Sections

Big Data Analytics: The Statistical Expert On A CFO’s Shoulder

Peter David

By the year 2020, our civilization will be producing 40 zettabytes of data annually – the equivalent of every grain of sand on earth, times 75. Much of that information is simply background noise – the random security camera shot, the “see you at dinner” tweet, the cat video. But a small portion of it has the power to transform your finance operations. Finding gold among those grains of sand is what Big Data analytics is all about.

Enhancing value

In my role as CFO of SAP’s EMEA operations, I have access to a deep well of high-quality data. And I have access to the very best tools for managing that data.

I think of Big Data analytics as an impartial, statistically savvy expert on my shoulder who guides me and the company to better decisions. Big Data enhances the finance function’s ability to steer, control, and develop the business.

For instance, my team and I use Big Data analytics to identify patterns such as:

  • Cash forecasting: Big Data is invaluable in helping to project our cash requirements in the future, based on historical trends.
  • Collections: When we analyzed our collections history, we discovered what percentage of our customers pay in a timely manner and do not require a collections call. This helped us focus on those accounts that were delinquent, helping our collections representatives work more productively and allowing us to allocate resources to the right customer segments and regions.
  • Discounts: We analyzed customer discounts by date of closing, to detect patterns that give us greater control.

Three capabilities

In a Harvard Business Review article, Making Advanced Analytics Work for You, Dominic Barton and David Court explain, “In our work with dozens of companies in six data-rich industries, we have found that fully exploiting data and analytics requires three mutually supportive capabilities. First, companies must be able to identify, combine, and manage multiple sources of data. Second, they need the capability to build advanced analytics models for predicting and optimizing outcomes. Third, and most critical, management must possess the muscle to transform the organization so that the data and models actually yield better decisions.”

The authors add, “Two important features underpin those activities: a clear strategy for how to use data and analytics to compete, and deployment of the right technology architecture and capabilities.”

Harnessing the data you already have

In its High-Performance Finance Study, Accenture notes, “For now, the adoption of Big Data and analytics in particular remains at the early stage. Just 4% of respondents have fully deployed Big Data and enterprise analytics capabilities across businesses.”

That’s a missed opportunity, because every organization – including yours – already has Big Data, and has been gathering it for years. The key is to harness that data for insights. That requires tools, strategy, and very likely a cultural shift that places importance on real-time decision making.

As CFO, you can play a key role in creating that culture. When you do, your entire organization can have a statistically savvy “expert” on its shoulder.

This is the first in my series of blogs about topics that I think will be of interest to you and my fellow CFOs. My next blog will focus on managing operational risk. I hope you’ll be back then – and welcome your comments.

To learn more about how finance executives can empower themselves with the right tools and play a vital role in business innovation and value chain, review the SAP finance content hub, which offers additional research and valuable insights.

Comments

Peter David

About Peter David

Peter David has been Regional Chief Financial Officer of Europe Middle East and Africa at SAP since December 2014 and served as its Chief Financial Officer of Latin America and The Caribbean from September 2012 to July 2013. Mr. David established a strategic direction and oversees its financial and operational activities region wide. He joined SAP in 1995 and served as its Chief Financial Officer and Chief Operating Officer in the past.

The CFO Role In 2020

Estelle Lagorce

African American businessman looking out office window --- Image by © Mark Edward Atkinson/Blend Images/CorbisThe role of the CFO is undergoing a serious transformation, and CFOs can expect their role to continue to evolve, according to a recent CFO.com article by Deloitte COO and CFO Frank Friedman.

In the futurist article, Friedman says one of the biggest factors that will contribute to the CFO’s significant change over the next five years is technology.

Digital technology is obviously expected to drive change in high-tech companies, but Friedman says it’s industries outside of the tech sectors that are of particular interest, as they struggle to understand how to grasp and harness the digital capabilities available to them.

