Sections

Using Predictive Analytics For Planning, Forecasting – And Decision-Making

Henner Schliebs

In a global survey of 1,544 CFOs and finance executives by CFO Research, three-quarters anticipate making effective use of Big Data over the next five years. Finance organizations will need to make significant changes in their processes, skills, and technology to use this data to their advantage.

The best finance organizations are using predictive analytics to forecast future performance and drive strategic decision-making. To be clear, predictive analytics refers to the organizational capability to discover and communicate meaningful patterns in data to predict and improve business performance, recommend action, and guide decision-making. Rather than relying primarily on historical information, finance organizations can use predictive analytics to identify trends, analyze key variables, examine what-if scenarios, and so on – live.

Here are some examples of how the smart use of predictive analytics has contributed to the success of some companies and enhanced the impact of the finance organization.

Increasing forecasting frequency, reducing cycle time

Many Americans look to the American Automobile Association (AAA) for travel assistance, insurance, and emergency towing. To optimize service from the AAA motor clubs across the United States and Canada, the AAA national office built a centralized “action center” to provide better insight into member needs. With next-generation predictive analytics, AAA could better understand customers’ needs by having real-time access to data. This led to enhanced marketing campaigns and reduced customer attrition rate.

Live Oak Bank lends exclusively to small businesses and specific professions like veterinarians and pharmacists, and due to the nature of these customers, the bank values speed and flexibility. The bank is guided by executives who are industry leaders in both finance and technology, bringing innovation and efficiency to the lending process. The bank leverages real-time analytics to make better decisions more quickly. With the predictive analytics platform, decision-makers now enjoy greater collaboration and transparency, and the team can respond quickly to managers.

As the UK’s largest insurer and a leading provider of insurance and asset management, Aviva protects around 31 million customers worldwide with insurance, savings, and investment products. Tapping into predictive analytics models helped Aviva gain the insight needed to serve clients with offers most relevant to their interests. The company made use of predictive analytics to generate propensity models for more targeted customer groups, rather than a generic group, which allowed staff members to make better decisions and more accurate projections for clients.

One of the world’s most renowned manufacturers of skylights, VELUX from Denmark, uses predictive finance to optimize the balance sheet by better understanding the financial impact of warranty claims, and therefore improve customer service.

Use cases for different financial processes can add some ideas to your agenda.

Harnessing unstructured data

Traditionally, software has been useful in reading and analyzing structured data, but the volume of unstructured data – from external financial reporting systems, RFID sensors, and social media, for example – is exploding. Predictive analytics can help CFOs harness it for more accurate planning, forecasting, and decision making based on what’s happening now and what’s likely to happen, rather than what happened in the past.

To learn more about how finance executives can empower themselves with the right tools and play a vital role in business innovation and value chain, review the SAP finance content hub, which offers additional research and valuable insights.

Comments

About Henner Schliebs

Henner Schliebs is global vice president Audience Marketing for SAP S/4HANA and Finance at SAP. He is a progressive sales/marketing executive with 15+ years of experience in business software solutions focused on corporate functions. He has strong marketing and go-to-market skills and a proven track record in enterprise software solutions, along with significant experience in solution management and customer engagement.

Real-Time Analysis Tools Critical To Improving Finance Performance [INFOGRAPHIC]

Viki Ghavalas

The majority of finance executives agree that real-time analysis tools are key to making better business decisions, according to a report by CFO Research and SAP titled “The Future of Financial Planning and Analysis.” However, executives polled also believe that their current systems still need more improvement to be able to make a positive impact on the business. Executives surveyed point to four main priorities for their FP&A tools.

Finance executives surveyed expect the demand for real-time analysis tools to grow in the coming years. However, the survey also shows that having these tools is not enough and that stakeholders also expect analysis and insights from finance that are simple and actionable.

Data in financial planning and analysis

Learn more about what finance executives are projecting for FP&A by downloading the “The Future of Financial Planning and Analysis” report.

Are you monitoring business performance in real time? If not, read Boosting Efficiency For CFOs And The Finance Function.

Comments

About Viki Ghavalas

Viki Ghavalas is worldwide program manager for the finance line of business at SAP.

Why Banks Should Be Bullish On Integrating Finance And Risk Data

Mike Russo

Welcome to the regulatory world of banking, where finance and risk must join forces to banking executiveensure compliance and control. Today it’s no longer sufficient to manage your bank’s performance using finance-only metrics such as net income. What you need is a risk-adjusted view of performance that identifies how much revenue you earn relative to the amount of risk you take on. That requires metrics that combine finance and risk components, such as risk-adjusted return on capital, shareholder value added, or economic value added.

