Sections

The (Not-So) Secret Behind Real-Time Access To Actuals

Brian Kalish

Part 3 in the Dynamic Planning Series

The whole strength of the dynamic planning concept is the ability to gain insights about the organization at a frequency greater than the annual planning cycle. To gain these insights, however, there needs to be a way to access data on a company-wide basis, in real time. We need access to actuals to give us the clearest picture of the true state of the organization at anytime from anywhere.

The goal is to gather data, convert that data into information, transform that information into knowledge, and then use that knowledge to make better, smarter decisions faster—in this case, with a focus on the planning process.

There was a time (in the not-too-distant past) when we either couldn’t gain access to the data (there was no way to capture it); it was prohibitively expensive (we would like to know, but the cost outweighed the benefit); or it wasn’t available in a timely manner. The technological advances of the past 20+ years have provided us with access to data that is, for all intents and purposes, unlimited, free, and immediate.

The challenge before us is how to leverage that data in a useful and productive manner. We need to find ways to increase efficiency, lower costs, minimize waste and error, and increase our ability to provide valuable insight and foresight.

Integrating planning and ERP data

For most organizations, one of the best sources of purest data resides in enterprise resource planning (ERP) software. Though ERP technology was introduced in the 1960s, it still makes up the core of the informational infrastructure.

ERP is designed and optimized for back-office transaction processing and operational process support. The benefits of using ERP as a data source include its all-inclusiveness, security, centralization, and timeliness. Its basic goal is to provide one central repository for all information that is shared by all of the various ERP components to improve the flow of data across the organization. This approach supports a global, real-time view of the data that will provide a single source of the truth. By integrating dynamic planning software with ERP to create a single platform, the benefits are multifaceted.

Integrating the software improves efficiency. Working in silos only invites inefficient and disjointed processes; it increases errors and takes time away from higher-value work. Eliminating activities like sourcing, extracting, and verifying data improves flexibility and productivity. Think of all the time your organization can save when people don’t have to worry about whether they are looking at the “right” data. This way, every employee is operating at optimal productivity.

Operating on a single platform

Running planning and ERP software on a single platform avoids multiple, overlapping databases, which inhibit timely access to data. Operating on multiple platforms invites complexity and additional maintenance and management costs; updating just one system means spending resources making sure the links and bridges between all the systems are still intact and valid.

In short, integration permits you to make critical decisions more quickly with better information.

A single financial platform provides a global, real-time view of data, allowing you to proactively address potential opportunities and risks. In addition, your organization gains improved business insights from real-time data, and lowers operational costs through more streamlined business practices. With the advantages inherent in a consistent infrastructure, you can reduce risk through improved data integrity, and finally, lower management and operational costs.

Tune in to my next blog to learn about how to make use of this instant access to actuals, and learn more about dynamic planning with this research paper.

Follow SAP Finance online: @SAPFinance (Twitter)  | LinkedIn | FacebookYouTube

 

Comments

Brian Kalish

About Brian Kalish

Brian Kalish is founder and principal at Kalish Consulting. As a public speaker and writer addressing many of the most topical issues facing treasury and FP&A professionals today, he is passionately committed to building and connecting the global FP&A community. He hosts FP&A Roundtable meetings in North America, Europe, Asia, and South America. Brian is former executive director of the global FP&A Practice at AFP. He has over 20 years experience in finance, FP&A, treasury, and investor relations. Before joining AFP, he held a number of treasury and finance positions with the FHLB, Washington Mutual/JP Morgan, NRUCFC, Fifth Third Bank, and Fannie Mae. Brian attended Georgia Tech in Atlanta, GA for his undergraduate studies and the Pamplin College of Business at Virginia Tech for his graduate work. In 2014, Brian was awarded the Global Certified Corporate FP&A Professional designation.

The CFO Role In 2020

Estelle Lagorce

African American businessman looking out office window --- Image by © Mark Edward Atkinson/Blend Images/CorbisThe role of the CFO is undergoing a serious transformation, and CFOs can expect their role to continue to evolve, according to a recent CFO.com article by Deloitte COO and CFO Frank Friedman.

In the futurist article, Friedman says one of the biggest factors that will contribute to the CFO’s significant change over the next five years is technology.