Working with high tech in low-tech industries

Five years from now, a finance team may be defined by how well it uses technology and innovative business tools, regardless of what industry it’s in. The article outlines some examples of ways that digital technology will increasingly be used by CFOs in “non-tech” sectors:

  • Predictive analytics: CFOs in manufacturing companies can forecast results and produce revenue predictions based on customer-experience profiles and current demand, instead of comparing to previous years as most companies still do today.
  • Social media and crowdsourcing: You may not think CFOs spend a lot of time on social media or crowdsourcing sites, but these methods can actually expedite finance processes, such as month-end responsibilities of the finance organization.
  • Big Data: CFOs already have a lot of data at their fingertips, but in 2020 they will have even more. CFOs in both tech and non-tech sectors who understand how to use that data to make valuable, informed decisions, can strategically guide their company and industry in a more digitally oriented world.

To do this, Friedman says CFOs can lead the way by addressing some critical areas:

  1. Know the issues: Gather the key questions that leaders expect Big Data analytics to answer.
  1. Make data easily accessible: Collect data that is manageable and easy to access.
  1. Broaden skills: The finance team needs people with the skills to understand and strategically interpret the data available to them.

The tech-savvy CFO

The role of today’s CFO has already expanded to include strategic corporate growth advice as well as managing the bottom line. In 2020, Friedman says expectations placed on the CFO are presumed to be even greater, and CFOs will likely need a much more diverse, multidisciplinary skill set to meet those demands.

The article details several traits and skills that CFOs will need in order to keep up with the pace of digital change in their role.

  1. Digital knowledge: CFOs must be tech-savvy in order to capitalize on technical innovations that will benefit their company and their industry as a whole.
  1. Data-driven execution: CFOs will need the ability to execute company strategy and operations decisions based on data-driven insights.
  1. Regulatory compliance: Regulations continue to be more stringent globally, so CFOs will need to be proficient at working closely with regulators and compliance systems.
  1. Risk management: With the growing global economy comes increased cyber and geopolitical risks worldwide. The CFOs of 2020, especially those in large multinational organizations, will need to have the expertise to monitor and manage risk in areas that may be unforeseen today.

The future CFO’s well-rounded resume

By 2020, the CFO role will require much more than just an accounting background. According to Deloitte’s Frank Friedman, “CFOs may need to bring a much more multidisciplinary skill set to the job as well as broader career experiences, from working overseas to holding positions in sales and marketing, and even running a business unit.”

So if you’re a current or aspiring CFO, you have five years to round out your resume with the necessary skills to be ready for the digitally driven role of the CFO in 2020.

The above information is based on the CFO.com article What Will the CFO Role Look Like In 2020?” by Deloitte COO & CFO, Frank Friedman – Copyright © 2015 CFO.com.

Want to learn more about best practices for transforming your finance organization? View the SAP/Deloitte Webinar, “Reshaping the Finance Function”.

For an in-depth look at digital technology’s role in business transformation, download the SAP eBook, The Digital Economy: Reinventing the Business World.

To learn more about the business and technology factors driving digital disruption, download the SAP eBook, Digital Disruption: How Digital Technology is Transforming Our World.

To read more CFO insights from a tech industry perspective, read the Wall Street Journal article with SAP CFO Luka Mucic: Driving Insight with In-memory Technology.

Discover 7 Questions CFOs Should Ask Themselves About Cyber Security.

Comments

Estelle Lagorce

About Estelle Lagorce

Estelle Lagorce is the Director, Global Partner Marketing, at SAP. She leads the global planning, successful implementation and business impact of integrated marketing programs with top global Strategic Partner across priority regions and countries (demand generation, thought leadership).

Get Your Payables House In Order

Chris Rauen

First of 8 blogs in the series

Too many organizations ignore the business potential from streamlining accounts payable operations. In a digital economy, however, this may represent one of the best opportunities to improve financial performance and boost the bottom line.

In its recent report, ePayables 2015: Higher Ground, the research and advisory firm Ardent Partners made a strong case for accounts payable transformation. “In 2015, more AP groups are accelerating their plans to transform their operations and scale to new heights,” states the report.