While the smart money is on a unified approach to finance and risk, most banking institutions have isolated each function in a discrete technology “silo” complete with its own data set, models, applications, and reporting components. What’s more, banks continually reuse and replicate their finance and risk-related data – resulting in the creation of additional data stores filled with redundant data that grows exponentially over time. Integrating all this data on a single platform that supports both finance and risk scenarios can provide the data integrity and insight needed to meet regulations. Such an initiative may involve some heavy lifting, but the advantages extend far beyond compliance.

Cashing in on bottom-line benefits

Consider the potential cost savings of taking a more holistic approach to data management. In our work with large global banks, we estimate that data management – including validation, reconciliation, and copying data from one data mart to another – accounts for 50% to 70% of total IT costs. Now factor in the benefits of reining in redundancy. One bank we’re currently working with is storing the same finance and risk-related data 20 times. This represents a huge opportunity to save costs by eliminating data redundancy and all the associated processes that unfold once you start replicating data across multiple sources.

With the convergence of finance and risk, we’re seeing more banks reviewing their data architecture, thinking about new models, and considering how to handle data in a smarter way. Thanks to modern methodologies, building a unified platform that aligns finance and risk no longer requires a rip-and-replace process that can disrupt operations. As with any enterprise initiative, it’s best to take a phased approach.

Best practices in creating a unified data platform

Start by identifying a chief data officer (CDO) who has strategic responsibility for the unified platform, including data governance, quality, architecture, and analytics. The CDO oversees the initiative, represents all constituencies, and ensures that the new data architecture serves the interests of all stakeholders.

Next, define a unified set of terms that satisfies both your finance and risk constituencies while addressing regulatory requirements. This creates a common language across the enterprise so all stakeholders clearly understand what the data means. Make sure all stakeholders have an opportunity to weigh in and explain their perspective of the data early on because certain terms can mean different things to finance and risk folks.

In designing your platform, take advantage of new technologies that make previous IT models predicated on compute-intensive risk modeling a thing of the past. For example, in-memory computing now enables you to integrate all information and analytic processes in memory, so you can perform calculations on-the-fly and deliver results in real time. Advanced event stream processing lets you run analytics against transaction data as it’s posting, so you can analyze and act on events as they happen.

Such technologies bring integration, speed, flexibility, and access to finance and risk data. They eliminate the need to move data to data marts and reconcile data to meet user requirements. Now a single finance and risk data warehouse can be flexible and comprehensive enough to serve many masters.

Join our webinar with Risk.net on 7 October, 2015 to learn best practices and benefits of deploying an integrated finance and risk platform.

Comments

About Mike Russo

Mike Russo, Senior Industry Principal – Financial Services Mike has 30 years experience in the Financial Services/ Financial Software industries. His experience includes stints as Senior Auditor for the Irving Trust Co., NY; Manager of the International Department at Barclays Bank of New York; and 14 years as CFO for Nordea Bank’s, New York City branch –a full service retail/commercial bank. Mike also served on Nordea’s Credit, IT, and Risk Committees. Mike’s financial software experience includes roles as a Senior Banking Consultant with Sanchez Computer Associates and Manager of Global Business Solutions (focused on sale of financial/risk management solutions) with Thomson Financial. Prior to joining SAP, Mike was a regulator with the Federal Reserve Bank in Charlotte, where he was responsible for the supervision of large commercial banking organizations in the Southeast with a focus on market/credit/operational risk management. Joined SAP 8years ago.

How AI Can End Bias

Yvonne Baur, Brenda Reid, Steve Hunt, and Fawn Fitter

We humans make sense of the world by looking for patterns, filtering them through what we think we already know, and making decisions accordingly. When we talk about handing decisions off to artificial intelligence (AI), we expect it to do the same, only better.

Machine learning does, in fact, have the potential to be a tremendous force for good. Humans are hindered by both their unconscious assumptions and their simple inability to process huge amounts of information. AI, on the other hand, can be taught to filter irrelevancies out of the decision-making process, pluck the most suitable candidates from a haystack of résumés, and guide us based on what it calculates is objectively best rather than simply what we’ve done in the past.

In other words, AI has the potential to help us avoid bias in hiring, operations, customer service, and the broader business and social communities—and doing so makes good business sense. For one thing, even the most unintentional discrimination can cost a company significantly, in both money and brand equity. The mere fact of having to defend against an accusation of bias can linger long after the issue itself is settled.

Beyond managing risk related to legal and regulatory issues, though, there’s a broader argument for tackling bias: in a relentlessly competitive and global economy, no organization can afford to shut itself off from broader input, more varied experiences, a wider range of talent, and larger potential markets.

