The 3D-Printed Future Needs A New Supply Chain

Denis Kefallinos

The future landed in my living room around May 12, when we bought our son a 3D printer for his birthday. I had been thinking about buying a 3D printer for some time, but hadn’t gotten around to researching brands, models, and capabilities. As a hands-on engineer, chainsaw rebuilder, home renovator, and general gearhead, the idea of concocting a design, sketching up a drawing, and building it comes to me naturally. But 3D printing is different.

While visiting a childhood friend on Vancouver Island, I noticed a peculiar device in his office. “Is that a 3D printer?” I asked. “Yes, and it’s the best one out there for the money,” he answered. Translation: my trusted friend had already done the research legwork. Excellent! The next week I ordered the same model from Amazon for $300. The printer comes as a kit, and one afternoon my son and I spent six hours putting it together on the dining room table. Sure, we could have bought a complete version, but I felt it would be good for my son to understand the device as he follows in the footsteps of his parents in studying mechanical engineering.

Once we had the printer built, we couldn’t wait to test it. After turning it on and warming it up, we connected the printer to the PC via USB. From CAD software, we exported a drawing to a slicer program. The slicer takes the design and slices it into hundreds of horizontal layers, creating the flow path for the print head. The slicer program then uploads the .gcode file to the printer, and it’s ready to start printing. Layer by layer, the melted plastic filament is laid out and the design materializes.

As our very first design began taking shape on the printer’s platform, I sat there and pondered the implications. Being an engineer-turned-enterprise software professional, I was always conscious of the intersection of the physical, human, and digital planes. No doubt about it, 3D printing will alter our working world. Not only work, but supply chains as well. It wasn’t long ago that someone said, “companies don’t compete, supply chains do.” With 3D printing, it’s time to change that mantra again.

Supply chains compete, and so do ideas

Enterprises can always come up with a great design, but that great design is compromised in the marketplace if the supply chain isn’t there to support it. Suppliers, production, transport, warehousing, distribution, and retail channels are part of the competitive arsenal, and they all need to be in sync.

With this printer sitting in my living room (and presumably millions of living rooms), the supply chain changes. In my unique case, I only need one – correction – two, supply chains. One supply chain for plastic filament, and another for ideas (or designs).

Ideas are not subject to the same constraints as physical supply chains. Ideas move instantly, and there are factors that influence the harvesting, production, refinement, distribution, and performance of ideas.

For an enterprise, an idea may take shape in a design-thinking session or in a customer focus group. It may result from a warranty claim or service ticket, from a manufacturing defect, or from a need to reduce costs. There are limitless sources for ideas.

Now more than ever, enterprises need to put significant energy into driving good, practical ideas from their “idea supply chain.” Enterprises will need to gather data from millions of people (or their IoT-enabled printers) to gauge feedback on designs and respond rapidly. Social media helps people quickly praise or criticize products to a wide audience, but currently that product is at the end of a very long supply and design chain. If the future enterprise is one that sells customers a 3D printer file with a single-use digital right, the ideas and designs will be critiqued. Competitors will launch competing ideas to try to gain market share; no need to wait for the competing product to hit the shelf.

Without the need for a manufacturing and distribution network, next-generation idea enterprises need to ramp idea-management capabilities to compete. In the 3D-printed future, the company that provides its customers with the timeliest idea will be the one that wins.