The digital makeover

From a payables perspective, how you go about fixing outdated procure-to-pay (P2P) practices is much like the decision to improve an aging home. Do you tear your house down and build a new one, or leverage as much of the existing structure as you can and begin a major home improvement project?

There is, of course, a third option. Take no action and make calls to plumbers, electricians, roofers, and other specialists as needed before the house falls apart altogether. While few organizations would consider a “triage” strategy the best option to address deficiencies in P2P operations, many still do. (Just don’t share that with your CFO.)

This blog post is the first in a series that will examine options for upgrading procure-to-pay processes from outclassed to best-in-class. Continuing to focus time and effort on managing transactions just doesn’t make sense. With today’s business networks, organizations have new ways to collaborate with suppliers and other partners to buy, sell, and manage cash.

Automation handles low-value activities, eliminating data entry, exception management, and payment status phone calls. That leaves more time for benchmarking operations, monitoring supplier performance, expanding early payment discounts, and improving management of working capital – the kinds of things that can dramatically improve business performance.

Where do you start?

To begin, you have to recognize that getting your payables house in order is much more than a process efficiency initiative. While cost savings from e-invoicing can be 60% to 80% lower than paper invoicing, there’s much more to the business case.

Improving contract compliance and expanding early payment discounts are other components of a business case for P2P transformation. According to various procure-to-pay research studies and Ariba customer results, the cost savings from getting your payables house in order are conservatively estimated to be $10 million per billion collars of spend. We’ll break down these ROI components in greater detail in future posts on this topic.

The value of alignment

Another important first step, validated by the Ardent Partners report, is getting procurement and finance-accounts payables in alignment. As this is a holistic process, you’ll need to make sure that both organizations are in sync, and you have support from upper management to make it happen.

Now, back to the question: Do you approach a payables makeover to support P2P transformation as a tear-down or a fixer-upper? If your procurement-accounts payable teams are out of alignment, your P2P processes are predominantly paper, and decentralized buying leaves little control over spend, you’re looking at a tear-down to lay the foundation for best practices payables. We’ll share a blueprint with you in the next post in this series.

Chris Rauen is a solution marketer for Ariba, an SAP company. He regularly contributes to topics including e-invoicing and dynamic discounting as well as the value of collaborating in a digital economy. 

Learn more about how to take your payables to the next level of performance in Ardent Partners’ research report “ ePayables 2015: Higher Ground.”

Comments

Chris Rauen

About Chris Rauen

In his role at SAP Ariba, Chris Rauen educates procurement, finance, and shared services professionals on the business value of accounts payable automation, procure-to-pay transformation, and collaboration via business networks. Chris has addressed these topics at finance and shared services conferences, in articles for trade and business publications, and in blogs for online communities. Chris has more than 15 years of experience in e-payables, and holds a B.A. in Economics from the University of California, Santa Barbara.

Heroes in the Race to Save Antibiotics

Dr. David Delaney, Joseph Miles, Walt Ellenberger, Saravana Chandran, and Stephanie Overby

Last August, a woman arrived at a Reno, Nevada, hospital and told the attending doctors that she had recently returned from an extended trip to India, where she had broken her right thighbone two years ago. The woman, who was in her 70s, had subsequently developed an infection in her thigh and hip for which she was hospitalized in India several times. The Reno doctors recognized that the infection was serious—and the visit to India, where antibiotic-resistant bacteria runs rampant, raised red flags.

When none of the 14 antibiotics the physicians used to treat the woman worked, they sent a sample of the bacterium to the U.S. Centers for Disease Control (CDC) for testing. The CDC confirmed the doctors’ worst fears: the woman had a class of microbe called carbapenem-resistant Enterobacteriaceae (CRE). Carbapenems are a powerful class of antibiotics used as last-resort treatment for multidrug-resistant infections. The CDC further found that, in this patient’s case, the pathogen was impervious to all 26 antibiotics approved by the U.S. Food and Drug Administration (FDA).

In other words, there was no cure.