Digital technology is obviously expected to drive change in high-tech companies, but Friedman says it’s industries outside of the tech sectors that are of particular interest, as they struggle to understand how to grasp and harness the digital capabilities available to them.

Working with high tech in low-tech industries

Five years from now, a finance team may be defined by how well it uses technology and innovative business tools, regardless of what industry it’s in. The article outlines some examples of ways that digital technology will increasingly be used by CFOs in “non-tech” sectors:

  • Predictive analytics: CFOs in manufacturing companies can forecast results and produce revenue predictions based on customer-experience profiles and current demand, instead of comparing to previous years as most companies still do today.
  • Social media and crowdsourcing: You may not think CFOs spend a lot of time on social media or crowdsourcing sites, but these methods can actually expedite finance processes, such as month-end responsibilities of the finance organization.
  • Big Data: CFOs already have a lot of data at their fingertips, but in 2020 they will have even more. CFOs in both tech and non-tech sectors who understand how to use that data to make valuable, informed decisions, can strategically guide their company and industry in a more digitally oriented world.

To do this, Friedman says CFOs can lead the way by addressing some critical areas:

  1. Know the issues: Gather the key questions that leaders expect Big Data analytics to answer.
  1. Make data easily accessible: Collect data that is manageable and easy to access.
  1. Broaden skills: The finance team needs people with the skills to understand and strategically interpret the data available to them.

The tech-savvy CFO

The role of today’s CFO has already expanded to include strategic corporate growth advice as well as managing the bottom line. In 2020, Friedman says expectations placed on the CFO are presumed to be even greater, and CFOs will likely need a much more diverse, multidisciplinary skill set to meet those demands.

The article details several traits and skills that CFOs will need in order to keep up with the pace of digital change in their role.

  1. Digital knowledge: CFOs must be tech-savvy in order to capitalize on technical innovations that will benefit their company and their industry as a whole.
  1. Data-driven execution: CFOs will need the ability to execute company strategy and operations decisions based on data-driven insights.
  1. Regulatory compliance: Regulations continue to be more stringent globally, so CFOs will need to be proficient at working closely with regulators and compliance systems.
  1. Risk management: With the growing global economy comes increased cyber and geopolitical risks worldwide. The CFOs of 2020, especially those in large multinational organizations, will need to have the expertise to monitor and manage risk in areas that may be unforeseen today.

The future CFO’s well-rounded resume

By 2020, the CFO role will require much more than just an accounting background. According to Deloitte’s Frank Friedman, “CFOs may need to bring a much more multidisciplinary skill set to the job as well as broader career experiences, from working overseas to holding positions in sales and marketing, and even running a business unit.”

So if you’re a current or aspiring CFO, you have five years to round out your resume with the necessary skills to be ready for the digitally driven role of the CFO in 2020.

The above information is based on the CFO.com article What Will the CFO Role Look Like In 2020?” by Deloitte COO & CFO, Frank Friedman – Copyright © 2015 CFO.com.

Want to learn more about best practices for transforming your finance organization? View the SAP/Deloitte Webinar, “Reshaping the Finance Function”.

For an in-depth look at digital technology’s role in business transformation, download the SAP eBook, The Digital Economy: Reinventing the Business World.

To learn more about the business and technology factors driving digital disruption, download the SAP eBook, Digital Disruption: How Digital Technology is Transforming Our World.

To read more CFO insights from a tech industry perspective, read the Wall Street Journal article with SAP CFO Luka Mucic: Driving Insight with In-memory Technology.

Discover 7 Questions CFOs Should Ask Themselves About Cyber Security.

Comments

Estelle Lagorce

About Estelle Lagorce

Estelle Lagorce is the Director, Global Partner Marketing, at SAP. She leads the global planning, successful implementation and business impact of integrated marketing programs with top global Strategic Partner across priority regions and countries (demand generation, thought leadership).

Get Your Payables House In Order

Chris Rauen

First of 8 blogs in the series

Too many organizations ignore the business potential from streamlining accounts payable operations. In a digital economy, however, this may represent one of the best opportunities to improve financial performance and boost the bottom line.

In its recent report, ePayables 2015: Higher Ground, the research and advisory firm Ardent Partners made a strong case for accounts payable transformation. “In 2015, more AP groups are accelerating their plans to transform their operations and scale to new heights,” states the report.