What’s different in the 3D printed realm

Earlier I said I was no stranger to designing and building, and that this 3D printing realm was different. Here’s my opinion on what’s on the horizon:

  1. The machine builds it. No getting your hands dirty! Upload the file, push the button, and go. As a hands-on builder, it’s cool to let the machine do the work.
  1. Instant gratification with value chain disruption. I dream it, or I need it, and I make it. For example, I need a new light switch cover in the hallway. I’m going to ask my son to measure it up and print a replacement. Now an OEM with a supply chain that sources plastic and has molds and injection-molding machines, employees, warehouses, trucks, and retailer relationships is going to feel that decision. I wouldn’t mind paying that OEM for a single-use digital file holding a tested and proven design.
  1. Instant digital feedback and affinity. The opportunity for designers to learn whether their design worked is amazing. For example, after I print the light switch cover, the 3D printer can send a signal back to the OEM that the print job is complete. Allowing an hour delay after the conclusion of the print, a text message from the OEM would prompt me for my feedback on the design: Am I satisfied? Enter a score – from 1 (bad) to 5 (good) – and hit reply. Feedback will be tracked in real time and displayed on the OEM website for other potential customers to see. I may allow myself to be contacted via an anonymous email alias to provide a reference to a prospective customer. For my trouble, I will get 10% off my next design purchase. As a repeat customer, I might be invited to a virtual design review or to be a beta tester.
  1. New business processes with mandatory digital transformation. In the traditional supply chain, processes such as procurement, manufacturing, quality, testing, packaging, warehousing, and distribution will be impacted by 3D printing. Other business processes will be enhanced or newly created – particularly around design acceleration, customer quality and feedback, customer design collaboration, royalty management, digital rights, and more. These will be digital-only processes.
  1. Enterprise valuations continue to evolve. More emphasis will be put on a company’s investment in R&D and enabling technology as a leading indicator of market opportunity. Traditional logistical value-add streams of buy-make-move-store will have less impact. This already happened over the last few decades with the outsourcing of manufacturing, and 3D printing is poised to bring the next evolution in the enterprise valuation model.

While I am seeing the future from my living room, I’m certain enterprises are seeing it from their boardrooms as well. Physical supply chains will continue to exist, but digital idea-based supply chains are about to rise. I am curious to see how enterprises, particularly OEMs, respond to the 3D printing phenomenon.

For more insight, download the free eBook 6 Surprising Ways 3D Printing Will Disrupt Manufacturing.

Comments

Denis Kefallinos

About Denis Kefallinos

Denis Kefallinos is Head of Presales at SAP Canada.

How Blockchain Can Restore Trust In The Wine Industry

Eric Annino

Blockchain is one of those things that everyone talks about but no one (myself included) really understands—like bitcoin or the stock market. I do understand, however, that blockchain is all about trust, and that’s the reason it’s going to revolutionize every industry. It’s also the reason it can revolutionize wine markets.

Fine wine has traditionally been bought and sold based on large measures of trust. A seller offers a bottle for sale, most likely something rare, old, or from an iconic maker; provides a reasonably good story of origin (or provenance) to establish that the wine is authentic and has been stored correctly; and buyers line up to shell out thousands, if not tens of thousands, of dollars.

That has changed in the last decade.

In 2008, Benjamin Wallace’s true crime hit The Billionaire’s Vinegar (soon to be a movie starring Matthew McConaughey) brought to light the story of a German music manager and wine collector who allegedly duped other wealthy collectors into buying counterfeit wine (i.e., wine that has been adulterated in some way, often passed off under a more expensive brand), including several bottles he claimed belonged to Thomas Jefferson.

Wallace’s book became a New York Times bestseller and planted a significant seed of doubt in the minds of collectors everywhere.

Half a decade later, the wine world was again shaken when wine-collector-turned-wine-forger Rudy Kurniawan was sentenced to ten years in prison for defrauding high-end collectors to the tune of at least $20 million. (For the whole story, check out Peter Hellman’s new book In Vino Duplicitas.) In the wake of the “Rudy affair,” auction houses began to withdraw lots of wine of suspicious provenance. Lawsuits followed, and one prominent collector—billionaire Bill Koch, who fell victim to both Rudy and the alleged forger of Wallace’s book, Hardy Rodenstock—even began a crusade against fake wine, hiring a team of experts and spending more than $20 million of his own money to ferret out counterfeiters.

Trust in fine wine markets has never been lower, but blockchain has brought hope.