This is just the latest alarming development signaling the end of the road for antibiotics as we know them. In September, the woman died from septic shock, in which an infection takes over and shuts down the body’s systems, according to the CDC’s Morbidity and Mortality Weekly Report.

Other antibiotic options, had they been available, might have saved the Nevada woman. But the solution to the larger problem won’t be a new drug. It will have to be an entirely new approach to the diagnosis of infectious disease, to the use of antibiotics, and to the monitoring of antimicrobial resistance (AMR)—all enabled by new technology.

But that new technology is not being implemented fast enough to prevent what former CDC director Tom Frieden has nicknamed nightmare bacteria. And the nightmare is becoming scarier by the year. A 2014 British study calculated that 700,000 people die globally each year because of AMR. By 2050, the global cost of antibiotic resistance could grow to 10 million deaths and US$100 trillion a year, according to a 2014 estimate. And the rate of AMR is growing exponentially, thanks to the speed with which humans serving as hosts for these nasty bugs can move among healthcare facilities—or countries. In the United States, for example, CRE had been seen only in North Carolina in 2000; today it’s nationwide.

Abuse and overuse of antibiotics in healthcare and livestock production have enabled bacteria to both mutate and acquire resistant genes from other organisms, resulting in truly pan-drug resistant organisms. As ever-more powerful superbugs continue to proliferate, we are potentially facing the deadliest and most costly human-made catastrophe in modern times.

“Without urgent, coordinated action by many stakeholders, the world is headed for a post-antibiotic era, in which common infections and minor injuries which have been treatable for decades can once again kill,” said Dr. Keiji Fukuda, assistant director-general for health security for the World Health Organization (WHO).

Even if new antibiotics could solve the problem, there are obstacles to their development. For one thing, antibiotics have complex molecular structures, which slows the discovery process. Further, they aren’t terribly lucrative for pharmaceutical manufacturers: public health concerns call for new antimicrobials to be financially accessible to patients and used conservatively precisely because of the AMR issue, which reduces the financial incentives to create new compounds. The last entirely new class of antibiotic was introduced 30 year ago. Finally, bacteria will develop resistance to new antibiotics as well if we don’t adopt new approaches to using them.

Technology can play the lead role in heading off this disaster. Vast amounts of data from multiple sources are required for better decision making at all points in the process, from tracking or predicting antibiotic-resistant disease outbreaks to speeding the potential discovery of new antibiotic compounds. However, microbes will quickly adapt and resist new medications, too, if we don’t also employ systems that help doctors diagnose and treat infection in a more targeted and judicious way.

Indeed, digital tools can help in all four actions that the CDC recommends for combating AMR: preventing infections and their spread, tracking resistance patterns, improving antibiotic use, and developing new diagnostics and treatment.

Meanwhile, individuals who understand both the complexities of AMR and the value of technologies like machine learning, human-computer interaction (HCI), and mobile applications are working to develop and advocate for solutions that could save millions of lives.

Keeping an Eye Out for Outbreaks

Like others who are leading the fight against AMR, Dr. Steven Solomon has no illusions about the difficulty of the challenge. “It is the single most complex problem in all of medicine and public health—far outpacing the complexity and the difficulty of any other problem that we face,” says Solomon, who is a global health consultant and former director of the CDC’s Office of Antimicrobial Resistance.

Solomon wants to take the battle against AMR beyond the laboratory. In his view, surveillance—tracking and analyzing various data on AMR—is critical, particularly given how quickly and widely it spreads. But surveillance efforts are currently fraught with shortcomings. The available data is fragmented and often not comparable. Hospitals fail to collect the representative samples necessary for surveillance analytics, collecting data only on those patients who experience resistance and not on those who get better. Laboratories use a wide variety of testing methods, and reporting is not always consistent or complete.

Surveillance can serve as an early warning system. But weaknesses in these systems have caused public health officials to consistently underestimate the impact of AMR in loss of lives and financial costs. That’s why improving surveillance must be a top priority, says Solomon, who previously served as chair of the U.S. Federal Interagency Task Force on AMR and has been tracking the advance of AMR since he joined the U.S. Public Health Service in 1981.