That said, the algorithms that drive AI don’t reveal pure, objective truth just because they’re mathematical. Humans must tell AI what they consider suitable, teach it which information is relevant, and indicate that the outcomes they consider best—ethically, legally, and, of course, financially—are those that are free from bias, conscious or otherwise. That’s the only way AI can help us create systems that are fair, more productive, and ultimately better for both business and the broader society.

Bias: Bad for Business

When people talk about AI and machine learning, they usually mean algorithms that learn over time as they process large data sets. Organizations that have gathered vast amounts of data can use these algorithms to apply sophisticated mathematical modeling techniques to see if the results can predict future outcomes, such as fluctuations in the price of materials or traffic flows around a port facility. Computers are ideally suited to processing these massive data volumes to reveal patterns and interactions that might help organizations get ahead of their competitors. As we gather more types and sources of data with which to train increasingly complex algorithms, interest in AI will become even more intense.

Using AI for automated decision making is becoming more common, at least for simple tasks, such as recommending additional products at the point of sale based on a customer’s current and past purchases. The hope is that AI will be able to take on the process of making increasingly sophisticated decisions, such as suggesting entirely new markets where a company could be profitable, or finding the most qualified candidates for jobs by helping HR look beyond the expected demographics.

As AI takes on these increasingly complex decisions, it can help reduce bias, conscious or otherwise. By exposing a bias, algorithms allow us to lessen the impact of that bias on our decisions and actions. They enable us to make decisions that reflect objective data instead of untested assumptions; they reveal imbalances; and they alert people to their cognitive blind spots so they can make more accurate, unbiased decisions.

Imagine, for example, a major company that realizes that its past hiring practices were biased against women and that would benefit from having more women in its management pipeline. AI can help the company analyze its past job postings for gender-biased language, which might have discouraged some applicants. Future postings could be more gender neutral, increasing the number of female applicants who get past the initial screenings.

AI can also support people in making less-biased decisions. For example, a company is considering two candidates for an influential management position: one man and one woman. The final hiring decision lies with a hiring manager who, when they learn that the female candidate has a small child at home, assumes that she would prefer a part-time schedule.

That assumption may be well intentioned, but it runs counter to the outcome the company is looking for. An AI could apply corrective pressure by reminding the hiring manager that all qualifications being equal, the female candidate is an objectively good choice who meets the company’s criteria. The hope is that the hiring manager will realize their unfounded assumption and remove it from their decision-making process.

At the same time, by tracking the pattern of hiring decisions this manager makes, the AI could alert them—and other people in HR—that the company still has some remaining hidden biases against female candidates to address.

Look for Where Bias Already Exists

In other words, if we want AI to counter the effects of a biased world, we have to begin by acknowledging that the world is biased. And that starts in a surprisingly low-tech spot: identifying any biases baked into your own organization’s current processes. From there, you can determine how to address those biases and improve outcomes.

There are many scenarios where humans can collaborate with AI to prevent or even reverse bias, says Jason Baldridge, a former associate professor of computational linguistics at the University of Texas at Austin and now co-founder of People Pattern, a startup for predictive demographics using social media analytics. In the highly regulated financial services industry, for example, Baldridge says banks are required to ensure that their algorithmic choices are not based on input variables that correlate with protected demographic variables (like race and gender). The banks also have to prove to regulators that their mathematical models don’t focus on patterns that disfavor specific demographic groups, he says. What’s more, they have to allow outside data scientists to assess their models for code or data that might have a discriminatory effect. As a result, banks are more evenhanded in their lending.

Code Is Only Human

The reason for these checks and balances is clear: the algorithms that drive AI are built by humans, and humans choose the data with which to shape and train the resulting models. Because humans are prone to bias, we have to be careful that we are neither simply confirming existing biases nor introducing new ones when we develop AI models and feed them data.

“From the perspective of a business leader who wants to do the right thing, it’s a design question,” says Cathy O’Neil, whose best-selling book Weapons of Math Destruction was long-listed for the 2016 National Book Award. “You wouldn’t let your company design a car and send it out in the world without knowing whether it’s safe. You have to design it with safety standards in mind,” she says. “By the same token, algorithms have to be designed with fairness and legality in mind, with standards that are understandable to everyone, from the business leader to the people being scored.” (To learn more from O’Neil about transparency in algorithms, read Thinkers in this issue.)

Don’t Do What You’ve Always Done

To eliminate bias, you must first make sure that the data you’re using to train the algorithm is itself free of bias, or, rather, that the algorithm can recognize bias in that data and bring the bias to a human’s attention.

SAP has been working on an initiative that tackles this issue directly by spotting and categorizing gendered terminology in old job postings. Nothing as overt as No women need apply, which everyone knows is discriminatory, but phrases like outspoken and aggressively pursuing opportunities, which are proven to attract male job applicants and repel female applicants, and words like caring and flexible, which do the opposite.

