Sections

Live Product Innovation, Part 3: Process Industries, IoT, And A Recipe For Instant Change

John McNiff

In Part 1 of this series, we looked at how in-memory computing affects live product innovation. In Part 2, we explored the impact of the Internet of Things (IoT) and Big Data on smart connected products. In Part 3, we approach the topic from the perspective of process industries.

Digital this, connected that. Smart whatsits and intelligent doodahs. Those of us who talk about IoT are often reminded that not every manufacturer makes products per se. But IoT isn’t only about the addition of sensors to products. The principles of live product innovation are equally relevant to process manufacturing.

In fact, the “data refinery” offers the potential to manage the Internet of everything — including traditional Big Data sources in tight conjunction with business processes. If your products are food, packaged goods, or chemicals, the promises of live product insights are still compelling. It’s only the data sources and dimensions that are different.

Live and compliant

The complexity of regulatory compliance in process industries continues to grow — whether you’re talking about the U.S. Food and Drug Administration, the U.K. Food Standards Agency, trade embargoes, or hazardous substance management. And compliance isn’t getting any simpler to manage across jurisdictions and industry sectors.

What’s more, customers increasingly demand shortened delivery cycles and highly targeted or even personalized products. That means you can no longer wait till after you formulate a product and release a recipe to determine whether you can actually sell it. You need instant visibility, whether you’re talking about nutritional safe levels assigned by a particular region for food products or volumes of hazardous substances for supply and transit.

But that’s the advantage of live, compliant product innovation. It enables you to perform analytics on previously disconnected data. And it allows you to manage real-time embedded processes across previously disparate systems.

Product data is everywhere

In our last blog we explored the advantages of smart connected products — the ability to link everything from initial product concepts through downstream product delivery. Now let’s apply that to process manufacturing.

Let’s say you see two factors coming together for the SoySnak product you sell in North America and Asia. Your sales data shows that American consumers want 10Kg packages, while Asian customers prefer smaller multipacks. At the same time, your compliance database alerts you that new regulations on salt levels are about to go into effect in several of your target markets.

You want to respond before the regulations are implemented, for several reasons. You’ll need to update recipes, specifications, labels, and packaging. You’ll need to inform your suppliers, manufacturers, quality planners, financial controllers, logistics providers, and retailers. And you’ll need to get the replacement product into the affected markets, with auditable compliance with salt level requirements. Otherwise, you risk producing a large quantity of unsellable inventory.

This example shows us several things:

  • Insights must be as instant as possible.
  • Those insights might come from a variety of sources that your R&D folks didn’t previously have real-time access to.
  • Your products must be localized to a very granular level.
  • Even a minor change affects everything from recipes to packaging specifications, costs of materials, regulatory reporting, logistics providers, retailers, and on and on.

And that leads us to several conclusions:

  • Product data isn’t mission-critical only to R&D. It’s linked to every downstream business process.
  • A live, compliant, and collaborative environment, with the ability to instantly adapt to change, is a business requirement.
  • To achieve that requirement, product data must be part of business processes.
  • The platform the R&D team relies on must be linked to downstream platforms, and it must allow you to leverage and act on real-time insights.

Digital product innovation platform

Of course, the streaming of sensor data from connected things is still relevant in process industries. But for process manufacturers, the most important use cases are more around traceability, supply chain logistics, and product innovation. At some point, data from connected goods will allow new models that more tightly couple the supply chain with innovation cycles.

But a live and compliant product innovation platform achievable today. The question is whether you’ll get there before your competition does.

Come to SAPPHIRE NOW 2017 in Orlando, Florida from May 16 – 18th, 2017, and check out my session “Boost Visibility into Operations for Connected Products with SAP Leonardo” on Tuesday, May 16th, 2017 from 1-1:40 p.m. in Business Application BA324, or check out our R&D sessions.

Follow the conversation on @SCMatSAP and #SAPPHIRENOW.

