3D Printing: A New Dimension To Mining

Indranil Som

Maintenance and downtime due to poor inventory optimization is a major challenge faced by field operations in mining.

Investing in 3D printing technology can help mining firms innovate and develop their existing processes, in addition to improving efficiency and costs. This approach can be used to produce parts on site and on-demand, thereby streamlining and optimizing the inbound supply chains. As mining companies operate in many remote and hostile environments and downtime of mining equipment could be extremely costly, the industry faces many practical challenges:

  • The high cost of materials, excess inventory, and warehousing and on-site storage costs
  • Logistic costs of transporting parts in emergencies to ensure the continuous running of machines
  • High dependence on original equipment manufacturers (OEMs) for precision-engineered parts

What is 3D printing?

3D printing, also referred to as additive technology, is the process of making physical objects from a digital model using a printer. Although still at its nascent stage, the technology is already making waves in the manufacturing of prosthetics, medical devices, and lightweight precision automotive and aerospace parts.

Increased use of technology and innovation

By applying 3D printing into their production cycle, businesses can create quality products quickly and easily without the need for a physical prototype, thereby improving efficiency and reducing costs. But time will tell whether 3D printing can meet the demands of the mining industry, which requires high-quality, precision-manufactured items made of multiple materials.

Parts failures and repairs

With access to a digital service parts library and the requisite 3D printing capability, production of parts on site and on demand makes part failure and the site remoteness inconsequential. With spare parts stored digitally, the high cost and environmental impact of transportation and warehousing of inventory are drastically reduced.

Further, 3D printing helps optimize material and energy consumption by consuming only the raw material required to build the final product, thus supporting a leaner and greener approach to production.

Design customization

The tools used in mining can be customized to suit the mining environment and produced cost effectively in small quantities. Using 3D printing, any item in the digital library can be replicated on site to suit the unique requirements of the operations.

Sustainable manufacturing

3D printing increases efficiency, reduces waste, and makes processes more cost-efficient and manufacturing sustainable. Transportation costs will be reduced and as technology evolves, designs will become more energy- and fuel-efficient.

Mining businesses can potentially reduce waste in terms of energy and raw materials, and optimize utilization of used or faulty parts by recycling them. This allows for reusability of raw materials, adding to the sustainability of 3D printing.

Future of 3D printing in mining

In the mining industry, efficiency and cost containment in the supply chain is critical. Adoption of 3D printing can bring about significant changes in supply chain operations due to more on-demand in-sourcing of parts, operations strategies, and policies. It revolutionizes the supply chain operations by impacting manufacturing location strategies, shrinking delivery lead times and removing excess stock and complexity.

For more on how advanced technology can benefit manufacturing in many industries, see Digitalization, Industry 4.0, And The Future Of Industrial Production.

Comments

Indranil Som

About Indranil Som

Indranil Som is the Digital Leader for Energy and Natural Resources industry at SAP India, engaged in consulting with C-level executives to enable organizations unlock business value through technology driven business transformations. He has had over 16 years of management consulting experience with a combination of strategy and technology engagements, encompassing scoping, planning and execution, with leading international firms.

Connected Fleets Save Money

Barbara Flügge

Something unexpected began happening in journalist Mike Esposito’s inbox. Extra emails were demanding his attention, but they weren’t written by people.  His newly leased car was reminding him about its upkeep.

Esposito, who writes for Auto DeaIer Today, noted that among other matters, his vehicle “tells me when I’m low on fuel, when the tire pressure drops and what the outside temperature is.”

Like cars in many government fleets, Esposito’s car is “smart” due to Internet connectivity. It contains telematics–devices including a global positioning system (GPS)–that are part of the car’s operating system. Telematics are also part of the Internet of Things (IoT).

Connected fleet ecosystem

These days, IoT objects containing sensors often connect vehicles to the Internet and, in the case of fleets, to each other.

Esposito’s car can send him notes, because telematics let one machine (the car) share information with another machine (his computer).

Machine-to-machine communication is one part of an ecosystem with the Internet at its centre. The sensors in vehicles with telematics also can connect to parts of their environment–including roadway warning systems–which also contain IoT sensors.

Connected cars produce much data, including information about how carefully people drive them. A privately owned connected car might send this data to an insurance company, which would use it to adjust driver rates.