Once humans categorize this language and feed it into an algorithm, the AI can learn to flag words that imply bias and suggest gender-neutral alternatives. Unfortunately, this de-biasing process currently requires too much human intervention to scale easily, but as the amount of available de-biased data grows, this will become far less of a limitation in developing AI for HR.

Similarly, companies should look for specificity in how their algorithms search for new talent. According to O’Neil, there’s no one-size-fits-all definition of the best engineer; there’s only the best engineer for a particular role or project at a particular time. That’s the needle in the haystack that AI is well suited to find.

Look Beyond the Obvious

AI could be invaluable in radically reducing deliberate and unconscious discrimination in the workplace. However, the more data your company analyzes, the more likely it is that you will deal with stereotypes, O’Neil says. If you’re looking for math professors, for example, and you load your hiring algorithm with all the data you can find about math professors, your algorithm may give a lower score to a black female candidate living in Harlem simply because there are fewer black female mathematicians in your data set. But if that candidate has a PhD in math from Cornell, and if you’ve trained your AI to prioritize that criterion, the algorithm will bump her up the list of candidates rather than summarily ruling out a potentially high-value hire on the spurious basis of race and gender.

To further improve the odds that AI will be useful, companies have to go beyond spotting relationships between data and the outcomes they care about. It doesn’t take sophisticated predictive modeling to determine, for example, that women are disproportionately likely to jump off the corporate ladder at the halfway point because they’re struggling with work/life balance.

Many companies find it all too easy to conclude that women simply aren’t qualified for middle management. However, a company committed to smart talent management will instead ask what it is about these positions that makes them incompatible with women’s lives. It will then explore what it can change so that it doesn’t lose talent and institutional knowledge that will cost the company far more to replace than to retain.

That company may even apply a second layer of machine learning that looks at its own suggestions and makes further recommendations: “It looks like you’re trying to do X, so consider doing Y,” where X might be promoting more women, making the workforce more ethnically diverse, or improving retention statistics, and Y is redefining job responsibilities with greater flexibility, hosting recruiting events in communities of color, or redesigning benefits packages based on what similar companies offer.

Context Matters—and Context Changes

Even though AI learns—and maybe because it learns—it can never be considered “set it and forget it” technology. To remain both accurate and relevant, it has to be continually trained to account for changes in the market, your company’s needs, and the data itself.

Sources for language analysis, for example, tend to be biased toward standard American English, so if you’re building models to analyze social media posts or conversational language input, Baldridge says, you have to make a deliberate effort to include and correct for slang and nonstandard dialects. Standard English applies the word sick to someone having health problems, but it’s also a popular slang term for something good or impressive, which could lead to an awkward experience if someone confuses the two meanings, to say the least. Correcting for that, or adding more rules to the algorithm, such as “The word sick appears in proximity to positive emoji,” takes human oversight.

Moving Forward with AI

Today, AI excels at making biased data obvious, but that isn’t the same as eliminating it. It’s up to human beings to pay attention to the existence of bias and enlist AI to help avoid it. That goes beyond simply implementing AI to insisting that it meet benchmarks for positive impact. The business benefits of taking this step are—or soon will be—obvious.

In IDC FutureScapes’ webcast “Worldwide Big Data, Business Analytics, and Cognitive Software 2017 Predictions,” research director David Schubmehl predicted that by 2020 perceived bias and lack of evidentiary transparency in cognitive/AI solutions will create an activist backlash movement, with up to 10% of users backing away from the technology. However, Schubmehl also speculated that consumer and enterprise users of machine learning will be far more likely to trust AI’s recommendations and decisions if they understand how those recommendations and decisions are made. That means knowing what goes into the algorithms, how they arrive at their conclusions, and whether they deliver desired outcomes that are also legally and ethically fair.

Clearly, organizations that can address this concern explicitly will have a competitive advantage, but simply stating their commitment to using AI for good may not be enough. They also may wish to support academic efforts to research AI and bias, such as the annual Fairness, Accountability, and Transparency in Machine Learning (FATML) workshop, which was held for the third time in November 2016.

O’Neil, who blogs about data science and founded the Lede Program for Data Journalism, an intensive certification program at Columbia University, is going one step further. She is attempting to create an entirely new industry dedicated to auditing and monitoring algorithms to ensure that they not only reveal bias but actively eliminate it. She proposes the formation of groups of data scientists that evaluate supply chains for signs of forced labor, connect children at risk of abuse with resources to support their families, or alert people through a smartphone app when their credit scores are used to evaluate eligibility for something other than a loan.

