Email Etiquette: Reply-All Email Fails

Michael Brenner

We’ve all been there. With billions of emails sent every day and ubiquitous access to our in-boxes from many different devices at any time of day or night, there are bound to be a few instances of poor email behavior.

One of the biggest culprits is the Reply-All button. Reply-All lives in plain sight in our email clients, just sitting there every single day, waiting for its chance in the spotlight. However, the instances that appropriately call for Reply-All are few and far between.

Remember, hitting Reply sends a message just to the original sender who sent you the email. Hitting Reply-All sends your email to everybody who was included in the To: and cc: fields of the email to which you are replying. There are times when it is appropriate for just using Reply and times when it is appropriate to use Reply-All. Here are some general guidelines to help distinguish these situations and avoid any embarrassing faux pas.

When to use Reply

You should use the Reply option for the vast majority of your emails. Of course, if you are the only person receiving the original message it will not matter which reply button you use, since both option send to only the original sender.

Is the conversation private? Use Reply. Do you have a question that is meant for just one person in the group? Use Reply. Is there something in your message that you do not want others to see? Use Reply. Is there confidential or sensitive information in your message? Use Reply. Are you talking about somebody else that received the first message, but you do not want him or her to see what you write? Use Reply. (This one should seem obvious, but unfortunately it is not for many people.) Was the original message sent to dozens or hundreds of people and you are a decent human being who does not want to flood inboxes with a message that is not relevant to the majority of people on the thread? Use Reply.

When to use Reply-All

Pretty much never.

This advice might be a bit of an exaggeration, but in truth, situations where Reply-All is the appropriate choice are few and far between. When you use Reply-All, consider if you really need to be using it. If the message you are sending is important enough that you would retype it and send it individually to each person on the email thread if you had to, then Reply-All is probably an appropriate choice. Imagine that everybody on the email list is standing together in one room. Would you shout to get every person’s attention and then say the content of your email so everyone can hear? This is essentially what you are doing when you Reply-All, so if your answer is no, then Reply-All is probably not warranted.

Damage control

Even the most savvy email users make the mistake of hitting Reply-All from time to time. That’s okay; it happens to the best of us. There are a few things to consider to minimize the impact of this.

  • Use technology to help you be your best email self. Gmail has an amazing feature called Undo Send. When you enable it, all emails that you send are held for a few seconds (you can set the amount of time) before they are sent. This gives you the option of clicking “Undo Send” if you realize there is an error in your message or that you have accidentally sent a funny gif to the entire company when you had intended to send it only to your work best friend. Other options include hiding the Reply-All button in Outlook entirely or using a third-party service that acts as an intermediary, allowing you to delete your emails after they have been sent.
  • Understand how listservs work. A listserv is a way to send an email to a large group of people without typing in everybody’s address. It will appear that only one person is receiving the email, but in reality the email is distributed to everybody. Replying to a listserv (using either the Reply OR Reply-All button) can be the same as replying to everybody on the list. If you see an address that is something like or, be very careful how you reply. Some listservs allow any recipient to reply to the whole group, while some only give this permission to certain people.
  • BCC and self-control are your friends. BCC is a very effective way to manage Reply-All abuse before it happens. If you need to send a group email, such as an announcement that everyone needs to read, but you do not want people replying to the whole group, then enter everybody’s address into the BCC field. This way, recipients will only be able to see themselves (and the sender) on the message and not the other recipients. And of course, when in doubt, ask yourself, “Do I need to be Replying-All to this?”

Thoughtful email behavior can make for a more pleasant and productive workplace. Reply-All misbehavior affects us all. Be part of the solution.

Is your Inbox out of control? See 4 Strategies To Get Control Of Your Email.


About Michael Brenner

Michael Brenner is a globally-recognized keynote speaker, author of  The Content Formula and the CEO of Marketing Insider GroupHe has worked in leadership positions in sales and marketing for global brands like SAP and Nielsen, as well as for thriving startups. Today, Michael shares his passion on leadership and marketing strategies that deliver customer value and business impact. He is recognized by the Huffington Post as a Top Business Keynote Speaker and   a top  CMO influencer by Forbes.

Mitigating The Brain Drain Of The Chemical Industry

John Harrison

Burdened by an aging workforce, the chemical industry is facing a serious brain drain – and this is creating a host of problems related to HR and compliance.

Manufacturing Automation reports that more than 20% of the chemical industry’s workforce will approach retirement in the next three to five years. If this aging-workforce problem is not resolved within this timeframe, chemical companies’ profitability will suffer significantly.