The digital makeover

From a payables perspective, how you go about fixing outdated procure-to-pay (P2P) practices is much like the decision to improve an aging home. Do you tear your house down and build a new one, or leverage as much of the existing structure as you can and begin a major home improvement project?

There is, of course, a third option. Take no action and make calls to plumbers, electricians, roofers, and other specialists as needed before the house falls apart altogether. While few organizations would consider a “triage” strategy the best option to address deficiencies in P2P operations, many still do. (Just don’t share that with your CFO.)

This blog post is the first in a series that will examine options for upgrading procure-to-pay processes from outclassed to best-in-class. Continuing to focus time and effort on managing transactions just doesn’t make sense. With today’s business networks, organizations have new ways to collaborate with suppliers and other partners to buy, sell, and manage cash.

Automation handles low-value activities, eliminating data entry, exception management, and payment status phone calls. That leaves more time for benchmarking operations, monitoring supplier performance, expanding early payment discounts, and improving management of working capital – the kinds of things that can dramatically improve business performance.

Where do you start?

To begin, you have to recognize that getting your payables house in order is much more than a process efficiency initiative. While cost savings from e-invoicing can be 60% to 80% lower than paper invoicing, there’s much more to the business case.

Improving contract compliance and expanding early payment discounts are other components of a business case for P2P transformation. According to various procure-to-pay research studies and Ariba customer results, the cost savings from getting your payables house in order are conservatively estimated to be $10 million per billion collars of spend. We’ll break down these ROI components in greater detail in future posts on this topic.

The value of alignment

Another important first step, validated by the Ardent Partners report, is getting procurement and finance-accounts payables in alignment. As this is a holistic process, you’ll need to make sure that both organizations are in sync, and you have support from upper management to make it happen.

Now, back to the question: Do you approach a payables makeover to support P2P transformation as a tear-down or a fixer-upper? If your procurement-accounts payable teams are out of alignment, your P2P processes are predominantly paper, and decentralized buying leaves little control over spend, you’re looking at a tear-down to lay the foundation for best practices payables. We’ll share a blueprint with you in the next post in this series.

Chris Rauen is a solution marketer for Ariba, an SAP company. He regularly contributes to topics including e-invoicing and dynamic discounting as well as the value of collaborating in a digital economy. 

Learn more about how to take your payables to the next level of performance in Ardent Partners’ research report “ ePayables 2015: Higher Ground.”

Comments

Chris Rauen

About Chris Rauen

In his role at SAP Ariba, Chris Rauen educates procurement, finance, and shared services professionals on the business value of accounts payable automation, procure-to-pay transformation, and collaboration via business networks. Chris has addressed these topics at finance and shared services conferences, in articles for trade and business publications, and in blogs for online communities. Chris has more than 15 years of experience in e-payables, and holds a B.A. in Economics from the University of California, Santa Barbara.

Data Lakes: Deep Insights

Timo Elliott, John Schitka, Michael Eacrett, and Carolyn Marsan

Dan McCaffrey has an ambitious goal: solving the world’s looming food shortage.

As vice president of data and analytics at The Climate Corporation (Climate), which is a subsidiary of Monsanto, McCaffrey leads a team of data scientists and engineers who are building an information platform that collects massive amounts of agricultural data and applies machine-learning techniques to discover new patterns. These analyses are then used to help farmers optimize their planting.

“By 2050, the world is going to have too many people at the current rate of growth. And with shrinking amounts of farmland, we must find more efficient ways to feed them. So science is needed to help solve these things,” McCaffrey explains. “That’s what excites me.”

“The deeper we can go into providing recommendations on farming practices, the more value we can offer the farmer,” McCaffrey adds.

But to deliver that insight, Climate needs data—and lots of it. That means using remote sensing and other techniques to map every field in the United States and then combining that information with climate data, soil observations, and weather data. Climate’s analysts can then produce a massive data store that they can query for insights.

Meanwhile, precision tractors stream data into Climate’s digital agriculture platform, which farmers can then access from iPads through easy data flow and visualizations. They gain insights that help them optimize their seeding rates, soil health, and fertility applications. The overall goal is to increase crop yields, which in turn boosts a farmer’s margins.