Comments

John McNiff

About John McNiff

John McNiff is the Vice President of Solution Management for the R&D/Engineering line-of-business business unit at SAP. John has held a number of sales and business development roles at SAP, focused on the manufacturing and engineering topics.

How 3D Printing Could Transform The Chemical Industry

Stefan Guertzgen

The history of 3D printing started 30 years ago with Chuck Hull, the Thomas Edison of the 3D printing industry, who introduced the first 3D printer. Since then, 3D printing (also known as additive manufacturing) has been used to create everything from food and other consumer goods to automotive and airplane parts.

Key drivers of adoption

The tremendous growth of 3D printing has been driven by three key factors. First, the cost is rapidly decreasing due to lower raw material costs, stronger competitive pressures, and technological advancements. Second, printing speeds are increasing. For example, last year, startup company Carbon3D printed a palm-sized geodesic sphere in a little more than 6 minutes, which is 25 to 100 times faster than traditional 3D printing solutions. Third, new 3D printers are able to accommodate a wider variety of materials. Driven by innovations within the chemical industry, a broad range of polymers, resins, plasticizers, and other materials are being used to create new 3D products.

While it’s difficult to predict the long-term impact 3D printing will have on the overall economy, it is safe to say that the it could affect almost every industry and the way companies do business. In fact, the chemical industry has already implemented 3D applications in the areas of research and development (R&D) and manufacturing.

Innovative feedstocks and processes

3D printing provides a vast opportunity for the chemical industry to develop innovative feedstock and drive new revenue streams. While more than 3,000 materials are used in conventional component manufacturing, only about 30 are available for 3D printing. To put this into perspective, the market for chemical powder materials is predicted to be more than $630 million annually by 2020.

Plastics and resins, as well as metal powders and ceramic materials, are already in use or under evaluation for printing prototypes, parts of industry assets, or semi-finished goods—particularly those that are complex to produce and that require small batch sizes. Developing the right formulas to create these new materials offers an opportunity for constant innovation within the chemical field, which will likely produce even more materials in the future. For example, Covestro, a developer of polymer technology, is developing a range of filaments, powders, and liquid resins for all common 3D printing methods; 3M, working with its subsidiary Dyneon, recently filed a patent for using fluorinated polymers in 3D printing; and Wacker is testing 3D printing with silicones.

The chemical industry is also in the driver’s seat when it comes to process development. About 20 different processes now exist that share one common characteristic: layered deposition of printer feed. The final product could be generated from melting thermoplastic resins (for example, laser sinter technology or fused deposition modeling) or via (photo) chemical reaction such as stereo-lithography or multi-jet modeling. For both process types, the physical and chemical properties of feed materials are critical success factors for processing and for the quality of the finished product.

New tools and techniques in R&D and operations

Typically, the laboratory equipment used to do chemical synthesis is expensive and complex to use, and it often represents an obstacle in the research progress. With 3D printing, it is now possible to create reliable, robust miniaturized fluidic reactors as “micro-platforms” for organic chemical syntheses and materials processes, printed in few hours with inexpensive materials. Such micro-reactors allow building up target molecules via multi-step synthesis as well as breaking down molecular structures and detecting the building blocks through reagents which could be embedded during the 3D printing process.

Micro-reactors can also be used as small prototypes to simulate manufacturing processes.

In addition to printing equipment used in laboratories, some chemical manufacturers are using 3D printers for maintenance on process plant assets. For example, when an asset fails because of a damaged engine valve, the replacement part can be printed on site and installed in real time. Creating spare parts in-house can significantly reduce inventory costs and wait time for deliveries, hence contributing to increase overall asset uptime.

For companies that do not want to print the parts themselves, an on-demand manufacturing network is available that will print and deliver parts as needed. UPS has introduced a fully distributed manufacturing platform that connects many of its stores with 3D printers. When needed, UPS and its partners print and deliver requested parts to customers.