As we begin to entrust AI with more complex and consequential decisions, organizations may also want to be proactive about ensuring that their algorithms do good—so that their companies can use AI to do well. D!

Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.


About the Authors:

Yvonne Baur is Head of Predictive Analytics for Sap SuccessFactors solutions.

Brenda Reid is Vice President of Product Management for Sap SuccessFactors solutions.

Steve Hunt is Senior Vice President of Human Capital Management Research for Sap SuccessFactors solutions.

Fawn Fitter is a freelance writer specializing in business and technology.

Comments

Tags:

Donuts, Content Management and Information Governance

Ina Felsheim

I was on vacation for two weeks, which was awesome, and my girls mainly wanted to do two things:

I had my own list of projects, too. The big one was installing glass tile on the kitchen backsplash. (Grout everywhere. That’s all I’m saying.)

After two weeks of glorious holiday, I sat down to take stock. The old technical writer in me came creeping out, and I began to count how many sets of instructions we followed over the course of the two weeks—more than 15, definitely. And the amazing thing? They were all right. Every. Last. One. From proper application of fabric paint to proper frying temperature for homemade donuts, to putting together a shoe rack that came in 20 pieces.

I’m pretty sure this wouldn’t have happened five years ago. The difference comes from an increased awareness in the importance of great user assistance. Without successful “use,” who’s going to evangelize your product?

Information Governance: Part of a Larger Food Pyramid

In EIM, we have a well-seasoned group of information developers. They apply information governance principles every day:

  • Create a single source of master information (in this case, product step-by-step instructions)
  • Manage versioning of master information (as product updates happen)
  • Survey end-users of the information to gauge quality, freshness, and applicability of master information
  • Establish master information Responsible, Accountable, Consulted, or Informed (RACI) models for owners, reviewers, and informed stakeholders.

Sometimes, we group this knowledge management work into other categories, like content management. However, information governance needs to also be inclusive of these activities; otherwise, how can we be successful? No one can live on donuts alone!

Does your information governance program include content management? Do you have comments about the quality of EIM user assistance (online help, PDFs, printed documentation, etc.)?

Comments

About Jacqueline Prause

Jacqueline Prause is the Senior Managing Editor of Media Channels at SAP. She writes, edits, and coordinates journalistic content for SAP.info, SAP's global online news magazine for customers, partners, and business influencers .

Tags:

awareness

Donuts, Content Management and Information Governance

Ina Felsheim

I was on vacation for two weeks, which was awesome, and my girls mainly wanted to do two things:

I had my own list of projects, too. The big one was installing glass tile on the kitchen backsplash. (Grout everywhere. That’s all I’m saying.)

After two weeks of glorious holiday, I sat down to take stock. The old technical writer in me came creeping out, and I began to count how many sets of instructions we followed over the course of the two weeks—more than 15, definitely. And the amazing thing? They were all right. Every. Last. One. From proper application of fabric paint to proper frying temperature for homemade donuts, to putting together a shoe rack that came in 20 pieces.

I’m pretty sure this wouldn’t have happened five years ago. The difference comes from an increased awareness in the importance of great user assistance. Without successful “use,” who’s going to evangelize your product?

Information Governance: Part of a Larger Food Pyramid

In EIM, we have a well-seasoned group of information developers. They apply information governance principles every day:

  • Create a single source of master information (in this case, product step-by-step instructions)
  • Manage versioning of master information (as product updates happen)
  • Survey end-users of the information to gauge quality, freshness, and applicability of master information
  • Establish master information Responsible, Accountable, Consulted, or Informed (RACI) models for owners, reviewers, and informed stakeholders.

Sometimes, we group this knowledge management work into other categories, like content management. However, information governance needs to also be inclusive of these activities; otherwise, how can we be successful? No one can live on donuts alone!

Does your information governance program include content management? Do you have comments about the quality of EIM user assistance (online help, PDFs, printed documentation, etc.)?

Comments

About Andre Smith

An Internet, Marketing and E-Commerce specialist with several years of experience in the industry. He has watched as the world of online business has grown and adapted to new technologies, and he has made it his mission to help keep businesses informed and up to date.

Tags:

awareness

Donuts, Content Management and Information Governance

Ina Felsheim

I was on vacation for two weeks, which was awesome, and my girls mainly wanted to do two things:

I had my own list of projects, too. The big one was installing glass tile on the kitchen backsplash. (Grout everywhere. That’s all I’m saying.)

After two weeks of glorious holiday, I sat down to take stock. The old technical writer in me came creeping out, and I began to count how many sets of instructions we followed over the course of the two weeks—more than 15, definitely. And the amazing thing? They were all right. Every. Last. One. From proper application of fabric paint to proper frying temperature for homemade donuts, to putting together a shoe rack that came in 20 pieces.