In contrast, data from public sector fleets would travel to the digital systems of the municipalities, central governments or authorities (such as ports) they serve. This information would include availability for use and maintenance issues in addition to driver care.

Many kinds of vehicles may be included in public sector fleets, including boats, grounds maintenance equipment, motorbikes, trucks, UAVs (drones), and warehouse forklifts.

Connecting fleets to correct problems

Retrofitting vehicles for connectivity or buying new vehicles with factory-installed telematics is expensive. But fleet connectivity provides payback in a number of ways. To understand why organisations would develop these fleets, it helps to consider some actual examples.

Traffic congestion in a mountain resort. Mountain sports, glamorous celebrity lifestyles, and fresh air are among the attractions of Aspen, Colorado. But the city is so popular that it is choking on auto traffic from commuters, residents, and tourists.

Government Fleet magazine reports that Aspen is considering a plan to create a quiet, low-pollution transit system. It would be a connected fleet of mopeds, on-demand shuttles, buses and self-driving mini-vans. The plan also includes improving traffic flow on downtown streets and providing lockers for commuters.

School bus delays. The Chesapeake, Virginia, public school district received many complaints about bus inefficiency in the 2015-2016 school year. Local TV station WAVY reports that the district is responding by equipping each school bus with a GPS and automatic vehicle location system.

Smartport. Truck drivers traveling to the Port of Hamburg in northern Germany no longer have to access many message boards throughout the container port to get updated on traffic and bridge conditions as well as parking availability.

According to tech publisher ZDNet, the port now connects truckers to get current information through a mobile app made possible by a digital platform.

The platform, which is equipped with IoT-solution software, gathers and analyzes huge volumes of data. The IoT software connects to the port’s traffic management system as well as the telematics of trucks visiting the port. This provides a real-time picture of traffic flow.

IoT traffic tracking solutions

IoT software solutions for connected fleets provide government organizations with insights into fleet management, logistics and delivery, insurance telematics (such as monitoring driver-related events), and vehicle diagnostics.

Fleet management solutions include tracking vehicles in real time, monitoring the health of vehicles, and analysing fuel consumption.

Diagnostics involve analysing trouble codes, providing alerts based on vehicle events, and predicting driving performance. One of the logistics matters that solutions analyze concerns arrival times and routing.

IoT solutions help the public sector increase productivity without increasing facilities. ZDNet notes that container turnover at the Port of Hamburg was nine million units in 2014 and likely will double by 2024.

Speaking to the magazine, Hamburg Port Authority representative Sascha Westermann said, “It’s not possible to build more roads. It takes a long time and there’s no space.”

Westermann, who leads IT traffic management for the authority, told ZDNet, “We need smart solutions. IT solutions.”

Year of the connected fleet?

Automobile technology reporter Mike Esposito says he thinks 2017 finally marks the “official arrival” of connected cars. It’s estimated, he says, that 60% to 80% of the cars in which manufacturers have installed telematics will sell this year.

Esposito predicts that “smaller, less expensive cars” will comprise 75% of connected car sales by 2022.

As prices decrease, it’s likely that more public-sector fleets will become connected. The year of the connected fleet is coming soon.

To learn more about SAP Leonardo and our digital innovations, download the “IoT Imperative white paper for the public sector.”

This article originally appeared on Cities Today.

Comments

Barbara Flügge

About Barbara Flügge

Barbara Flügge leads smart cities and regions efforts at SAP. As a thought leader, she advises executives, forward thinkers, and innovation leaders in this area. She dedicates her activities to entire ecosystems beocming cities, ports, and mega events in digital and sustainable transformation. Barbara is a strong believer of innovation and digitization as a public good for everyone. She works on global scale and has in depth knowledge in public sector, automotive, manufacturing, telecommunications, and many other industries. Barbara is a recognized speaker, editor,and author.

Transportation And Logistics Services: Is It Moving Radically Enough?

Juergen Roehricht

Exponential technologies like 3D printing, artificial intelligence, digital assistants, networks, blockchain, and many others are transforming the world we live in faster than we ever imagined. Recently, I joined a panel discussion about digital innovations and their impact on the transportation and logistics services industry. In fact, the discussion inspired me to start this new series of blogs, not just to share my thoughts but to challenge us as (digital) leaders by asking: Are we thinking radically enough? How do exponential technologies and the digital transformation impact our industry? Are we really making the most of digital innovations?