Climate is at the forefront of a push toward deriving valuable business insight from Big Data that isn’t just big, but vast. Companies of all types—from agriculture through transportation and financial services to retail—are tapping into massive repositories of data known as data lakes. They hope to discover correlations that they can exploit to expand product offerings, enhance efficiency, drive profitability, and discover new business models they never knew existed.

The internet democratized access to data and information for billions of people around the world. Ironically, however, access to data within businesses has traditionally been limited to a chosen few—until now. Today’s advances in memory, storage, and data tools make it possible for companies both large and small to cost effectively gather and retain a huge amount of data, both structured (such as data in fields in a spreadsheet or database) and unstructured (such as e-mails or social media posts). They can then allow anyone in the business to access this massive data lake and rapidly gather insights.

It’s not that companies couldn’t do this before; they just couldn’t do it cost effectively and without a lengthy development effort by the IT department. With today’s massive data stores, line-of-business executives can generate queries themselves and quickly churn out results—and they are increasingly doing so in real time. Data lakes have democratized both the access to data and its role in business strategy.

Indeed, data lakes move data from being a tactical tool for implementing a business strategy to being a foundation for developing that strategy through a scientific-style model of experimental thinking, queries, and correlations. In the past, companies’ curiosity was limited by the expense of storing data for the long term. Now companies can keep data for as long as it’s needed. And that means companies can continue to ask important questions as they arise, enabling them to future-proof their strategies.

Prescriptive Farming

Climate’s McCaffrey has many questions to answer on behalf of farmers. Climate provides several types of analytics to farmers including descriptive services, which are metrics about the farm and its operations, and predictive services related to weather and soil fertility. But eventually the company hopes to provide prescriptive services, helping farmers address all the many decisions they make each year to achieve the best outcome at the end of the season. Data lakes will provide the answers that enable Climate to follow through on its strategy.

Behind the scenes at Climate is a deep-science data lake that provides insights, such as predicting the fertility of a plot of land by combining many data sets to create accurate models. These models allow Climate to give farmers customized recommendations based on how their farm is performing.

“Machine learning really starts to work when you have the breadth of data sets from tillage to soil to weather, planting, harvest, and pesticide spray,” McCaffrey says. “The more data sets we can bring in, the better machine learning works.”

The deep-science infrastructure already has terabytes of data but is poised for significant growth as it handles a flood of measurements from field-based sensors.

“That’s really scaling up now, and that’s what’s also giving us an advantage in our ability to really personalize our advice to farmers at a deeper level because of the information we’re getting from sensor data,” McCaffrey says. “As we roll that out, our scale is going to increase by several magnitudes.”

Also on the horizon is more real-time data analytics. Currently, Climate receives real-time data from its application that streams data from the tractor’s cab, but most of its analytics applications are run nightly or even seasonally.

In August 2016, Climate expanded its platform to third-party developers so other innovators can also contribute data, such as drone-captured data or imagery, to the deep-science lake.

“That helps us in a lot of ways, in that we can get more data to help the grower,” McCaffrey says. “It’s the machine learning that allows us to find the insights in all of the data. Machine learning allows us to take mathematical shortcuts as long as you’ve got enough data and enough breadth of data.”

Predictive Maintenance

Growth is essential for U.S. railroads, which reinvest a significant portion of their revenues in maintenance and improvements to their track systems, locomotives, rail cars, terminals, and technology. With an eye on growing its business while also keeping its costs down, CSX, a transportation company based in Jacksonville, Florida, is adopting a strategy to make its freight trains more reliable.

In the past, CSX maintained its fleet of locomotives through regularly scheduled maintenance activities, which prevent failures in most locomotives as they transport freight from shipper to receiver. To achieve even higher reliability, CSX is tapping into a data lake to power predictive analytics applications that will improve maintenance activities and prevent more failures from occurring.

Beyond improving customer satisfaction and raising revenue, CSX’s new strategy also has major cost implications. Trains are expensive assets, and it’s critical for railroads to drive up utilization, limit unplanned downtime, and prevent catastrophic failures to keep the costs of those assets down.

That’s why CSX is putting all the data related to the performance and maintenance of its locomotives into a massive data store.