I’m pretty sure this wouldn’t have happened five years ago. The difference comes from an increased awareness in the importance of great user assistance. Without successful “use,” who’s going to evangelize your product?

Information Governance: Part of a Larger Food Pyramid

In EIM, we have a well-seasoned group of information developers. They apply information governance principles every day:

  • Create a single source of master information (in this case, product step-by-step instructions)
  • Manage versioning of master information (as product updates happen)
  • Survey end-users of the information to gauge quality, freshness, and applicability of master information
  • Establish master information Responsible, Accountable, Consulted, or Informed (RACI) models for owners, reviewers, and informed stakeholders.

Sometimes, we group this knowledge management work into other categories, like content management. However, information governance needs to also be inclusive of these activities; otherwise, how can we be successful? No one can live on donuts alone!

Does your information governance program include content management? Do you have comments about the quality of EIM user assistance (online help, PDFs, printed documentation, etc.)?

Comments

Jay Tchakarov

About Jay Tchakarov

Jay Tchakarov is vice president of Product Management and Marketing at HighRadius Corporation. As part of HighRadius’ executive team, he is responsible for defining HighRadius’ Credit and A/R products and for educating the market about the value of automation and advanced technologies. He and his team work closely with sales, consultants, and customers to make sure the products address critical pain points and provide quantifiable, high-value solutions. Jay has more than 15 years of experience in software development, product management, and marketing, and numerous successful product launches. Jay graduated summa cum laude and received a Bachelor of Science in Computer Science from the University of Louisiana at Lafayette, a Master of Science in Computer Science from the University of Illinois at Urbana-Champaign, and an MBA from Rice University.

Tags:

awareness

Donuts, Content Management and Information Governance

Ina Felsheim

I was on vacation for two weeks, which was awesome, and my girls mainly wanted to do two things:

I had my own list of projects, too. The big one was installing glass tile on the kitchen backsplash. (Grout everywhere. That’s all I’m saying.)

After two weeks of glorious holiday, I sat down to take stock. The old technical writer in me came creeping out, and I began to count how many sets of instructions we followed over the course of the two weeks—more than 15, definitely. And the amazing thing? They were all right. Every. Last. One. From proper application of fabric paint to proper frying temperature for homemade donuts, to putting together a shoe rack that came in 20 pieces.

I’m pretty sure this wouldn’t have happened five years ago. The difference comes from an increased awareness in the importance of great user assistance. Without successful “use,” who’s going to evangelize your product?

Information Governance: Part of a Larger Food Pyramid

In EIM, we have a well-seasoned group of information developers. They apply information governance principles every day:

  • Create a single source of master information (in this case, product step-by-step instructions)
  • Manage versioning of master information (as product updates happen)
  • Survey end-users of the information to gauge quality, freshness, and applicability of master information
  • Establish master information Responsible, Accountable, Consulted, or Informed (RACI) models for owners, reviewers, and informed stakeholders.

Sometimes, we group this knowledge management work into other categories, like content management. However, information governance needs to also be inclusive of these activities; otherwise, how can we be successful? No one can live on donuts alone!

Does your information governance program include content management? Do you have comments about the quality of EIM user assistance (online help, PDFs, printed documentation, etc.)?

Comments

About Derek Klobucher

Derek Klobucher is a Brand Journalist, Content Marketer and Master Digital Storyteller at SAP. His responsibilities include conceiving, developing and conducting global, company-wide employee brand journalism training; managing content, promotion and strategy for social networks and online media; and mentoring SAP employees, contractors and interns to optimize blogging and social media efforts.

Tags:

awareness

Donuts, Content Management and Information Governance

Ina Felsheim

I was on vacation for two weeks, which was awesome, and my girls mainly wanted to do two things:

I had my own list of projects, too. The big one was installing glass tile on the kitchen backsplash. (Grout everywhere. That’s all I’m saying.)

After two weeks of glorious holiday, I sat down to take stock. The old technical writer in me came creeping out, and I began to count how many sets of instructions we followed over the course of the two weeks—more than 15, definitely. And the amazing thing? They were all right. Every. Last. One. From proper application of fabric paint to proper frying temperature for homemade donuts, to putting together a shoe rack that came in 20 pieces.

I’m pretty sure this wouldn’t have happened five years ago. The difference comes from an increased awareness in the importance of great user assistance. Without successful “use,” who’s going to evangelize your product?

Information Governance: Part of a Larger Food Pyramid

In EIM, we have a well-seasoned group of information developers. They apply information governance principles every day:

  • Create a single source of master information (in this case, product step-by-step instructions)
  • Manage versioning of master information (as product updates happen)
  • Survey end-users of the information to gauge quality, freshness, and applicability of master information
  • Establish master information Responsible, Accountable, Consulted, or Informed (RACI) models for owners, reviewers, and informed stakeholders.