3D printing: It’s now or never

One of the questions the panel discussed was how 3D printing affects business. Interestingly enough, this turned out to be quite controversial.

Many companies are not taking 3D printing seriously. Some don’t see any need to engage with it, and others think it does not offer use cases for their business. Other companies clearly understand the benefits, such as being able to print spare parts for rolling stock. This becomes particularly relevant for older assets for which it is hard to obtain spare parts. Printing the parts they need, right where they need them, means companies can avoid supply-chain and logistics complexity, speed delivery, and potentially lower the costs of manufacturing and shipping.

Though I agree with this argument, I felt that the discussion lacked another angle to move it on to common ground. I asked whether it would be an option for companies to incorporate 3D printing into their core business or even to create a new business by offering 3D printing themselves or via a partner. That would give them an extended production workbench for customers and differentiate them from the competition in multi-modal transport. Companies could think about that model, regardless of any existing leading companies, competitors, or new kids arriving on the block.

The reason for this question is, for each new technology, I first ask myself whether it is likely to affect one or all three of the fundamental pillars of a business: the business model, the business processes, and the way we work. And in the case of 3D printing, I can confidently say that I see that all three pillars are affected.

To summarize the discussion around 3D printing, while I fully understand both perspectives, I have a different standpoint. For years, many transportation and logistics services companies have been providing value-added services like warehousing for their clients and charging premiums on top of the pure transportation service, which is a commoditizing market with declining margins, despite a growing transport volume. Why not extend this now to become an even bigger contributor to manufacturers’ value chains by starting a 3D printing division, closely connected with logistics and, potentially, with warehousing services as well?

A related option is to use outsourcing and leveraging partners, i.e., to work with companies specializing in 3D printing through a dedicated network.

There are already some transportation and logistics companies that are actively using 3D printing, like UPS. Why should printing a sneaker for a consumer differ from printing spare parts for a business customer?

Big Data, predictive analytics, and the Internet of Things: Untapped opportunities

Another interesting topic is how Big Data and predictive analytics are being used and how both will develop. Limiting the conversation to Big Data and predictive analytics is too narrow, unless you combine them with sensors and Internet of Things scenarios. Consider the example of a sensor attached to a container that uses signals, geofencing, and transmission into an analytics-based UI to track containers anywhere at any time. Imagine how much value this could bring to transportation and logistics services providers and to the shipping and receiving companies.

By knowing where a given container is at any time, companies can take action to prevent problems such as not meeting the contracted expected time of arrival (ETA); security problems such as intrusions or high-risk routes; or incorrect handling of the containers (such as temperature irregularities or physical shocks). In addition, these technologies can enable companies to save on operational costs by optimizing logistics to better handle empty transport resources. Sensors that can track, analyze, and predict relevant data could be a solution in all these scenarios.

Not everyone is convinced that these technologies are the way forward. You may hear comments like: “Our customers would not pay for this, and we are operating with very low margins.” Others might complain about the high costs associated with such an approach. While these concerns are understandable, I think they are short-sighted when considering the future impact on business and services. Sensors are now much cheaper, and adding them to a cloud solution that receives, streams, and interprets the data before displaying it on a user interface, and even adding machine learning and prediction algorithms, can be done very fast.

You cannot argue only from a cost perspective. Especially when it comes to ETA as a key metric for transportation companies and the risks of not meeting the contractual agreement. Would you prefer paying unreasonably high compensatory costs instead of installing a system that would help you avoid costly delays?

By decreasing the risk of insurance events, companies can negotiate better rates. Especially when combined with blockchain, technology can put all key data (contracts, IoT and geo-signals, payments, etc.) into a secure, transparent, auditable, and risk- and fraud-minimizing blockchain. And, with the right proposition, why should a customer not be willing to pay a few cents more for better service? Why not leverage this to set yourself apart from your competitors?