A Collaborative Diagnosis

Ineffective surveillance has also contributed to huge growth in the use of antibiotics when they aren’t warranted. Strong patient demand and financial incentives for prescribing physicians are blamed for antibiotics abuse in China. India has become the largest consumer of antibiotics on the planet, in part because they are prescribed or sold for diarrheal diseases and upper respiratory infections for which they have limited value. And many countries allow individuals to purchase antibiotics over the counter, exacerbating misuse and overuse.

In the United States, antibiotics are improperly prescribed 50% of the time, according to CDC estimates. One study of adult patients visiting U.S. doctors to treat respiratory problems found that more than two-thirds of antibiotics were prescribed for conditions that were not infections at all or for infections caused by viruses—for which an antibiotic would do nothing. That’s 27 million courses of antibiotics wasted a year—just for respiratory problems—in the United States alone.

And even in countries where there are national guidelines for prescribing antibiotics, those guidelines aren’t always followed. A study published in medical journal Family Practice showed that Swedish doctors, both those trained in Sweden and those trained abroad, inconsistently followed rules for prescribing antibiotics.

Solomon strongly believes that, worldwide, doctors need to expand their use of technology in their offices or at the bedside to guide them through a more rational approach to antibiotic use. Doctors have traditionally been reluctant to adopt digital technologies, but Solomon thinks that the AMR crisis could change that. New digital tools could help doctors and hospitals integrate guidelines for optimal antibiotic prescribing into their everyday treatment routines.

“Human-computer interactions are critical, as the amount of information available on antibiotic resistance far exceeds the ability of humans to process it,” says Solomon. “It offers the possibility of greatly enhancing the utility of computer-assisted physician order entry (CPOE), combined with clinical decision support.” Healthcare facilities could embed relevant information and protocols at the point of care, guiding the physician through diagnosis and prescription and, as a byproduct, facilitating the collection and reporting of antibiotic use.

Cincinnati Children’s Hospital’s antibiotic stewardship division has deployed a software program that gathers information from electronic medical records, order entries, computerized laboratory and pathology reports, and more. The system measures baseline antimicrobial use, dosing, duration, costs, and use patterns. It also analyzes bacteria and trends in their susceptibilities and helps with clinical decision making and prescription choices. The goal, says Dr. David Haslam, who heads the program, is to decrease the use of “big gun” super antibiotics in favor of more targeted treatment.

While this approach is not yet widespread, there is consensus that incorporating such clinical-decision support into electronic health records will help improve quality of care, contain costs, and reduce overtreatment in healthcare overall—not just in AMR. A 2013 randomized clinical trial finds that doctors who used decision-support tools were significantly less likely to order antibiotics than those in the control group and prescribed 50% fewer broad-spectrum antibiotics.

Putting mobile devices into doctors’ hands could also help them accept decision support, believes Solomon. Last summer, Scotland’s National Health Service developed an antimicrobial companion app to give practitioners nationwide mobile access to clinical guidance, as well as an audit tool to support boards in gathering data for local and national use.

“The immediacy and the consistency of the input to physicians at the time of ordering antibiotics may significantly help address the problem of overprescribing in ways that less-immediate interventions have failed to do,” Solomon says. In addition, handheld devices with so-called lab-on-a-chip  technology could be used to test clinical specimens at the bedside and transmit the data across cellular or satellite networks in areas where infrastructure is more limited.

Artificial intelligence (AI) and machine learning can also become invaluable technology collaborators to help doctors more precisely diagnose and treat infection. In such a system, “the physician and the AI program are really ‘co-prescribing,’” says Solomon. “The AI can handle so much more information than the physician and make recommendations that can incorporate more input on the type of infection, the patient’s physiologic status and history, and resistance patterns of recent isolates in that ward, in that hospital, and in the community.”