Per the American Chemical Council, this could mean more unplanned disruptions, more hiring and training costs, and more efforts to maintain safety. Increasing the need for expanding the workforce is shale gas utilization, which is changing the U.S. from a high-cost producer to one of the lowest-cost global producers. ACC president and CEO Cal Dooley says, “it’s vital that we be able to attract and retain a talented workforce that helps us to continue to drive economic expansion, innovation, and global competitiveness.”

To compensate, chemical companies are using more contractors and service providers to supplement the diminishing workforce, which increases compliance risks. Chemical companies that adopt digital solutions are well positioned to mitigate these risks, especially in the areas of product development, processes, and business modeling.

Digital transformation

Clearly, digital technology has vast implications for the chemical industry because it can help simplify complex processes. Today, core business elements are connecting to each other like never before. Platforms link products, equipment, and employees. Suppliers and customers connect to chemical firms. These connected systems offer new opportunities for collaboration. Processes improve at a faster rate. Productivity grows across the company.

A new frontier

Computing advances offer solutions not possible only a few years ago. Predictive maintenance schedules and quality control are now a reality. Supply-chain efficiency and market-driven pricing are easier to put in place. New profit centers are emerging.

In addition, cloud computing offers vast storage capacity at affordable rates. These structures broaden information sharing and simplify analysis and reporting.

The Internet of Things (IoT) is another factor to consider. The IoT connects products, equipment, and other devices together with sensors, software, and wireless technology. These devices detect, store, and report data on a massive scale. In essence, your “things” are now smart and connected.

Chemical work, redefined

These improvements allow meaningful changes to the way chemical firms work. In addition, digital solutions play a major role in solving the aging-workforce issue by reducing the workload and ensuring companies comply with regulations. For forward-looking companies, technology changes the nature of work in ways including:

Floor operations: Smart, connected machines improve accuracy and safety on the shop floor. Operations are more precise with the use of machines connected to database systems. Predictive systems control or support operational instructions. Self-learning systems interact with machinery and business processes.

Digital back offices: Many support functions are evolving or now digitized. Procurement and invoicing are no longer siloed activities. This new digital space integrates inventory management, accounting (e.g., invoice reconciliation), and human resources. Analytics tools take digitized data from processes in real time. Insights and reporting are immediately available. Employees are presented with more information and can make decisions faster. Technologies like machine learning become commercially viable options to augment people’s ability through data.

Accuracy, security, and compliance

To understand how digital growth relates to compliance, let’s look at one example where contractors and compliance meet. Chemical labeling systems often cause major headaches. Labeling systems vary in many ways. Differences in process and format can change by department and region.

These variables challenge consistency and control standards across a company, but enterprise-wide systems offer a solution. Such systems ensure consistency, compliance, and security. As guidelines change, there’s an urgent need to change and manage label data fast. With smart technology, firms can share data and changes with remote contractors and suppliers.

These systems allow all locations to manage changes and reduce downtime. Business processes scaled across the globe ensure consistency across the enterprise.

Version-control systems and documentation are important regulatory issues. Firms need systems to chart approvals, workflow, and revision history. These modern systems connect data from all sources.

Firms today share data with contractors worldwide. This integration of corporate and partner data requires accurate label printing. Central printing oversight offers global supply chain consistency. Manual and redundant label data entry disappears.

Labeling systems now can share business rules with contractors and suppliers. With leaner workforces, these systems reduce delays caused by global variances.

Differences in regulations are a challenge to compliance. Different image requirements, formats, and language complicate the issue. As a solution, single-source systems incorporate these variables centrally. Different format and printer standards are tracked at the firm level. Labor is free to work in other areas.

Shared data is another advantage. Automation allows data to be linked from different systems. Now safety and quality control info is tied to performance. Inventory and supply chain data links to orders and sales.

Contract employees can sign off on regulatory mandates in remote locations and affirm procedures. Smart devices prevent tampering and alert contractors of safety issues in real time.

Fleet of foot

Digital advances in fleet and stock management also improve compliance, even with fewer employees on the payroll. Systems and sensors can better match demand with supply. External market intelligence can be factored into the forecasting process.

Transportation systems become more agile. The ability to respond to customer needs increases and new markets emerge globally.

Fewer personnel costs

One other consideration is the use of basic mobile and social media tech. Leveraging these tools lets contractors and staff communicate directly. An engaged workforce can collaborate in new ways. Integrated platforms offer the right information at the right time. The right people see it. The right decisions are made.