Last but not least…

In a world driven by exponential digital technology advances, the average life span of a Fortune 500 company has shrunk from 75 to 15 years over the past 50 years. There are more digital-native and digital technology companies in the Standard & Poor Top 12 ranking than ever before. Startups are popping up everywhere, driving change, and chasing and partially taking over markets that were owned by established companies for years. And companies are realizing that their existing organization might not be capable of changing fast enough, so they are creating digital venture funds and startup programs to drive those new business models and processes, sometimes with ideas that even disrupt themselves. In this world we always need to ask ourselves: Are we thinking radically enough?

The costs of managing, powering, and moving products and services are about to change dramatically. Tick Tock: Start Preparing for Resource Disruption.

Comments

Juergen Roehricht

About Juergen Roehricht

Juergen Roehricht is General Manager of Services Industries and Innovation Lead of the Middle and Eastern Europe region for SAP. The industries he covers include travel and transportation; professional services; media; and engineering, construction and operations. Besides managing the business in those segments, Juergen is focused on supporting innovation and digital transformation strategies of SAP customers. With more than 20 years of experience in IT, he stays up to date on the leading edge of innovation, pioneering and bringing new technologies to market and providing thought leadership. He has published several articles and books, including Collaborative Business and The Multi-Channel Company.

Why Strategic Plans Need Multiple Futures

By Dan Wellers, Kai Goerlich, and Stephanie Overby , Kai Goerlich and Stephanie Overby

When members of Lowe’s Innovation Labs first began talking with the home improvement retailer’s senior executives about how disruptive technologies would affect the future, the presentations were well received but nothing stuck.

“We’d give a really great presentation and everyone would say, ‘Great job,’ but nothing would really happen,” says Amanda Manna, head of narratives and partnerships for the lab.

The team realized that it needed to ditch the PowerPoints and try something radical. The team’s leader, Kyle Nel, is a behavioral scientist by training. He knows people are wired to receive new information best through stories. Sharing far-future concepts through narrative, he surmised, could unlock hidden potential to drive meaningful change.

So Nel hired science fiction writers to pen the future in comic book format, with characters and a narrative arc revealed pane by pane.

The first storyline, written several years before Oculus Rift became a household name, told the tale of a couple envisioning their kitchen renovation using virtual reality headsets. The comic might have been fun and fanciful, but its intent was deadly serious. It was a vision of a future in which Lowe’s might solve one of its long-standing struggles: the approximately US$70 billion left on the table when people are unable to start a home improvement project because they can’t envision what it will look like.

When the lab presented leaders with the first comic, “it was like a light bulb went on,” says Manna. “Not only did they immediately understand the value of the concept, they were convinced that if we didn’t build it, someone else would.”

Today, Lowe’s customers in select stores can use the HoloRoom How To virtual reality tool to learn basic DIY skills in an interactive and immersive environment.

Other comics followed and were greeted with similar enthusiasm—and investment, where possible. One tells the story of robots that help customers navigate stores. That comic spawned the LoweBot, which roamed the aisles of several Lowe’s stores during a pilot program in California and is being evaluated to determine next steps.

And the comic about tools that can be 3D-printed in space? Last year, Lowe’s partnered with Made in Space, which specializes in making 3D printers that can operate in zero gravity, to install the first commercial 3D printer in the International Space Station, where it was used to make tools and parts for astronauts.

The comics are the result of sending writers out on an open-ended assignment, armed with trends, market research, and other input, to envision what home improvement planning might look like in the future or what the experience of shopping will be in 10 years. The writers come back with several potential story ideas in a given area and work collaboratively with lab team members to refine it over time.

The process of working with writers and business partners to develop the comics helps the future strategy team at Lowe’s, working under chief development officer Richard D. Maltsbarger, to inhabit that future. They can imagine how it might play out, what obstacles might surface, and what steps the company would need to take to bring that future to life.

Once the final vision hits the page, the lab team can clearly envision how to work backward to enable the innovation. Importantly, the narrative is shared not only within the company but also out in the world. It serves as a kind of “bat signal” to potential technology partners with capabilities that might be required to make it happen, says Manna. “It’s all part of our strategy for staking a claim in the future.”

Planning must become completely oriented toward—and sourced from—the future.

Companies like Lowe’s are realizing that standard ways of planning for the future won’t get them where they need to go. The problem with traditional strategic planning is that the approach, which dates back to the 1950s and has remained largely unchanged since then, is based on the company’s existing mission, resources, core competencies, and competitors.