Sometimes, we group this knowledge management work into other categories, like content management. However, information governance needs to also be inclusive of these activities; otherwise, how can we be successful? No one can live on donuts alone!

Does your information governance program include content management? Do you have comments about the quality of EIM user assistance (online help, PDFs, printed documentation, etc.)?

Comments

Tiffany Rowe

About Tiffany Rowe

Tiffany Rowe is a marketing administrator who assists in contributing resourceful content. Tiffany prides herself in her ability to provide high-quality content that readers will find valuable.

Tags:

awareness

Donuts, Content Management and Information Governance

Ina Felsheim

I was on vacation for two weeks, which was awesome, and my girls mainly wanted to do two things:

I had my own list of projects, too. The big one was installing glass tile on the kitchen backsplash. (Grout everywhere. That’s all I’m saying.)

After two weeks of glorious holiday, I sat down to take stock. The old technical writer in me came creeping out, and I began to count how many sets of instructions we followed over the course of the two weeks—more than 15, definitely. And the amazing thing? They were all right. Every. Last. One. From proper application of fabric paint to proper frying temperature for homemade donuts, to putting together a shoe rack that came in 20 pieces.

I’m pretty sure this wouldn’t have happened five years ago. The difference comes from an increased awareness in the importance of great user assistance. Without successful “use,” who’s going to evangelize your product?

Information Governance: Part of a Larger Food Pyramid

In EIM, we have a well-seasoned group of information developers. They apply information governance principles every day:

  • Create a single source of master information (in this case, product step-by-step instructions)
  • Manage versioning of master information (as product updates happen)
  • Survey end-users of the information to gauge quality, freshness, and applicability of master information
  • Establish master information Responsible, Accountable, Consulted, or Informed (RACI) models for owners, reviewers, and informed stakeholders.

Sometimes, we group this knowledge management work into other categories, like content management. However, information governance needs to also be inclusive of these activities; otherwise, how can we be successful? No one can live on donuts alone!

Does your information governance program include content management? Do you have comments about the quality of EIM user assistance (online help, PDFs, printed documentation, etc.)?

Comments

Tags:

awareness

Donuts, Content Management and Information Governance

Ina Felsheim

I was on vacation for two weeks, which was awesome, and my girls mainly wanted to do two things:

I had my own list of projects, too. The big one was installing glass tile on the kitchen backsplash. (Grout everywhere. That’s all I’m saying.)

After two weeks of glorious holiday, I sat down to take stock. The old technical writer in me came creeping out, and I began to count how many sets of instructions we followed over the course of the two weeks—more than 15, definitely. And the amazing thing? They were all right. Every. Last. One. From proper application of fabric paint to proper frying temperature for homemade donuts, to putting together a shoe rack that came in 20 pieces.

I’m pretty sure this wouldn’t have happened five years ago. The difference comes from an increased awareness in the importance of great user assistance. Without successful “use,” who’s going to evangelize your product?

Information Governance: Part of a Larger Food Pyramid

In EIM, we have a well-seasoned group of information developers. They apply information governance principles every day:

  • Create a single source of master information (in this case, product step-by-step instructions)
  • Manage versioning of master information (as product updates happen)
  • Survey end-users of the information to gauge quality, freshness, and applicability of master information
  • Establish master information Responsible, Accountable, Consulted, or Informed (RACI) models for owners, reviewers, and informed stakeholders.

Sometimes, we group this knowledge management work into other categories, like content management. However, information governance needs to also be inclusive of these activities; otherwise, how can we be successful? No one can live on donuts alone!

Does your information governance program include content management? Do you have comments about the quality of EIM user assistance (online help, PDFs, printed documentation, etc.)?

Comments

Andreas Heckmann

About Andreas Heckmann

Andreas Heckmann is head of Product Support at SAP. You can follow him on Twitter, LinkedIn, and WeChat at AndHeckmann.

Tags:

awareness

Donuts, Content Management and Information Governance

Ina Felsheim

I was on vacation for two weeks, which was awesome, and my girls mainly wanted to do two things:

I had my own list of projects, too. The big one was installing glass tile on the kitchen backsplash. (Grout everywhere. That’s all I’m saying.)

After two weeks of glorious holiday, I sat down to take stock. The old technical writer in me came creeping out, and I began to count how many sets of instructions we followed over the course of the two weeks—more than 15, definitely. And the amazing thing? They were all right. Every. Last. One. From proper application of fabric paint to proper frying temperature for homemade donuts, to putting together a shoe rack that came in 20 pieces.