Cloud-based content management systems streamline training. Enterprise compliance tools reduce risk and boost performance. Cloud-based talent management systems track rising stars. Hiring and training costs drop for new hires and contractors.

Improved safety

With an aging workforce and new employees coming onboard, accidents and other workplace incidents are expected to increase. The U.S. government estimates that by 2024, older workers will account for 25% of the labor market. The recent economic recession combined with longer life expectancy and changes to retirement and pension plans have increased the average retirement age to 67.

Aging – and the physical changes associated with it – “could potentially make a workplace injury into a much more serious injury or a potentially fatal injury,” says Ken Scott, an epidemiologist with the Denver Public Health Department.

Including workers in the digital corporation via wearable sensors is now a reality. Knowing when there has been an incident (e.g., a fall or an exposure to an environmental hazard) instantly allows for a faster response. With the additional data being gathered, predictive algorithms and machine learning can identify safety concerns and help a company be proactive in reducing safety risks and severity. Since older workers take longer to recover from an injury, speeding the response and reducing severity benefit both the worker and the company through reduced lost work time and related costs.

What it means

In short, the connected chemical company lets employees everywhere connect. This strengthens compliance through shared datasets and consistent processes.

Learn how to innovate at scale by incorporating individual innovations back to the core business to drive tangible business value by reading Accelerating Digital Transformation in Chemicals. Explore how to bring Industry 4.0 insights into your business today by reading Industry 4.0: What’s Next?


From Stone Axes To Space Shuttles: The Human Capacity To Innovate

Guenter Pecht-Seibert

The Russian-made BURAN space shuttle was one of the most ambitious projects in the history of Russian space flight. It accomplished something NASA has never been able to replicate: launching and landing like a plane. It did atmospheric flights throughout the 1980’s. Looking at the cockpit of the original OK-GLI shuttle today reveals something fascinating: Humans went to the edges of the earth’s atmosphere largely with the help of gauges, dials, and buttons – but nothing digital.

Fast-forward to the year 2018, and it seems unthinkable for any successful enterprise in any industry to run without a sophisticated digital cockpit.

In today’s hyper-accelerated digital world, businesses are challenged to rethink their processes, their competition, even their entire industries. Marketplaces have evolved to become more efficient, so process efficiency is not what keeps business leaders awake at night anymore. The next frontier is digital innovation.

As artificial intelligence begins to shape entirely new workplaces, organizations are keen to advance their levels of automation. But in so doing, they shouldn’t lose sight of what makes them truly innovative – the fact that we’re simply human. That unique, creative, irreverent, irrational spirit that compelled humans to hurl themselves into space – that’s what fuels innovation. Tapping that spirit, sustaining it and creating an organizational culture where it can thrive, will be a key competitive advantage in the age of automation. It’s what I learned in my own journey to adopt new work approaches for the 21st century.

To innovate, become an organizational architect

Leading a team of software innovators challenges me to think a lot about how to foster that human ability to innovate. That means creating an environment where people can make decisions with the future in mind.  Essentially, like an organizational architect – I’ve taken steps to build a team structure that fosters “humanness.“ Here are some of the ways we are experimenting with new work approaches. 

The power of 6 versus the power of 1

Hierarchies tend to stifle innovation. Ideas often die on their way up the hierarchy when decisions are made by people who are not domain experts and have vested interests in maintaining the status quo. To make sure that the best ideas don’t “die on the vine,” I established an Innovation Board. That’s 6 people – including myself – who each share a slice of decision-making power. The board is a cross-section of the entire team from software development, business development, go-to-market, operations, and product portfolio expertise. We meet regularly to discuss and vote on planned ideas for new technology solutions. Each Innovation Board member has one vote. All votes are equal. That means giving up the power of one (mine), so that collective wisdom wins.

Problem-finding as opposed to problem-solving

As humans, we outpace algorithms in our ability to understand problems within a context. The empathy to understand a customer need, to define a business problem, and to identify an opportunity is something we humans do uniquely well. We are masters at finding the problems that we want to solve. So, taking a close look at how we manage our problem-finding process is key to innovating. We use the Innovation Board to bring together people from different areas who see potential opportunities through different lenses. That means you don’t need to be a people manager to sit on the Board. Functional contributors and experts must be at the decision-making table in the workplace of the future. By iterating as a group, we are able to find new problems to solve and new business opportunities. 