Speed Is Everything

Growing bacteria in a dish has never appealed to Dr. James Davis, a computational biologist with joint appointments at Argonne National Laboratory and the University of Chicago Computation Institute. The first of a growing breed of computational biologists, Davis chose a PhD advisor in 2004 who was steeped in bioinformatics technology “because you could see that things were starting to change,” he says. He was one of the first in his microbiology department to submit a completely “dry” dissertation—that is, one that was all digital with nothing grown in a lab.

Upon graduation, Davis wanted to see if it was possible to predict whether an organism would be susceptible or resistant to a given antibiotic, leading him to explore the potential of machine learning to predict AMR.

As the availability of cheap computing power has gone up and the cost of genome sequencing has gone down, it has become possible to sequence a pathogen sample in order to detect its AMR resistance mechanisms. This could allow doctors to identify the nature of an infection in minutes instead of hours or days, says Davis.

Davis is part of a team creating a giant database of bacterial genomes with AMR metadata for the Pathosystems Resource Integration Center (PATRIC), funded by the U.S. National Institute of Allergy and Infectious Diseases to collect data on priority pathogens, such as tuberculosis and gonorrhea.

Because the current inability to identify microbes quickly is one of the biggest roadblocks to making an accurate diagnosis, the team’s work is critically important. The standard method for identifying drug resistance is to take a sample from a wound, blood, or urine and expose the resident bacteria to various antibiotics. If the bacterial colony continues to divide and thrive despite the presence of a normally effective drug, it indicates resistance. The process typically takes between 16 and 20 hours, itself an inordinate amount of time in matters of life and death. For certain strains of antibiotic-resistant tuberculosis, though, such testing can take a week. While physicians are waiting for test results, they often prescribe broad-spectrum antibiotics or make a best guess about what drug will work based on their knowledge of what’s happening in their hospital, “and in the meantime, you either get better,” says Davis, “or you don’t.”

At PATRIC, researchers are using machine-learning classifiers to identify regions of the genome involved in antibiotic resistance that could form the foundation for a “laboratory free” process for predicting resistance. Being able to identify the genetic mechanisms of AMR and predict the behavior of bacterial pathogens without petri dishes could inform clinical decision making and improve reaction time. Thus far, the researchers have developed machine-learning classifiers for identifying antibiotic resistance in Acinetobacter baumannii (a big player in hospital-acquired infection), methicillin-resistant Staphylococcus aureus (a.k.a. MRSA, a worldwide problem), and Streptococcus pneumoniae (a leading cause of bacterial meningitis), with accuracies ranging from 88% to 99%.

Houston Methodist Hospital, which uses the PATRIC database, is researching multidrug-resistant bacteria, specifically MRSA. Not only does resistance increase the cost of care, but people with MRSA are 64% more likely to die than people with a nonresistant form of the infection, according to WHO. Houston Methodist is investigating the molecular genetic causes of drug resistance in MRSA in order to identify new treatment approaches and help develop novel antimicrobial agents.

The Hunt for a New Class of Antibiotics

There are antibiotic-resistant bacteria, and then there’s Clostridium difficile—a.k.a. C. difficile—a bacterium that attacks the intestines even in young and healthy patients in hospitals after the use of antibiotics.

It is because of C. difficile that Dr. L. Clifford McDonald jumped into the AMR fight. The epidemiologist was finishing his work analyzing the spread of SARS in Toronto hospitals in 2004 when he turned his attention to C. difficile, convinced that the bacteria would become more common and more deadly. He was right, and today he’s at the forefront of treating the infection and preventing the spread of AMR as senior advisor for science and integrity in the CDC’s Division of Healthcare Quality Promotion. “[AMR] is an area that we’re funding heavily…insofar as the CDC budget can fund anything heavily,” says McDonald, whose group has awarded $14 million in contracts for innovative anti-AMR approaches.

Developing new antibiotics is a major part of the AMR battle. The majority of new antibiotics developed in recent years have been variations of existing drug classes. It’s been three decades since the last new class of antibiotics was introduced. Less than 5% of venture capital in pharmaceutical R&D is focused on antimicrobial development. A 2008 study found that less than 10% of the 167 antibiotics in development at the time had a new “mechanism of action” to deal with multidrug resistance. “The low-hanging fruit [of antibiotic development] has been picked,” noted a WHO report.