Meet Everledger, a London-based blockchain technology firm and the first company to secure a wine’s provenance via blockchain. After making its mark fighting counterfeiting in the diamond industry, Everledger made the jump to wine, and has partnered with renowned wine fraud specialist Maureen Downey (who played an important role in the Rudy Kurniawan investigation) to create the Chai Wine Vault.

Using Maureen’s Chai Method, which identifies more than 90 data points on a bottle, along with high-resolution photographs and ownership and storage records, Everledger creates a permanent, digital representation of a bottle on the blockchain. This permanent record acts as a verification point as the bottle changes hands. The blockchain is updated along the way so anyone who buys or sells the bottle can rely on trustworthy provenance.

This level of supply chain security is increasingly vital to every industry. “If you can track and trace diamonds, you can track and trace anything,” says Joe Fox, SAP Ariba’s Senior VP of Business Development and Strategy.

“One of the things blockchain does is facilitate greater visibility and trust. In embedding it across our applications and network, we can enable supply chains that are smarter, faster and more transparent from sourcing all the way through settlement.”

Wine counterfeiting isn’t new—Pliny the Elder lamented the practice in first century Rome—but it’s certainly reaching new heights. Experts, Downey included, have suggested that as much as 20 percent of wine sold globally is fraudulent. An estimated 10,000 “Rudy bottles” are still in circulation, and just last week, police seized 6,000 bottles of counterfeit wine in China.

For wine markets everywhere, blockchain is a timely innovation that underscores the value of trust in any transaction.

For more on blockchain’s potential to impact business processes, see Improve User Experience With Internet Of Things, Blockchain, And Platforms.

Comments

Eric Annino

About Eric Annino

Eric Annino works for Global Corporate Affairs at SAP.

Savour The Flavour

Lucy Thorpe

Next time you pop a stick of strawberry gum, it might be worth remembering that there are dozens of different varieties of strawberry flavour, each one tailored to suit the market preferences of people from all over the globe.

Welcome to the world of flavour according to TasteTech, a family-run manufacturing business in the UK which has been making controlled-release food flavourings and ingredients for the food industry for the past 25 years. They have ambitious plans for growth, but until recently did not have the digital-first mindset necessary to get there in today’s competitive world.

As a highly specialised company, TasteTech must offer very high levels of safety, efficiency, and discretion, with many of their clients insisting on non-disclosure agreements to protect their secret recipes. They must also comply with the very strict British standards around food manufacturing. Rob Sinton, supply chain manager and owning family member says, “Food safety is at the forefront of everything that we do which in turn helps to build customer trust.” Correct labeling is vital and everything must be traceable on its journey in and out of the factory.

That is why an analogue approach no longer cuts it at TasteTech, or indeed at thousands of other growing manufacturing companies around the world. A patchwork of different server-based systems assembled on the hoof are not efficient enough in an environment in which accuracy, flexibility, and timely delivery are paramount.

Once they adopted a digital-first mindset, TasteTech were able to streamline their production and distribution processes while gaining greater transparency and end-to-end control over operations. Today, checks are faster, labeling is more accurate, and they can make changes more simply when adding products to their portfolio—all of which enhances their reputation for quality.

They now have a fully integrated ERP system based in the cloud with finance and project management capacity which can manage sales as well as manufacturing.

Theirs is a complex business, and by taking these digital next steps they have managed to increase transparency and efficiency, putting them in a great position to meet ambitious growth targets in the near future.

For more insight on digital-first strategies, see Next-Gen ERP: The Digital Foundation For Cloud-First Firms.

Comments

Lucy Thorpe

About Lucy Thorpe

Lucy Thorpe is a digital marketer and writer with SAP Platinum Partner In Cloud Solutions. Based in the UK, she is a former BBC journalist and presenter. Much of her work is now focused on explaining the benefits of digital enterprise resource planning (ERP) systems for small and midsize businesses.