Transparency can be a bitter pill to swallow

One of the hardest lessons we learned is that while innovation requires a transparent information-sharing culture, it also needs to make sure people feel safe, confident, and valued, even when their ideas are rejected. In the early days of our Innovation Board meetings, we lived the principle of 100% transparency. All members of the unit could take part in the meetings. Discussions and decisions were open and documents were accessible to all. This led to a greater sense of accountability, high quality of idea pitches, and high participation.

But it also had a downside. People whose ideas were not approved sometimes left the meeting feeling demotivated. In trying to be more transparent, we didn’t give enough attention to exactly that which makes us uniquely human – feelings. To counterbalance this, we did “retrospective sessions,” talking to team members to understand the disconnect better. We discovered that the Innovation Board had failed to provide a safety net for people and we needed to work on our feedback skills. We also needed to rethink the process of making and communicating decisions. Focusing on transparency without focusing on emotional safety can damage trust. As the organizational architect, I needed to take responsibility, apologize, and ensure we reacted to the feedback to win back trust.

Manager versus machine

I needed to adjust my leadership style and adopt more empowering and enabling approaches that included facilitating group collaboration, demonstrating concern for people, championing change, and offering critical perspectives in respectful and validating ways. That made me more alert to our competitive advantage as humans over the machine: our ability to understand and activate group dynamics. It’s that ability to cooperate, find problems to solve, adapt to changing situations, and think critically that inspired humans go from making stone axes to space shuttles, to automating almost everything.

For more on the human element in innovation, see Why The “U” In Human Will Matter Even More In An AI-Infused World.


Guenter Pecht-Seibert

About Guenter Pecht-Seibert

Guenter Pecht-Seibert is Global Vice President of the Future of Work at SAP Innovative Business Solutions. Guenter and his team understand that yesterday’s rules don’t apply to the future of work. They help organizations leave 19th-century management practices behind, and replace them with technology solutions and management practices that make innovation real for the 21st century.

The Blockchain Solution

By Gil Perez, Tom Raftery, Hans Thalbauer, Dan Wellers, and Fawn Fitter

In 2013, several UK supermarket chains discovered that products they were selling as beef were actually made at least partly—and in some cases, entirely—from horsemeat. The resulting uproar led to a series of product recalls, prompted stricter food testing, and spurred the European food industry to take a closer look at how unlabeled or mislabeled ingredients were finding their way into the food chain.

By 2020, a scandal like this will be eminently preventable.

The separation between bovine and equine will become immutable with Internet of Things (IoT) sensors, which will track the provenance and identity of every animal from stall to store, adding the data to a blockchain that anyone can check but no one can alter.

Food processing companies will be able to use that blockchain to confirm and label the contents of their products accordingly—down to the specific farms and animals represented in every individual package. That level of detail may be too much information for shoppers, but they will at least be able to trust that their meatballs come from the appropriate species.

The Spine of Digitalization

Keeping food safer and more traceable is just the beginning, however. Improvements in the supply chain, which have been incremental for decades despite billions of dollars of technology investments, are about to go exponential. Emerging technologies are converging to transform the supply chain from tactical to strategic, from an easily replicable commodity to a new source of competitive differentiation.

You may already be thinking about how to take advantage of blockchain technology, which makes data and transactions immutable, transparent, and verifiable (see “What Is Blockchain and How Does It Work?”). That will be a powerful tool to boost supply chain speed and efficiency—always a worthy goal, but hardly a disruptive one.

However, if you think of blockchain as the spine of digitalization and technologies such as AI, the IoT, 3D printing, autonomous vehicles, and drones as the limbs, you have a powerful supply chain body that can leapfrog ahead of its competition.

What Is Blockchain and How Does It Work?

Here’s why blockchain technology is critical to transforming the supply chain.

Blockchain is essentially a sequential, distributed ledger of transactions that is constantly updated on a global network of computers. The ownership and history of a transaction is embedded in the blockchain at the transaction’s earliest stages and verified at every subsequent stage.

A blockchain network uses vast amounts of computing power to encrypt the ledger as it’s being written. This makes it possible for every computer in the network to verify the transactions safely and transparently. The more organizations that participate in the ledger, the more complex and secure the encryption becomes, making it increasingly tamperproof.

Why does blockchain matter for the supply chain?