Yet the future rarely looks like the past. What’s more, digital technology is now driving change at exponential rates. Companies must be able to analyze and assess the potential impacts of the many variables at play, determine the possible futures they want to pursue, and develop the agility to pivot as conditions change along the way.

This is why planning must become completely oriented toward—and sourced from—the future, rather than from the past or the present. “Every winning strategy is based on a compelling insight, but most strategic planning originates in today’s marketplace, which means the resulting plans are constrained to incremental innovation,” says Bob Johansen, distinguished fellow at the Institute for the Future. “Most corporate strategists and CEOs are just inching their way to the future.” (Read more from Bob Johansen in the Thinkers story, “Fear Factor.”)

Inching forward won’t cut it anymore. Half of the S&P 500 organizations will be replaced over the next decade, according to research company Innosight. The reason? They can’t see the portfolio of possible futures, they can’t act on them, or both. Indeed, when SAP conducts future planning workshops with clients, we find that they usually struggle to look beyond current models and assumptions and lack clear ideas about how to work toward radically different futures.

Companies that want to increase their chances of long-term survival are incorporating three steps: envisioning, planning for, and executing on possible futures. And doing so all while the actual future is unfolding in expected and unexpected ways.

Those that pull it off are rewarded. A 2017 benchmarking report from the Strategic Foresight Research Network (SFRN) revealed that vigilant companies (those with the most mature processes for identifying, interpreting, and responding to factors that induce change) achieved 200% greater market capitalization growth and 33% higher profitability than the average, while the least mature companies experienced negative market-cap growth and had 44% lower profitability.

Looking Outside the Margins

“Most organizations lack sufficient capacity to detect, interpret, and act on the critically important but weak and ambiguous signals of fresh threats or new opportunities that emerge on the periphery of their usual business environment,” write George S. Day and Paul J. H. Schoemaker in their book Peripheral Vision.

But that’s exactly where effective future planning begins: examining what is happening outside the margins of day-to-day business as usual in order to peer into the future.

Business leaders who take this approach understand that despite the uncertainties of the future there are drivers of change that can be identified and studied and actions that can be taken to better prepare for—and influence—how events unfold.

That starts with developing foresight, typically a decade out. Ten years, most future planners agree, is the sweet spot. “It is far enough out that it gives you a bit more latitude to come up with a broader way to the future, allowing for disruption and innovation,” says Brian David Johnson, former chief futurist for Intel and current futurist in residence at Arizona State University’s Center for Science and the Imagination. “But you can still see the light from it.”

The process involves gathering information about the factors and forces—technological, business, sociological, and industry or ecosystem trends—that are effecting change to envision a range of potential impacts.

Seeing New Worlds

Intel, for example, looks beyond its own industry boundaries to envision possible future developments in adjacent businesses in the larger ecosystem it operates in. In 2008, the Intel Labs team, led by anthropologist Genevieve Bell, determined that the introduction of flexible glass displays would open up a whole new category of foldable consumer electronic devices.

To take advantage of that advance, Intel would need to be able to make silicon small enough to fit into some imagined device of the future. By the time glass manufacturer Corning unveiled its ultra-slim, flexible glass surface for mobile devices, laptops, televisions, and other displays of the future in 2012, Intel had already created design prototypes and kicked its development into higher gear. “Because we had done the future casting, we were already imagining how people might use flexible glass to create consumer devices,” says Johnson.

Because future planning relies so heavily on the quality of the input it receives, bringing in experts can elevate the practice. They can come from inside an organization, but the most influential insight may come from the outside and span a wide range of disciplines, says Steve Brown, a futurist, consultant, and CEO of BaldFuturist.com who worked for Intel Labs from 2007 to 2016.

Companies may look to sociologists or behaviorists who have insight into the needs and wants of people and how that influences their actions. Some organizations bring in an applied futurist, skilled at scanning many different forces and factors likely to coalesce in important ways (see Do You Need a Futurist?).

Do You Need a Futurist?

Most organizations need an outsider to help envision their future. Futurists are good at looking beyond the big picture to the biggest picture.

Business leaders who want to be better prepared for an uncertain and disruptive future will build future planning as a strategic capability into their organizations and create an organizational culture that embraces the approach. But working with credible futurists, at least in the beginning, can jump-start the process.