Diving Deep Into Digital Experiences

Kai Goerlich

 

Google Cardboard VR goggles cost US$8
By 2019, immersive solutions
will be adopted in 20% of enterprise businesses
By 2025, the market for immersive hardware and software technology could be $182 billion
In 2017, Lowe’s launched
Holoroom How To VR DIY clinics

From Dipping a Toe to Fully Immersed

The first wave of virtual reality (VR) and augmented reality (AR) is here,

using smartphones, glasses, and goggles to place us in the middle of 360-degree digital environments or overlay digital artifacts on the physical world. Prototypes, pilot projects, and first movers have already emerged:

  • Guiding warehouse pickers, cargo loaders, and truck drivers with AR
  • Overlaying constantly updated blueprints, measurements, and other construction data on building sites in real time with AR
  • Building 3D machine prototypes in VR for virtual testing and maintenance planning
  • Exhibiting new appliances and fixtures in a VR mockup of the customer’s home
  • Teaching medicine with AR tools that overlay diagnostics and instructions on patients’ bodies

A Vast Sea of Possibilities

Immersive technologies leapt forward in spring 2017 with the introduction of three new products:

  • Nvidia’s Project Holodeck, which generates shared photorealistic VR environments
  • A cloud-based platform for industrial AR from Lenovo New Vision AR and Wikitude
  • A workspace and headset from Meta that lets users use their hands to interact with AR artifacts

The Truly Digital Workplace

New immersive experiences won’t simply be new tools for existing tasks. They promise to create entirely new ways of working.

VR avatars that look and sound like their owners will soon be able to meet in realistic virtual meeting spaces without requiring users to leave their desks or even their homes. With enough computing power and a smart-enough AI, we could soon let VR avatars act as our proxies while we’re doing other things—and (theoretically) do it well enough that no one can tell the difference.

We’ll need a way to signal when an avatar is being human driven in real time, when it’s on autopilot, and when it’s owned by a bot.


What Is Immersion?

A completely immersive experience that’s indistinguishable from real life is impossible given the current constraints on power, throughput, and battery life.

To make current digital experiences more convincing, we’ll need interactive sensors in objects and materials, more powerful infrastructure to create realistic images, and smarter interfaces to interpret and interact with data.

When everything around us is intelligent and interactive, every environment could have an AR overlay or VR presence, with use cases ranging from gaming to firefighting.

We could see a backlash touting the superiority of the unmediated physical world—but multisensory immersive experiences that we can navigate in 360-degree space will change what we consider “real.”


Download the executive brief Diving Deep Into Digital Experiences.


Read the full article Swimming in the Immersive Digital Experience.

Comments

Kai Goerlich

About Kai Goerlich

Kai Goerlich is the Chief Futurist at SAP Innovation Center network His specialties include Competitive Intelligence, Market Intelligence, Corporate Foresight, Trends, Futuring and ideation. Share your thoughts with Kai on Twitter @KaiGoe.heif Futu

Tags:

Jenny Dearborn: Soft Skills Will Be Essential for Future Careers

Jenny Dearborn

The Japanese culture has always shown a special reverence for its elderly. That’s why, in 1963, the government began a tradition of giving a silver dish, called a sakazuki, to each citizen who reached the age of 100 by Keiro no Hi (Respect for the Elders Day), which is celebrated on the third Monday of each September.

That first year, there were 153 recipients, according to The Japan Times. By 2016, the number had swelled to more than 65,000, and the dishes cost the already cash-strapped government more than US$2 million, Business Insider reports. Despite the country’s continued devotion to its seniors, the article continues, the government felt obliged to downgrade the finish of the dishes to silver plating to save money.

What tends to get lost in discussions about automation taking over jobs and Millennials taking over the workplace is the impact of increased longevity. In the future, people will need to be in the workforce much longer than they are today. Half of the people born in Japan today, for example, are predicted to live to 107, making their ancestors seem fragile, according to Lynda Gratton and Andrew Scott, professors at the London Business School and authors of The 100-Year Life: Living and Working in an Age of Longevity.