“We are then applying predictive analytics—or, more specifically, machine-learning algorithms—on top of that information that we are collecting to look for failure signatures that can be used to predict failures and prescribe maintenance activities,” says Michael Hendrix, technical director for analytics at CSX. “We’re really looking to better manage our fleet and the maintenance activities that go into that so we can run a more efficient network and utilize our assets more effectively.”

“In the past we would have to buy a special storage device to store large quantities of data, and we’d have to determine cost benefits to see if it was worth it,” says Donna Crutchfield, assistant vice president of information architecture and strategy at CSX. “So we were either letting the data die naturally, or we were only storing the data that was determined to be the most important at the time. But today, with the new technologies like data lakes, we’re able to store and utilize more of this data.”

CSX can now combine many different data types, such as sensor data from across the rail network and other systems that measure movement of its cars, and it can look for correlations across information that wasn’t previously analyzed together.

One of the larger data sets that CSX is capturing comprises the findings of its “wheel health detectors” across the network. These devices capture different signals about the bearings in the wheels, as well as the health of the wheels in terms of impact, sound, and heat.

“That volume of data is pretty significant, and what we would typically do is just look for signals that told us whether the wheel was bad and if we needed to set the car aside for repair. We would only keep the raw data for 10 days because of the volume and then purge everything but the alerts,” Hendrix says.

With its data lake, CSX can keep the wheel data for as long as it likes. “Now we’re starting to capture that data on a daily basis so we can start applying more machine-learning algorithms and predictive models across a larger history,” Hendrix says. “By having the full data set, we can better look for trends and patterns that will tell us if something is going to fail.”

Another key ingredient in CSX’s data set is locomotive oil. By analyzing oil samples, CSX is developing better predictions of locomotive failure. “We’ve been able to determine when a locomotive would fail and predict it far enough in advance so we could send it down for maintenance and prevent it from failing while in use,” Crutchfield says.

“Between the locomotives, the tracks, and the freight cars, we will be looking at various ways to predict those failures and prevent them so we can improve our asset allocation. Then we won’t need as many assets,” she explains. “It’s like an airport. If a plane has a failure and it’s due to connect at another airport, all the passengers have to be reassigned. A failure affects the system like dominoes. It’s a similar case with a railroad. Any failure along the road affects our operations. Fewer failures mean more asset utilization. The more optimized the network is, the better we can service the customer.”

Detecting Fraud Through Correlations

Traditionally, business strategy has been a very conscious practice, presumed to emanate mainly from the minds of experienced executives, daring entrepreneurs, or high-priced consultants. But data lakes take strategy out of that rarefied realm and put it in the environment where just about everything in business seems to be going these days: math—specifically, the correlations that emerge from applying a mathematical algorithm to huge masses of data.

The Financial Industry Regulatory Authority (FINRA), a nonprofit group that regulates broker behavior in the United States, used to rely on the experience of its employees to come up with strategies for combating fraud and insider trading. It still does that, but now FINRA has added a data lake to find patterns that a human might never see.

Overall, FINRA processes over five petabytes of transaction data from multiple sources every day. By switching from traditional database and storage technology to a data lake, FINRA was able to set up a self-service process that allows analysts to query data themselves without involving the IT department; search times dropped from several hours to 90 seconds.

While traditional databases were good at defining relationships with data, such as tracking all the transactions from a particular customer, the new data lake configurations help users identify relationships that they didn’t know existed.

Leveraging its data lake, FINRA creates an environment for curiosity, empowering its data experts to search for suspicious patterns of fraud, marketing manipulation, and compliance. As a result, FINRA was able to hand out 373 fines totaling US$134.4 million in 2016, a new record for the agency, according to Law360.

Data Lakes Don’t End Complexity for IT

Though data lakes make access to data and analysis easier for the business, they don’t necessarily make the CIO’s life a bed of roses. Implementations can be complex, and companies rarely want to walk away from investments they’ve already made in data analysis technologies, such as data warehouses.

“There have been so many millions of dollars going to data warehousing over the last two decades. The idea that you’re just going to move it all into a data lake isn’t going to happen,” says Mike Ferguson, managing director of Intelligent Business Strategies, a UK analyst firm. “It’s just not compelling enough of a business case.” But Ferguson does see data lake efficiencies freeing up the capacity of data warehouses to enable more query, reporting, and analysis.