Researchers will have to dig much deeper to develop novel medicines. Machine learning could help drug developers sort through much larger data sets and go about the capital-intensive drug development process in a more prescriptive fashion, synthesizing those molecules most likely to have an impact.

McDonald believes that it will become easier to find new antibiotics if we gain a better understanding of the communities of bacteria living in each of us—as many as 1,000 different types of microbes live in our intestines, for example. Disruption to those microbial communities—our “microbiome”—can herald AMR. McDonald says that Big Data and machine learning will be needed to unlock our microbiomes, and that’s where much of the medical community’s investment is going.

He predicts that within five years, hospitals will take fecal samples or skin swabs and sequence the microorganisms in them as a kind of pulse check on antibiotic resistance. “Just doing the bioinformatics to sort out what’s there and the types of antibiotic resistance that might be in that microbiome is a Big Data challenge,” McDonald says. “The only way to make sense of it, going forward, will be advanced analytic techniques, which will no doubt include machine learning.”

Reducing Resistance on the Farm

Bringing information closer to where it’s needed could also help reduce agriculture’s contribution to the antibiotic resistance problem. Antibiotics are widely given to livestock to promote growth or prevent disease. In the United States, more kilograms of antibiotics are administered to animals than to people, according to data from the FDA.

One company has developed a rapid, on-farm diagnostics tool to provide livestock producers with more accurate disease detection to make more informed management and treatment decisions, which it says has demonstrated a 47% to 59% reduction in antibiotic usage. Such systems, combined with pressure or regulations to reduce antibiotic use in meat production, could also help turn the AMR tide.

Breaking Down Data Silos Is the First Step

Adding to the complexity of the fight against AMR is the structure and culture of the global healthcare system itself. Historically, healthcare has been a siloed industry, notorious for its scattered approach focused on transactions rather than healthy outcomes or the true value of treatment. There’s no definitive data on the impact of AMR worldwide; the best we can do is infer estimates from the information that does exist.

The biggest issue is the availability of good data to share through mobile solutions, to drive HCI clinical-decision support tools, and to feed supercomputers and machine-learning platforms. “We have a fragmented healthcare delivery system and therefore we have fragmented information. Getting these sources of data all into one place and then enabling them all to talk to each other has been problematic,” McDonald says.

Collecting, integrating, and sharing AMR-related data on a national and ultimately global scale will be necessary to better understand the issue. HCI and mobile tools can help doctors, hospitals, and public health authorities collect more information while advanced analytics, machine learning, and in-memory computing can enable them to analyze that data in close to real time. As a result, we’ll better understand patterns of resistance from the bedside to the community and up to national and international levels, says Solomon. The good news is that new technology capabilities like AI and new potential streams of data are coming online as an era of data sharing in healthcare is beginning to dawn, adds McDonald.

The ideal goal is a digitally enabled virtuous cycle of information and treatment that could save millions of dollars, lives, and perhaps even civilization if we can get there. D!

Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.


About the Authors:

Dr. David Delaney is Chief Medical Officer for SAP.

Joseph Miles is Global Vice President, Life Sciences, for SAP.

Walt Ellenberger is Senior Director Business Development, Healthcare Transformation and Innovation, for SAP.

Saravana Chandran is Senior Director, Advanced Analytics, for SAP.

Stephanie Overby is an independent writer and editor focused on the intersection of business and technology.

Comments

Tags:

Small And Midsize Businesses Have The Capacity To Drive Europe’s Future As A Digital Superpower

Katja Mehl

Part 10 of the “Road to Digital Transformation” series

Representing 99.8% of all companies throughout Europe, small and midsize businesses have tremendous power when it comes to impacting the region’s economy. One innovation at a time, they’re transforming entire industries, propelling emerging industries forward with adjacent offerings, and even supersizing a favorite childhood toy to make living conditions better for the poor and homeless. But perhaps the greatest evolution is found in the growing adoption of technology among firms.