I’m pretty sure this wouldn’t have happened five years ago. The difference comes from an increased awareness in the importance of great user assistance. Without successful “use,” who’s going to evangelize your product?

Information Governance: Part of a Larger Food Pyramid

In EIM, we have a well-seasoned group of information developers. They apply information governance principles every day:

  • Create a single source of master information (in this case, product step-by-step instructions)
  • Manage versioning of master information (as product updates happen)
  • Survey end-users of the information to gauge quality, freshness, and applicability of master information
  • Establish master information Responsible, Accountable, Consulted, or Informed (RACI) models for owners, reviewers, and informed stakeholders.

Sometimes, we group this knowledge management work into other categories, like content management. However, information governance needs to also be inclusive of these activities; otherwise, how can we be successful? No one can live on donuts alone!

Does your information governance program include content management? Do you have comments about the quality of EIM user assistance (online help, PDFs, printed documentation, etc.)?

Comments

About Joerg Koesters

Joerg Koesters is the Head of Retail Marketing and Communication at SAP. He is a Technology Marketing executive with 20 years of experience in Marketing, Sales and Consulting, Joerg has deep knowledge in retail and consumer products having worked both in the industry and in the technology sector.

Tags:

awareness

Donuts, Content Management and Information Governance

Ina Felsheim

I was on vacation for two weeks, which was awesome, and my girls mainly wanted to do two things:

I had my own list of projects, too. The big one was installing glass tile on the kitchen backsplash. (Grout everywhere. That’s all I’m saying.)

After two weeks of glorious holiday, I sat down to take stock. The old technical writer in me came creeping out, and I began to count how many sets of instructions we followed over the course of the two weeks—more than 15, definitely. And the amazing thing? They were all right. Every. Last. One. From proper application of fabric paint to proper frying temperature for homemade donuts, to putting together a shoe rack that came in 20 pieces.

I’m pretty sure this wouldn’t have happened five years ago. The difference comes from an increased awareness in the importance of great user assistance. Without successful “use,” who’s going to evangelize your product?

Information Governance: Part of a Larger Food Pyramid

In EIM, we have a well-seasoned group of information developers. They apply information governance principles every day:

  • Create a single source of master information (in this case, product step-by-step instructions)
  • Manage versioning of master information (as product updates happen)
  • Survey end-users of the information to gauge quality, freshness, and applicability of master information
  • Establish master information Responsible, Accountable, Consulted, or Informed (RACI) models for owners, reviewers, and informed stakeholders.

Sometimes, we group this knowledge management work into other categories, like content management. However, information governance needs to also be inclusive of these activities; otherwise, how can we be successful? No one can live on donuts alone!

Does your information governance program include content management? Do you have comments about the quality of EIM user assistance (online help, PDFs, printed documentation, etc.)?

Comments

Henry Albrecht

About Henry Albrecht

Henry Albrecht is the CEO of Limeade, the corporate wellness technology company that measurably improves employee health, well-being and performance. Connect with Henry and the Limeade team on Twitter, Facebook and LinkedIn.

Tags:

awareness

Donuts, Content Management and Information Governance

Ina Felsheim

I was on vacation for two weeks, which was awesome, and my girls mainly wanted to do two things:

I had my own list of projects, too. The big one was installing glass tile on the kitchen backsplash. (Grout everywhere. That’s all I’m saying.)

After two weeks of glorious holiday, I sat down to take stock. The old technical writer in me came creeping out, and I began to count how many sets of instructions we followed over the course of the two weeks—more than 15, definitely. And the amazing thing? They were all right. Every. Last. One. From proper application of fabric paint to proper frying temperature for homemade donuts, to putting together a shoe rack that came in 20 pieces.

I’m pretty sure this wouldn’t have happened five years ago. The difference comes from an increased awareness in the importance of great user assistance. Without successful “use,” who’s going to evangelize your product?

Information Governance: Part of a Larger Food Pyramid

In EIM, we have a well-seasoned group of information developers. They apply information governance principles every day:

  • Create a single source of master information (in this case, product step-by-step instructions)
  • Manage versioning of master information (as product updates happen)
  • Survey end-users of the information to gauge quality, freshness, and applicability of master information
  • Establish master information Responsible, Accountable, Consulted, or Informed (RACI) models for owners, reviewers, and informed stakeholders.

Sometimes, we group this knowledge management work into other categories, like content management. However, information governance needs to also be inclusive of these activities; otherwise, how can we be successful? No one can live on donuts alone!

Does your information governance program include content management? Do you have comments about the quality of EIM user assistance (online help, PDFs, printed documentation, etc.)?

Comments

Tags:

awareness