Data lakes also don’t free companies from the need to clean up and manage data as part of the process required to gain these useful insights. “The data comes in very raw, and it needs to be treated,” says James Curtis, senior analyst for data platforms and analytics at 451 Research. “It has to be prepped and cleaned and ready.”

Companies must have strong data governance processes, as well. Customers are increasingly concerned about privacy, and rules for data usage and compliance have become stricter in some areas of the globe, such as the European Union.

Companies must create data usage policies, then, that clearly define who can access, distribute, change, delete, or otherwise manipulate all that data. Companies must also make sure that the data they collect comes from a legitimate source.

Many companies are responding by hiring chief data officers (CDOs) to ensure that as more employees gain access to data, they use it effectively and responsibly. Indeed, research company Gartner predicts that 90% of large companies will have a CDO by 2019.

Data lakes can be configured in a variety of ways: centralized or distributed, with storage on premise or in the cloud or both. Some companies have more than one data lake implementation.

“A lot of my clients try their best to go centralized for obvious reasons. It’s much simpler to manage and to gather your data in one place,” says Ferguson. “But they’re often plagued somewhere down the line with much more added complexity and realize that in many cases the data lake has to be distributed to manage data across multiple data stores.”

Meanwhile, the massive capacities of data lakes mean that data that once flowed through a manageable spigot is now blasting at companies through a fire hose.

“We’re now dealing with data coming out at extreme velocity or in very large volumes,” Ferguson says. “The idea that people can manually keep pace with the number of data sources that are coming into the enterprise—it’s just not realistic any more. We have to find ways to take complexity away, and that tends to mean that we should automate. The expectation is that the information management software, like an information catalog for example, can help a company accelerate the onboarding of data and automatically classify it, profile it, organize it, and make it easy to find.”

Beyond the technical issues, IT and the business must also make important decisions about how data lakes will be managed and who will own the data, among other things (see How to Avoid Drowning in the Lake).

How to Avoid Drowning in the Lake

The benefits of data lakes can be squandered if you don’t manage the implementation and data ownership carefully.

Deploying and managing a massive data store is a big challenge. Here’s how to address some of the most common issues that companies face:

Determine the ROI. Developing a data lake is not a trivial undertaking. You need a good business case, and you need a measurable ROI. Most importantly, you need initial questions that can be answered by the data, which will prove its value.

Find data owners. As devices with sensors proliferate across the organization, the issue of data ownership becomes more important.

Have a plan for data retention. Companies used to have to cull data because it was too expensive to store. Now companies can become data hoarders. How long do you store it? Do you keep it forever?

Manage descriptive data. Software that allows you to tag all the data in one or multiple data lakes and keep it up-to-date is not mature yet. We still need tools to bring the metadata together to support self-service and to automate metadata to speed up the preparation, integration, and analysis of data.

Develop data curation skills. There is a huge skills gap for data repository development. But many people will jump at the chance to learn these new skills if companies are willing to pay for training and certification.

Be agile enough to take advantage of the findings. It used to be that you put in a request to the IT department for data and had to wait six months for an answer. Now, you get the answer immediately. Companies must be agile to take advantage of the insights.

Secure the data. Besides the perennial issues of hacking and breaches, a lot of data lakes software is open source and less secure than typical enterprise-class software.

Measure the quality of data. Different users can work with varying levels of quality in their data. For example, data scientists working with a huge number of data points might not need completely accurate data, because they can use machine learning to cluster data or discard outlying data as needed. However, a financial analyst might need the data to be completely correct.

Avoid creating new silos. Data lakes should work with existing data architectures, such as data warehouses and data marts.

From Data Queries to New Business Models

The ability of data lakes to uncover previously hidden data correlations can massively impact any part of the business. For example, in the past, a large soft drink maker used to stock its vending machines based on local bottlers’ and delivery people’s experience and gut instincts. Today, using vast amounts of data collected from sensors in the vending machines, the company can essentially treat each machine like a retail store, optimizing the drink selection by time of day, location, and other factors. Doing this kind of predictive analysis was possible before data lakes came along, but it wasn’t practical or economical at the individual machine level because the amount of data required for accurate predictions was simply too large.

The next step is for companies to use the insights gathered from their massive data stores not just to become more efficient and profitable in their existing lines of business but also to actually change their business models.