  • It enables the safe exchange of value without a central verifying partner, which makes transactions faster and less expensive.
  • It dramatically simplifies recordkeeping by establishing a single, authoritative view of the truth across all parties.
  • It builds a secure, immutable history and chain of custody as different parties handle the items being shipped, and it updates the relevant documentation.
  • By doing these things, blockchain allows companies to create smart contracts based on programmable business logic, which can execute themselves autonomously and thereby save time and money by reducing friction and intermediaries.

Hints of the Future

In the mid-1990s, when the World Wide Web was in its infancy, we had no idea that the internet would become so large and pervasive, nor that we’d find a way to carry it all in our pockets on small slabs of glass.

But we could tell that it had vast potential.

Today, with the combination of emerging technologies that promise to turbocharge digital transformation, we’re just beginning to see how we might turn the supply chain into a source of competitive advantage (see “What’s the Magic Combination?”).

What’s the Magic Combination?

Those who focus on blockchain in isolation will miss out on a much bigger supply chain opportunity.

Many experts believe emerging technologies will work with blockchain to digitalize the supply chain and create new business models:

  • Blockchain will provide the foundation of automated trust for all parties in the supply chain.
  • The IoT will link objects—from tiny devices to large machines—and generate data about status, locations, and transactions that will be recorded on the blockchain.
  • 3D printing will extend the supply chain to the customer’s doorstep with hyperlocal manufacturing of parts and products with IoT sensors built into the items and/or their packaging. Every manufactured object will be smart, connected, and able to communicate so that it can be tracked and traced as needed.
  • Big Data management tools will process all the information streaming in around the clock from IoT sensors.
  • AI and machine learning will analyze this enormous amount of data to reveal patterns and enable true predictability in every area of the supply chain.

Combining these technologies with powerful analytics tools to predict trends will make lack of visibility into the supply chain a thing of the past. Organizations will be able to examine a single machine across its entire lifecycle and identify areas where they can improve performance and increase return on investment. They’ll be able to follow and monitor every component of a product, from design through delivery and service. They’ll be able to trigger and track automated actions between and among partners and customers to provide customized transactions in real time based on real data.

After decades of talk about markets of one, companies will finally have the power to create them—at scale and profitably.

Amazon, for example, is becoming as much a logistics company as a retailer. Its ordering and delivery systems are so streamlined that its customers can launch and complete a same-day transaction with a push of a single IP-enabled button or a word to its ever-attentive AI device, Alexa. And this level of experimentation and innovation is bubbling up across industries.

Consider manufacturing, where the IoT is transforming automation inside already highly automated factories. Machine-to-machine communication is enabling robots to set up, provision, and unload equipment quickly and accurately with minimal human intervention. Meanwhile, sensors across the factory floor are already capable of gathering such information as how often each machine needs maintenance or how much raw material to order given current production trends.

Once they harvest enough data, businesses will be able to feed it through machine learning algorithms to identify trends that forecast future outcomes. At that point, the supply chain will start to become both automated and predictive. We’ll begin to see business models that include proactively scheduling maintenance, replacing parts just before they’re likely to break, and automatically ordering materials and initiating customer shipments.

Italian train operator Trenitalia, for example, has put IoT sensors on its locomotives and passenger cars and is using analytics and in-memory computing to gauge the health of its trains in real time, according to an article in Computer Weekly. “It is now possible to affordably collect huge amounts of data from hundreds of sensors in a single train, analyse that data in real time and detect problems before they actually happen,” Trenitalia’s CIO Danilo Gismondi told Computer Weekly.

Blockchain allows all the critical steps of the supply chain to go electronic and become irrefutably verifiable by all the critical parties within minutes: the seller and buyer, banks, logistics carriers, and import and export officials.

The project, which is scheduled to be completed in 2018, will change Trenitalia’s business model, allowing it to schedule more trips and make each one more profitable. The railway company will be able to better plan parts inventories and determine which lines are consistently performing poorly and need upgrades. The new system will save €100 million a year, according to ARC Advisory Group.

New business models continue to evolve as 3D printers become more sophisticated and affordable, making it possible to move the end of the supply chain closer to the customer. Companies can design parts and products in materials ranging from carbon fiber to chocolate and then print those items in their warehouse, at a conveniently located third-party vendor, or even on the client’s premises.

In addition to minimizing their shipping expenses and reducing fulfillment time, companies will be able to offer more personalized or customized items affordably in small quantities. For example, clothing retailer Ministry of Supply recently installed a 3D printer at its Boston store that enables it to make an article of clothing to a customer’s specifications in under 90 minutes, according to an article in Forbes.

