumental in evangelizing the unique Hitachi approach to storage virtualization, which leveraged existing storage services within Hitachi Universal Storage Platform® and extended it to externally-attached, heterogeneous storage systems. Yoshida is well-known within the storage industry, and his blog has ranked among the "top 10 most influential" within the storage industry as evaluated by Network World. In October of 2006, Byte and Switch named him one of Storage Networking’s Heaviest Hitters and in 2013 he was named one of the "Ten Most Impactful Tech Leaders" by Information Week.