For example, product companies could shield themselves from the harsh light of comparison shopping by offering the use of their products as a service, with sensors on those products sending the company a constant stream of data about when they need to be repaired or replaced. Customers are spared the hassle of dealing with worn-out products, and companies are protected from competition as long as customers receive the features, price, and the level of service they expect. Further, companies can continuously gather and analyze data about customers’ usage patterns and equipment performance to find ways to lower costs and develop new services.

Data for All

Given the tremendous amount of hype that has surrounded Big Data for years now, it’s tempting to dismiss data lakes as a small step forward in an already familiar technology realm. But it’s not the technology that matters as much as what it enables organizations to do. By making data available to anyone who needs it, for as long as they need it, data lakes are a powerful lever for innovation and disruption across industries.

“Companies that do not actively invest in data lakes will truly be left behind,” says Anita Raj, principal growth hacker at DataRPM, which sells predictive maintenance applications to manufacturers that want to take advantage of these massive data stores. “So it’s just the option of disrupt or be disrupted.” D!

Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.


About the Authors:

Timo Elliott is Vice President, Global Innovation Evangelist, at SAP.

John Schitka is Senior Director, Solution Marketing, Big Data Analytics, at SAP.

Michael Eacrett is Vice President, Product Management, Big Data, Enterprise Information Management, and SAP Vora, at SAP.

Carolyn Marsan is a freelance writer who focuses on business and technology topics.

Comments

Timo Elliott

About Timo Elliott

Timo Elliott is an Innovation Evangelist for SAP and a passionate advocate of innovation, digital business, analytics, and artificial intelligence. He was the eighth employee of BusinessObjects and for the last 25 years he has worked closely with SAP customers around the world on new technology directions and their impact on real-world organizations. His articles have appeared in articles such as Harvard Business Review, Forbes, ZDNet, The Guardian, and Digitalist Magazine. He has worked in the UK, Hong Kong, New Zealand, and Silicon Valley, and currently lives in Paris, France. He has a degree in Econometrics and a patent in mobile analytics. 

Tags:

Artificial Intelligence: The Future Of Oil And Gas

Anoop Srivastava

Oil prices have fallen dramatically over last few years, forcing some major oil companies to take drastic actions such as layoffs, cutting investments and budgets, and more. Shell, for example, shelved its plan to invest in Qatar, Aramco put on hold its deep-water exploration in the Red Sea, Schlumberger fired a few thousand employees, and the list goes on…

In view of falling oil prices and the resulting squeeze on cash flows, the oil and gas industry has been challenged to adapt and optimize its performance to remain profitable while maintaining a long-term investment and operating outlook. Currently, oil and gas companies find it difficult to maintain the same level of investment in exploration and production as when crude prices were at their peak. Operations in the oil and gas industry today means balancing a dizzying array of trade-offs in the drive for competitive advantage while maximizing return on investment.

The result is a dire need to optimize performance and optimize the cost of production per barrel. Companies have many optimization opportunities once they start using the massive data being generated by oil fields. Oil and gas companies can turn this crisis into an opportunity by leveraging technological innovations like artificial intelligence to build a foundation for long-term success. If volatility in oil prices is the new norm, the push for “value over volume” is the key to success going forward.

Using AI tools, upstream oil and gas companies can shift their approach from production at all costs to producing in context. They will need to do profit and loss management at the well level to optimize the production cost per barrel. To do this, they must integrate all aspects of production management, collect the data for analysis and forecasting, and leverage artificial intelligence to optimize operations.

When remote sensors are connected to wireless networks, data can be collected and centrally analyzed from any location. According to the consulting firm McKinsey, the oil and gas supply chain stands to gain $50 billion in savings and increased profit by adopting AI. As an example, using AI algorithms to more accurately sift through signals and noise in seismic data can decrease dry wellhead development by 10 percent.

How oil and gas can leverage artificial intelligence

1. Planning and forecasting

On a macro scale, deep machine learning can help increase awareness of macroeconomic trends to drive investment decisions in exploration and production. Economic conditions and even weather patterns can be considered to determine where investments should take place as well as intensity of production.

2. Eliminate costly risks in drilling

Drilling is an expensive and risky investment, and applying AI in the operational planning and execution stages can significantly improve well planning, real-time drilling optimization, frictional drag estimation, and well cleaning predictions. Additionally, geoscientists can better assess variables such as the rate of penetration (ROP) improvement, well integrity, operational troubleshooting, drilling equipment condition recognition, real-time drilling risk recognition, and operational decision-making.