This kind of highly distributed manufacturing has potential across many industries. It could even create a market for secure manufacturing for highly regulated sectors, allowing a manufacturer to transmit encrypted templates to printers in tightly protected locations, for example.

Meanwhile, organizations are investigating ways of using blockchain technology to authenticate, track and trace, automate, and otherwise manage transactions and interactions, both internally and within their vendor and customer networks. The ability to collect data, record it on the blockchain for immediate verification, and make that trustworthy data available for any application delivers indisputable value in any business context. The supply chain will be no exception.

Blockchain Is the Change Driver

The supply chain is configured as we know it today because it’s impossible to create a contract that accounts for every possible contingency. Consider cross-border financial transfers, which are so complex and must meet so many regulations that they require a tremendous number of intermediaries to plug the gaps: lawyers, accountants, customer service reps, warehouse operators, bankers, and more. By reducing that complexity, blockchain technology makes intermediaries less necessary—a transformation that is revolutionary even when measured only in cost savings.

“If you’re selling 100 items a minute, 24 hours a day, reducing the cost of the supply chain by just $1 per item saves you more than $52.5 million a year,” notes Dirk Lonser, SAP go-to-market leader at DXC Technology, an IT services company. “By replacing manual processes and multiple peer-to-peer connections through fax or e-mail with a single medium where everyone can exchange verified information instantaneously, blockchain will boost profit margins exponentially without raising prices or even increasing individual productivity.”

But the potential for blockchain extends far beyond cost cutting and streamlining, says Irfan Khan, CEO of supply chain management consulting and systems integration firm Bristlecone, a Mahindra Group company. It will give companies ways to differentiate.

“Blockchain will let enterprises more accurately trace faulty parts or products from end users back to factories for recalls,” Khan says. “It will streamline supplier onboarding, contracting, and management by creating an integrated platform that the company’s entire network can access in real time. It will give vendors secure, transparent visibility into inventory 24×7. And at a time when counterfeiting is a real concern in multiple industries, it will make it easy for both retailers and customers to check product authenticity.”

Blockchain allows all the critical steps of the supply chain to go electronic and become irrefutably verifiable by all the critical parties within minutes: the seller and buyer, banks, logistics carriers, and import and export officials. Although the key parts of the process remain the same as in today’s analog supply chain, performing them electronically with blockchain technology shortens each stage from hours or days to seconds while eliminating reams of wasteful paperwork. With goods moving that quickly, companies have ample room for designing new business models around manufacturing, service, and delivery.

Challenges on the Path to Adoption

For all this to work, however, the data on the blockchain must be correct from the beginning. The pills, produce, or parts on the delivery truck need to be the same as the items listed on the manifest at the loading dock. Every use case assumes that the data is accurate—and that will only happen when everything that’s manufactured is smart, connected, and able to self-verify automatically with the help of machine learning tuned to detect errors and potential fraud.

Companies are already seeing the possibilities of applying this bundle of emerging technologies to the supply chain. IDC projects that by 2021, at least 25% of Forbes Global 2000 (G2000) companies will use blockchain services as a foundation for digital trust at scale; 30% of top global manufacturers and retailers will do so by 2020. IDC also predicts that by 2020, up to 10% of pilot and production blockchain-distributed ledgers will incorporate data from IoT sensors.

Despite IDC’s optimism, though, the biggest barrier to adoption is the early stage level of enterprise use cases, particularly around blockchain. Currently, the sole significant enterprise blockchain production system is the virtual currency Bitcoin, which has unfortunately been tainted by its associations with speculation, dubious financial transactions, and the so-called dark web.

The technology is still in a sufficiently early stage that there’s significant uncertainty about its ability to handle the massive amounts of data a global enterprise supply chain generates daily. Never mind that it’s completely unregulated, with no global standard. There’s also a critical global shortage of experts who can explain emerging technologies like blockchain, the IoT, and machine learning to nontechnology industries and educate organizations in how the technologies can improve their supply chain processes. Finally, there is concern about how blockchain’s complex algorithms gobble computing power—and electricity (see “Blockchain Blackouts”).

Blockchain Blackouts

Blockchain is a power glutton. Can technology mediate the issue?

A major concern today is the enormous carbon footprint of the networks creating and solving the algorithmic problems that keep blockchains secure. Although virtual currency enthusiasts claim the problem is overstated, Michael Reed, head of blockchain technology for Intel, has been widely quoted as saying that the energy demands of blockchains are a significant drain on the world’s electricity resources.