“The present can be so noisy and business leaders are so close to it that it’s helpful to provide a fresh outside-in point of view,” says veteran futurist Bob Johansen.

To put it simply, futurists like Johansen are good at connecting dots—lots of them. They look beyond the boundaries of a single company or even an industry, incorporating into their work social science, technical research, cultural movements, economic data, trends, and the input of other experts.

They can also factor in the cultural history of the specific company with whom they’re working, says Brian David Johnson, futurist in residence at Arizona State University’s Center for Science and the Imagination. “These large corporations have processes and procedures in place—typically for good reasons,” Johnson explains. “But all of those reasons have everything to do with the past and nothing to do with the future. Looking at that is important so you can understand the inertia that you need to overcome.”

One thing the best futurists will say they can’t do: predict the future. That’s not the point. “The future punishes certainty,” Johansen says, “but it rewards clarity.” The methods futurists employ are designed to trigger discussions and considerations of possibilities corporate leaders might not otherwise consider.

You don’t even necessarily have to buy into all the foresight that results, says Johansen. Many leaders don’t. “Every forecast is debatable,” Johansen says. “Foresight is a way to provoke insight, even if you don’t believe it. The value is in letting yourself be provoked.”

External expert input serves several purposes. It brings everyone up to a common level of knowledge. It can stimulate and shift the thinking of participants by introducing them to new information or ideas. And it can challenge the status quo by illustrating how people and organizations in different sectors are harnessing emerging trends.

The goal is not to come up with one definitive future but multiple possibilities—positive and negative—along with a list of the likely obstacles or accelerants that could surface on the road ahead. The result: increased clarity—rather than certainty—in the face of the unknown that enables business decision makers to execute and refine business plans and strategy over time.

Plotting the Steps Along the Way

Coming up with potential trends is an important first step in futuring, but even more critical is figuring out what steps need to be taken along the way: eight years from now, four years from now, two years from now, and now. Considerations include technologies to develop, infrastructure to deploy, talent to hire, partnerships to forge, and acquisitions to make. Without this vital step, says Brown, everybody goes back to their day jobs and the new thinking generated by future planning is wasted. To work, the future steps must be tangible, concrete, and actionable.

Organizations must build a roadmap for the desired future state that anticipates both developments and detours, complete with signals that will let them know if they’re headed in the right direction. Brown works with corporate leaders to set indicator flags to look out for on the way to the anticipated future. “If we see these flagged events occurring in the ecosystem, they help to confirm the strength of our hypothesis that a particular imagined future is likely to occur,” he explains.

For example, one of Brown’s clients envisioned two potential futures: one in which gestural interfaces took hold and another in which voice control dominated. The team set a flag to look out for early examples of the interfaces that emerged in areas such as home appliances and automobiles. “Once you saw not just Amazon Echo but also Google Home and other copycat speakers, it would increase your confidence that you were moving more towards a voice-first era rather than a gesture-first era,” Brown says. “It doesn’t mean that gesture won’t happen, but it’s less likely to be the predominant modality for communication.”

How to Keep Experiments from Being Stifled

Once organizations have a vision for the future, making it a reality requires testing ideas in the marketplace and then scaling them across the enterprise. “There’s a huge change piece involved,”
says Frank Diana, futurist and global consultant with Tata Consultancy Services, “and that’s the place where most
businesses will fall down.”

Many large firms have forgotten what it’s like to experiment in several new markets on a small scale to determine what will stick and what won’t, says René Rohrbeck, professor of strategy at the Aarhus School of Business and Social Sciences. Companies must be able to fail quickly, bring the lessons learned back in, adapt, and try again.

Lowe’s increases its chances of success by creating master narratives across a number of different areas at once, such as robotics, mixed-reality tools, on-demand manufacturing, sustainability, and startup acceleration. The lab maps components of each by expected timelines: short, medium, and long term. “From there, we’ll try to build as many of them as quickly as we can,” says Manna. “And we’re always looking for that next suite of things that we should be working on.” Along the way certain innovations, like the HoloRoom How-To, become developed enough to integrate into the larger business as part of the core strategy.