When drilling, machine-learning software takes into consideration a plethora of factors, such as seismic vibrations, thermal gradients, and strata permeability, along with more traditional data such as pressure differentials. AI can help optimize drilling operations by driving decisions such as direction and speed in real time, and it can predict failure of equipment such as semi-submersible pumps (ESPs) to reduce unplanned downtime and equipment costs.

3. Well reservoir facility management

Wells, reservoirs, and facility management includes integration of multiple disciplines: reservoir engineering, geology, production technology, petro physics, operations, and seismic interpretation. AI can help to create tools that allow asset teams to build professional understanding and identify opportunities to improve operational performance.

AI techniques can also be applied in other activities such as reservoir characterization, modeling and     field surveillance. Fuzzy logic, artificial neural networks and expert systems are used extensively across the industry to accurately characterize reservoirs in order to attain optimum production level.

Today, AI systems form the backbone of digital oil field (DOF) concepts and implementations. However, there is still great potential for new ways to optimize field development and production costs, prolong field life, and increase the recovery factor.

4. Predictive maintenance

Today, artificial intelligence is taking the industry by storm. AI-powered software and sensor hardware enables us to use very large amounts of data to gain real-time responses on the best future course of action. With predictive analytics and cognitive security, for example, oil and gas companies can operate equipment safely and securely while receiving recommendations on how to avoid future equipment failure or mediate potential security breaches.

5. Oil and gas well surveying and inspections

Drones have been part of the oil and gas industry since 2013, when ConocoPhillips used the Boeing ScanEagle drone in trials in the Chukchi Sea.  In June 2014, the Federal Aviation Administration (FAA) issued the first commercial permit for drone use over United States soil to BP, allowing the company to survey pipelines, roads, and equipment in Prudhoe Bay, Alaska. In January, Sky-Futures completed the first drone inspection in the Gulf of Mexico.

While drones are primarily used in the midstream sector, they can be applied to almost every aspect of the industry, including land surveying and mapping, well and pipeline inspections, and security. Technology is being developed to enable drones to detect early methane leaks. In addition, one day, drones could be used to find oil and gas reservoirs underlying remote uninhabited regions, from the comfort of a warm office.

6. Remote logistics

As logistics to offshore locations is always a challenge, AI-enhanced drones can be used to deliver materials to remote offshore locations.

Current adoption of AI

Chevron is currently using AI to identify new well locations and simulation candidates in California. By using AI software to analyze the company’s large collection of historical well performance data, the company is drilling in better locations and has seen production rise 30% over conventional methods. Chevron is also using predictive models to analyze the performance of thousands of pieces of rotating equipment to detect failures before they occur. By addressing problems before they become critical, Chevron has avoided unplanned shutdowns and lowered repair expenses. Increased production and lower costs have translated to more profit per well.

Future journey

Today’s oil and gas industry has been transformed by two industry downturns in one decade. Although adoption of new hard technology such as directional drilling and hydraulic fracturing (fracking) has helped, the oil and gas industry needs to continue to innovate in today’s low-price market to survive. AI has the potential to differentiate companies that thrive and those that are left behind.

The promise of AI is already being realized in the oil and gas industry. Early adopters are taking advantage of their position  to get a head start on the competition and protect their assets. The industry has always leveraged technology to adapt to change, and early adopters have always benefited the most. As competition in the oil and gas industry continues to heat up, companies cannot afford to be left behind. For those that understand and seize the opportunities inherent in adopting cognitive technologies, the future looks bright.

For more insight on advanced technology in the energy sector, see How Digital Transformation Is Refueling The Energy Industry.

Comments

Anoop Srivastava

About Anoop Srivastava

Anoop Srivastava is Senior Director of the Energy and Natural Resources Industries at SAP Value Engineering in Middle East and North Africa. He advises clients on their digital transformation strategies and helps them align their business strategy with IT strategy leveraging digital technology innovations such as the Internet of Things, Big Data, Advanced Analytics, Cloud etc. He has 21+ years of work experience spanning across Oil& Gas Industry, Business Consulting, Industry Value Advisory and Digital Transformation.