Indeed, Wired magazine has estimated that by July 2019, the Bitcoin network alone will require more energy than the entire United States currently uses and that by February 2020 it will use as much electricity as the entire world does today.

Still, computing power is becoming more energy efficient by the day and sticking with paperwork will become too slow, so experts—Intel’s Reed among them—consider this a solvable problem.

“We don’t know yet what the market will adopt. In a decade, it might be status quo or best practice, or it could be the next Betamax, a great technology for which there was no demand,” Lonser says. “Even highly regulated industries that need greater transparency in the entire supply chain are moving fairly slowly.”

Blockchain will require acceptance by a critical mass of companies, governments, and other organizations before it displaces paper documentation. It’s a chicken-and-egg issue: multiple companies need to adopt these technologies at the same time so they can build a blockchain to exchange information, yet getting multiple companies to do anything simultaneously is a challenge. Some early initiatives are already underway, though:

  • A London-based startup called Everledger is using blockchain and IoT technology to track the provenance, ownership, and lifecycles of valuable assets. The company began by tracking diamonds from mine to jewelry using roughly 200 different characteristics, with a goal of stopping both the demand for and the supply of “conflict diamonds”—diamonds mined in war zones and sold to finance insurgencies. It has since expanded to cover wine, artwork, and other high-value items to prevent fraud and verify authenticity.
  • In September 2017, SAP announced the creation of its SAP Leonardo Blockchain Co-Innovation program, a group of 27 enterprise customers interested in co-innovating around blockchain and creating business buy-in. The diverse group of participants includes management and technology services companies Capgemini and Deloitte, cosmetics company Natura Cosméticos S.A., and Moog Inc., a manufacturer of precision motion control systems.
  • Two of Europe’s largest shipping ports—Rotterdam and Antwerp—are working on blockchain projects to streamline interaction with port customers. The Antwerp terminal authority says eliminating paperwork could cut the costs of container transport by as much as 50%.
  • The Chinese online shopping behemoth Alibaba is experimenting with blockchain to verify the authenticity of food products and catch counterfeits before they endanger people’s health and lives.
  • Technology and transportation executives have teamed up to create the Blockchain in Transport Alliance (BiTA), a forum for developing blockchain standards and education for the freight industry.

It’s likely that the first blockchain-based enterprise supply chain use case will emerge in the next year among companies that see it as an opportunity to bolster their legal compliance and improve business processes. Once that happens, expect others to follow.

Customers Will Expect Change

It’s only a matter of time before the supply chain becomes a competitive driver. The question for today’s enterprises is how to prepare for the shift. Customers are going to expect constant, granular visibility into their transactions and faster, more customized service every step of the way. Organizations will need to be ready to meet those expectations.

If organizations have manual business processes that could never be automated before, now is the time to see if it’s possible. Organizations that have made initial investments in emerging technologies are looking at how their pilot projects are paying off and where they might extend to the supply chain. They are starting to think creatively about how to combine technologies to offer a product, service, or business model not possible before.

A manufacturer will load a self-driving truck with a 3D printer capable of creating a customer’s ordered item en route to delivering it. A vendor will capture the market for a socially responsible product by allowing its customers to track the product’s production and verify that none of its subcontractors use slave labor. And a supermarket chain will win over customers by persuading them that their choice of supermarket is also a choice between being certain of what’s in their food and simply hoping that what’s on the label matches what’s inside.

At that point, a smart supply chain won’t just be a competitive edge. It will become a competitive necessity. D!

About the Authors

Gil Perez is Senior Vice President, Internet of Things and Digital Supply Chain, at SAP.

Tom Raftery is Global Vice President, Futurist, and Internet of Things Evangelist, at SAP.

Hans Thalbauer is Senior Vice President, Internet of Things and Digital Supply Chain, at SAP.

Dan Wellers is Global Lead, Digital Futures, at SAP.

Fawn Fitter is a freelance writer specializing in business and technology.

Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.



The Differences Between Machine Learning And Predictive Analytics

Shaily Kumar

Many people are confused about the specifics of machine learning and predictive analytics. Although they are both centered on efficient data processing, there are many differences.

Machine learning

Machine learning is a method of computational learning underlying most artificial intelligence (AI) applications. In ML, systems or algorithms improve themselves through data experience without relying on explicit programming. ML algorithms are wide-ranging tools capable of carrying out predictions while simultaneously learning from over trillions of observations.