One way Lowe’s accelerates the process of deciding what is ready to scale is by being open about its nascent plans with the world. “In the past, Lowe’s would never talk about projects that weren’t at scale,” says Manna. Now the company is sharing its future plans with the media and, as a result, attracting partners that can jump-start their realization.

Seeing a Lowe’s comic about employee exoskeletons, for example, led Virginia Tech engineering professor Alan Asbeck to the retailer. He helped develop a prototype for a three-month pilot with stock employees at a Christiansburg, Virginia, store.

The high-tech suit makes it easier to move heavy objects. Employees trying out the suits are also fitted with an EEG headset that the lab incorporates into all its pilots to gauge unstated, subconscious reactions. That direct feedback on the user experience helps the company refine its innovations over time.

Make the Future Part of the Culture

Regardless of whether all the elements of its master narratives come to pass, Lowe’s has already accomplished something important: It has embedded future thinking into the culture of the company.

Companies like Lowe’s constantly scan the environment for meaningful economic, technology, and cultural changes that could impact its future assessments and plans. “They can regularly draw on future planning to answer challenges,” says Rohrbeck. “This intensive, ongoing, agile strategizing is only possible because they’ve done their homework up front and they keep it updated.”

It’s impossible to predict what’s going to happen in the future, but companies can help to shape it, says Manna of Lowe’s. “It’s really about painting a picture of a preferred future state that we can try to achieve while being flexible and capable of change as we learn things along the way.” D!


About the Authors

Dan Wellers is Global Lead, Digital Futures, at SAP.

Kai Goerlich is Chief Futurist at SAP’s Innovation Center Network.

Stephanie Overby is a Boston-based business and technology journalist.


Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.

Comments

Dan Wellers

About Dan Wellers

Dan Wellers is founder and leader of Digital Futures at SAP, a strategic insights and thought leadership discipline that explores how digital technologies drive exponential change in business and society.

Kai Goerlich

About Kai Goerlich

Kai Goerlich is the Chief Futurist at SAP Innovation Center network His specialties include Competitive Intelligence, Market Intelligence, Corporate Foresight, Trends, Futuring and ideation.

Share your thoughts with Kai on Twitter @KaiGoe.heif Futu

About Stephanie Overby

Tags:

The Human Factor In An AI Future

Dan Wellers and Kai Goerlich

As artificial intelligence becomes more sophisticated and its ability to perform human tasks accelerates exponentially, we’re finally seeing some attempts to wrestle with what that means, not just for business, but for humanity as a whole.

From the first stone ax to the printing press to the latest ERP solution, technology that reduces or even eliminates physical and mental effort is as old as the human race itself. However, that doesn’t make each step forward any less uncomfortable for the people whose work is directly affected – and the rise of AI is qualitatively different from past developments.

Until now, we developed technology to handle specific routine tasks. A human needed to break down complex processes into their component tasks, determine how to automate each of those tasks, and finally create and refine the automation process. AI is different. Because AI can evaluate, select, act, and learn from its actions, it can be independent and self-sustaining.

Some people, like investor/inventor Elon Musk and Alibaba founder and chairman Jack Ma, are focusing intently on how AI will impact the labor market. It’s going to do far more than eliminate repetitive manual jobs like warehouse picking. Any job that involves routine problem-solving within existing structures, processes, and knowledge is ripe for handing over to a machine. Indeed, jobs like customer service, travel planning, medical diagnostics, stock trading, real estate, and even clothing design are already increasingly automated.

As for more complex problem-solving, we used to think it would take computers decades or even centuries to catch up to the nimble human mind, but we underestimated the exponential explosion of deep learning. IBM’s Watson trounced past Jeopardy champions in 2011 – and just last year, Google’s DeepMind AI beat the reigning European champion at Go, a game once thought too complex for even the most sophisticated computer.

Where does AI leave human?

This raises an urgent question for the future: How do human beings maintain our economic value in a world in which AI will keep getting better than us at more and more things?

The concept of the technological singularity – the point at which machines attain superhuman intelligence and permanently outpace the human mind – is based on the idea that human thinking can’t evolve fast enough to keep up with technology. However, the limits of human performance have yet to be found. It’s possible that people are only at risk of lagging behind machines because nothing has forced us to test ourselves at scale.