According to the IDC InfoBrief “The Next Steps in Digital Transformation: How Small and Midsize Companies Are Applying Technology to Meet Key Business Goals with Insights for Europe,” sponsored by SAP, 35.4% of all European firms feel that their adoption of digital technology is either advanced or well underway. Germany and France are great examples of countries that are embracing advanced business networks and automation technology – such as the Internet of Things – to boost productivity and computerize or consolidate roles left empty due to long-term labor shortages.

Despite the progress made in some countries, I am also aware of others that are still resistant to digitizing their economy and automating operations. What’s the difference between firms that are digital leaders and those that are slow to mature? From my perspective in working with a variety of businesses throughout Europe, it’s a combination of diversity and technology availability.

digital transformation self-assessment

Source: “The Next Steps in Digital Transformation: How Small and Midsize Companies Are Applying Technology to Meet Key Business Goals with Insights for Europe,” IDC InfoBrief, sponsored by SAP, 2017. 

Opportunities abound with digital transformation

European companies are hardly homogenous. Comprising 47 countries across the continent, they serve communities that speak any of 225 spoken languages. Each one is experiencing various stages of digital development, economic stability, and workforce needs.

Nevertheless, as a whole, European firms do prioritize customer acquisition as well as improving efficiency and reducing costs. Over one-third of small and midsize companies are investing in collaboration software, customer relationship management solutions, e-commerce platforms, analytics, and talent management applications. Steadily, business leaders are finding better ways to go beyond data collection by applying predictive analytics to gain real-time insight from predictive analytics and machine learning to automate processes where possible.

Small and midsize businesses have a distinct advantage in this area over their larger rivals because they can, by nature, adopt new technology and practices quickly and act on decisions with greater agility. Nearly two-thirds (64%) of European firms are embracing the early stages of digitalization and planning to mature over time. Yet, the level of adoption depends solely on the leadership team’s commitment.

For many small and midsize companies across this region, the path to digital maturity resides in the cloud, more so than on-premise software deployment. For example, the flexibility associated with cloud deployment is viewed as a top attribute, especially among U.K. firms. This brings us back to the diversity of our region. Some countries prioritize personal data security while others may be more concerned with the ability to access the information they need in even the most remote of areas.

Technology alone does not deliver digital transformation

Digital transformation is certainly worth the effort for European firms. Between 60%–90% of small and midsize European businesses say their technology investments have met or exceeded their expectations – indicative of the steady, powerhouse transitions enabled by cloud computing. Companies are now getting the same access to the latest technology, data storage, and IT resources.

However, it is also important to note that a cloud platform is only as effective as the long-term digital strategy that it enables. To invigorate transformative changes, leadership needs to go beyond technology and adopt a mindset that embraces new ideas, tests the fitness of business models and processes continuously, and allows the flexibility to evolve the company as quickly as market dynamics change. By taking a step back and integrating digital objectives throughout the business strategy, leadership can pull together the elements needed to turn technology investments into differentiating, sustainable change. For example, the best talent with the right skills is hired. Plus, partners and suppliers with a complementary or shared digital vision and capability are onboarded.

The IDC Infobrief confirms what I have known all along: Small and midsize businesses are beginning to digitally mature and maintain a strategy that is relevant to their end-to-end processes. And furthering their digital transformation go hand in hand with the firms’ ability to ignite a transformational force that will likely progress Europe’s culture, social structure, and economy. 

To learn how small and midsize businesses across Europe are digitally transforming themselves to advance their future success, check out the IDC InfoBrief “The Next Steps in Digital Transformation: How Small and Midsize Companies Are Applying Technology to Meet Key Business Goals with Insights for Europe,” sponsored by SAP. For more region-specific perspectives on digital transformation, be sure to check every Tuesday for new installments to our blog series “The Road to Digital Transformation.”

 

Comments

Katja Mehl

About Katja Mehl

Katja Mehl is Head of Marketing for Europe, Middle East, and Africa at SAP.