Machine learning is considered a modern-day extension of predictive analytics. Efficient pattern recognition and self-learning are the backbones of ML models, which automatically evolve based on changing patterns in order to enable appropriate actions.

Many companies today depend on machine learning algorithms to better understand their clients and potential revenue opportunities. Hundreds of existing and newly developed machine learning algorithms are applied to derive high-end predictions that guide real-time decisions with less reliance on human intervention.

Business application of machine learning: employee satisfaction

One common, uncomplicated, yet successful business application of machine learning is measuring real-time employee satisfaction.

Machine learning applications can be highly complex, but one that’s both simple and very useful for business is a machine learning algorithm that compares employee satisfaction ratings to salaries. Instead of plotting a predictive satisfaction curve against salary figures for various employees, as predictive analytics would suggest, the algorithm assimilates huge amounts of random training data upon entry, and the prediction results are affected by any added training data to produce real-time accuracy and more helpful predictions.

This machine learning algorithm employs self-learning and automated recalibration in response to pattern changes in the training data, making machine learning more reliable for real-time predictions than other AI concepts. Repeatedly increasing or updating the bulk of training data guarantees better predictions.

Machine learning can also be implemented in image classification and facial recognition with deep learning and neural network techniques.

Predictive analytics

Predictive analytics can be defined as the procedure of condensing huge volumes of data into information that humans can understand and use. Basic descriptive analytic techniques include averages and counts. Descriptive analytics based on obtaining information from past events has evolved into predictive analytics, which attempts to predict the future based on historical data.

This concept applies complex techniques of classical statistics, like regression and decision trees, to provide credible answers to queries such as: ‘’How exactly will my sales be influenced by a 10% increase in advertising expenditure?’’ This leads to simulations and “what-if” analyses for users to learn more.

All predictive analytics applications involve three fundamental components:

  • Data: The effectiveness of every predictive model strongly depends on the quality of the historical data it processes.
  • Statistical modeling: Includes the various statistical techniques ranging from basic to complex functions used for the derivation of meaning, insight, and inference. Regression is the most commonly used statistical technique.
  • Assumptions: The conclusions drawn from collected and analyzed data usually assume the future will follow a pattern related to the past.

Data analysis is crucial for any business en route to success, and predictive analytics can be applied in numerous ways to enhance business productivity. These include things like marketing campaign optimization, risk assessment, market analysis, and fraud detection.

Business application of predictive analytics: marketing campaign optimization

In the past, valuable marketing campaign resources were wasted by businesses using instincts alone to try to capture market niches. Today, many predictive analytic strategies help businesses identify, engage, and secure suitable markets for their services and products, driving greater efficiency into marketing campaigns.

A clear application is using visitors’ search history and usage patterns on e-commerce websites to make product recommendations. Sites like Amazon increase their chance of sales by recommending products based on specific consumer interests. Predictive analytics now plays a vital role in the marketing operations of real estate, insurance, retail, and almost every other sector.

How machine learning and predictive analytics are related

While businesses must understand the differences between machine learning and predictive analytics, it’s just as important to know how they are related. Basically, machine learning is a predictive analytics branch. Despite having similar aims and processes, there are two main differences between them:

  • Machine learning works out predictions and recalibrates models in real-time automatically after design. Meanwhile, predictive analytics works strictly on “cause” data and must be refreshed with “change” data.
  • Unlike machine learning, predictive analytics still relies on human experts to work out and test the associations between cause and outcome.

Explore machine learning applications and AI software with SAP Leonardo.


Shaily Kumar

About Shaily Kumar

Shailendra has been on a quest to help organisations make money out of data and has generated an incremental value of over one billion dollars through analytics and cognitive processes. With a global experience of more than two decades, Shailendra has worked with a myriad of Corporations, Consulting Services and Software Companies in various industries like Retail, Telecommunications, Financial Services and Travel - to help them realise incremental value hidden in zettabytes of data. He has published multiple articles in international journals about Analytics and Cognitive Solutions; and recently published “Making Money out of Data” which showcases five business stories from various industries on how successful companies make millions of dollars in incremental value using analytics. Prior to joining SAP, Shailendra was Partner / Analytics & Cognitive Leader, Asia at IBM where he drove the cognitive business across Asia. Before joining IBM, he was the Managing Director and Analytics Lead at Accenture delivering value to its clients across Australia and New Zealand. Coming from the industry, Shailendra held key Executive positions driving analytics at Woolworths and Coles in the past.