Other than a handful of notable individual thinkers, scientists, and artists, most of humanity has met survival-level needs through mostly repetitive tasks. Most people don’t have the time or energy for higher-level activities. But as the human race faces the unique challenge of imminent obsolescence, we need to think of those activities not as luxuries, but as necessities. As technology replaces our traditional economic value, the economic system may stop attaching value to us entirely unless we determine the unique value humanity offers – and what we can and must do to cultivate the uniquely human skills that deliver that value.

Honing the human advantage

As a species, humans are driven to push past boundaries, to try new things, to build something worthwhile, and to make a difference. We have strong instincts to explore and enjoy novelty and risk – but according to psychologist Mihaly Csikszentmihalyi, these instincts crumble if we don’t cultivate them.

AI is brilliant at automating routine knowledge work and generating new insights from existing data. What it can’t do is deduce the existence, or even the possibility, of information it isn’t already aware of. It can’t imagine radical new products and business models. Or ask previously unconceptualized questions. Or envision unimagined opportunities and achievements. AI doesn’t even have common sense! As theoretical physicist Michio Kaku says, a robot doesn’t know that water is wet or that strings can pull but not push. Nor can robots engage in what Kaku calls “intellectual capitalism” – activities that involve creativity, imagination, leadership, analysis, humor, and original thought.

At the moment, though, we don’t generally value these so-called “soft skills” enough to prioritize them. We expect people to develop their competency in emotional intelligence, cross-cultural awareness, curiosity, critical thinking, and persistence organically, as if these skills simply emerge on their own given enough time. But there’s nothing soft about these skills, and we can’t afford to leave them to chance.

Lessons in being human

To stay ahead of AI in an increasingly automated world, we need to start cultivating our most human abilities on a societal level – and to do so not just as soon as possible, but as early as possible.

Singularity University chairman Peter Diamandis, for example, advocates revamping the elementary school curriculum to nurture the critical skills of passion, curiosity, imagination, critical thinking, and persistence. He envisions a curriculum that, among other things, teaches kids to communicate, ask questions, solve problems with creativity, empathy, and ethics, and accept failure as an opportunity to try again. These concepts aren’t necessarily new – Waldorf and Montessori schools have been encouraging similar approaches for decades – but increasing automation and digitization make them newly relevant and urgent.

The Mastery Transcript Consortium is approaching the same problem from the opposite side, by starting with outcomes. This organization is pushing to redesign the secondary school transcript to better reflect whether and how high school students are acquiring the necessary combination of creative, critical, and analytical abilities. By measuring student achievement in a more nuanced way than through letter grades and test scores, the consortium’s approach would inherently require schools to reverse-engineer their curricula to emphasize those abilities.

Most critically, this isn’t simply a concern of high-tuition private schools and “good school districts” intended to create tomorrow’s executives and high-level knowledge workers. One critical aspect of the challenge we face is the assumption that the vast majority of people are inevitably destined for lives that don’t require creativity or critical thinking – that either they will somehow be able to thrive anyway or their inability to thrive isn’t a cause for concern. In the era of AI, no one will be able to thrive without these abilities, which means that everyone will need help acquiring them. For humanitarian, political, and economic reasons, we cannot just write off a large percentage of the population as disposable.

In the end, anything an AI does has to fit into a human-centered value system that takes our unique human abilities into account. Why would we want to give up our humanity in favor of letting machines determine whether or not an action or idea is valuable? Instead, while we let artificial intelligence get better at being what it is, we need to get better at being human. That’s how we’ll keep coming up with groundbreaking new ideas like jazz music, graphic novels, self-driving cars, blockchain, machine learning – and AI itself.

Read the executive brief Human Skills for the Digital Future.

Build an intelligent enterprise with AI and machine learning to unite human expertise and computer insights. Run live with SAP Leonardo.


Comments

Dan Wellers

About Dan Wellers

Dan Wellers is founder and leader of Digital Futures at SAP, a strategic insights and thought leadership discipline that explores how digital technologies drive exponential change in business and society.

Kai Goerlich

About Kai Goerlich

Kai Goerlich is the Chief Futurist at SAP Innovation Center network His specialties include Competitive Intelligence, Market Intelligence, Corporate Foresight, Trends, Futuring and ideation.

Share your thoughts with Kai on Twitter @KaiGoe.heif Futu