The End of the Three-Stage Career

Assuming that advances in healthcare continue, future generations in wealthier societies could be looking at careers lasting 65 or more years, rather than at the roughly 40 years for today’s 70-year-olds, write Gratton and Scott. The three-stage model of employment that dominates the global economy today—education, work, and retirement—will be blown out of the water.

It will be replaced by a new model in which people continually learn new skills and shed old ones. Consider that today’s most in-demand occupations and specialties did not exist 10 years ago, according to The Future of Jobs, a report from the World Economic Forum.

And the pace of change is only going to accelerate. Sixty-five percent of children entering primary school today will ultimately end up working in jobs that don’t yet exist, the report notes.

Our current educational systems are not equipped to cope with this degree of change. For example, roughly half of the subject knowledge acquired during the first year of a four-year technical degree, such as computer science, is outdated by the time students graduate, the report continues.

Skills That Transcend the Job Market

Instead of treating post-secondary education as a jumping-off point for a specific career path, we may see a switch to a shorter school career that focuses more on skills that transcend a constantly shifting job market. Today, some of these skills, such as complex problem solving and critical thinking, are taught mostly in the context of broader disciplines, such as math or the humanities.

Other competencies that will become critically important in the future are currently treated as if they come naturally or over time with maturity or experience. We receive little, if any, formal training, for example, in creativity and innovation, empathy, emotional intelligence, cross-cultural awareness, persuasion, active listening, and acceptance of change. (No wonder the self-help marketplace continues to thrive!)

The three-stage model of employment that dominates the global economy today—education, work, and retirement—will be blown out of the water.

These skills, which today are heaped together under the dismissive “soft” rubric, are going to harden up to become indispensable. They will become more important, thanks to artificial intelligence and machine learning, which will usher in an era of infinite information, rendering the concept of an expert in most of today’s job disciplines a quaint relic. As our ability to know more than those around us decreases, our need to be able to collaborate well (with both humans and machines) will help define our success in the future.

Individuals and organizations alike will have to learn how to become more flexible and ready to give up set-in-stone ideas about how businesses and careers are supposed to operate. Given the rapid advances in knowledge and attendant skills that the future will bring, we must be willing to say, repeatedly, that whatever we’ve learned to that point doesn’t apply anymore.

Careers will become more like life itself: a series of unpredictable, fluid experiences rather than a tightly scripted narrative. We need to think about the way forward and be more willing to accept change at the individual and organizational levels.

Rethink Employee Training

One way that organizations can help employees manage this shift is by rethinking training. Today, overworked and overwhelmed employees devote just 1% of their workweek to learning, according to a study by consultancy Bersin by Deloitte. Meanwhile, top business leaders such as Bill Gates and Nike founder Phil Knight spend about five hours a week reading, thinking, and experimenting, according to an article in Inc. magazine.

If organizations are to avoid high turnover costs in a world where the need for new skills is shifting constantly, they must give employees more time for learning and make training courses more relevant to the future needs of organizations and individuals, not just to their current needs.

The amount of learning required will vary by role. That’s why at SAP we’re creating learning personas for specific roles in the company and determining how many hours will be required for each. We’re also dividing up training hours into distinct topics:

  • Law: 10%. This is training required by law, such as training to prevent sexual harassment in the workplace.

  • Company: 20%. Company training includes internal policies and systems.

  • Business: 30%. Employees learn skills required for their current roles in their business units.

  • Future: 40%. This is internal, external, and employee-driven training to close critical skill gaps for jobs of the future.

In the future, we will always need to learn, grow, read, seek out knowledge and truth, and better ourselves with new skills. With the support of employers and educators, we will transform our hardwired fear of change into excitement for change.

We must be able to say to ourselves, “I’m excited to learn something new that I never thought I could do or that never seemed possible before.” D!

Comments