Commercial benefits

Across all industries, 3D printing promises to reduce costs across the supply chain. For example, the ability to print spare parts on demand can save money through improved asset uptime and more efficient workforce management. 3D printing also helps control costs with reduced waste and a smaller carbon footprint. In contrast to traditional “subtractive” manufacturing techniques in which raw material is removed, 3D printing is an additive process that uses only the amount of material that is needed. This can save significant amounts of raw materials. In the aerospace industry, for example, Airbus estimates 3D printing could reduce its raw material costs by up to 90 percent.

From a manufacturing perspective, 3D printing can streamline processes, accelerate design cycles, and add agility to operations. Printing prototypes on site speeds the R&D development cycle and shortens time to market. Researchers can make, test, and finalize prototypes in days instead of weeks. Also, the ability to print parts or equipment on demand will eliminate expensive inventory holding costs and restocking order requirements and free up floor space for other purposes. In the U.S. alone, manufacturers and trade inventories for all industries were estimated at $1.8 trillion in August 2016, according to the U.S. Census Bureau. Reducing inventory by just 2 percent would be a $36 billion savings.

Barriers to adoption

As with most new technology, barriers must be overcome for this potential to fully be realized. One much-discussed but unresolved issue is intellectual property protection. Similar to the way digital music is shared, 3D printable digital blueprints could be shared illegally and/or unknowingly either within a company or by outside hackers.

In addition to digital files, users can print molds from scanned objects and use them to mass-produce exact replicas that are protected under copyright, trademark, and patent laws. This problem will continue to grow as companies move to an on-demand manufacturing network, requiring digital blueprints to be shared with independent fabricators. This poses a huge threat on companies losing billions of dollars every year in intellectual property globally.

Regulatory issues are slowing the adoption of 3D printer applications. This is especially applicable in the medical and pharmaceutical industries but has potential impact in many markets. For example, globally regulating what individuals will create with access to the Internet and a 3D chemical printer will be difficult. Also, as 3D printing drives small and customer-specific lot sizes, it will likely spur an explosion of proprietary bills of material and recipes, which will be hard to track and control under REACH or REACH-like regulations. Because this is a new frontier, many regulatory issues must be addressed.

In addition to legal and regulatory challenges, the industry has a long way to go in reliably reproducing high-quality products. Until 3D printing can match the speed and quality output requirements of conventional manufacturing processes, it will likely be reserved for prototypes or small-sized lots.

3D printing: a new frontier

While 3D printing has not reached the point of use for large-scale production or to consistently make custom products, ongoing innovations drive high demand. 3D printer market forecasts estimate that shipments of industrial 3D printers will grow by ~400% through 2021 to a value of about $26 billion. Global inventory value is estimated to be over $10 trillion. Reducing global inventory by just 5% would free up $500 billion in capital. Manufacturing overall is estimated to contribute ~16% to the global economy. If 3D printing just would capture 5% of this $12.8 trillion market, it would create a $640 billion+ opportunity.

3D printing will initially help chemical companies increase profitability by lowering costs and improving operational efficiency. However, the industry-changing opportunity is the chance to develop new feeds and formulations. The most successful chemical companies of the future will be the ones with the vision to begin developing and implementing 3D printing solutions today.

Learn more about SAPPHIRE NOW and secure your spot today!

Comments

Stefan Guertzgen

About Stefan Guertzgen

Dr. Stefan Guertzgen is the Global Director of Industry Solution Marketing for Chemicals at SAP. He is responsible for driving Industry Thought Leadership, Positioning & Messaging and strategic Portfolio Decisions for Chemicals.

Live Product Innovation, Part 2: IoT, Big Data, and Smart Connected Products

John McNiff

In Part 1 of this series, we looked at how in-memory computing affects live product innovation. In Part 2, we explore the impact of the Internet of Things (IoT) and Big Data on smart connected products. In Part 3, we’ll approach the topic from the perspective of process industries.

Live engineering? Live product innovation? Live R&D?

To some people, these concepts sound implausible. When you talk about individualized product launches with lifecycles of days or weeks, people in industries like aerospace and defense (A&D) look askance.

But today, most industries—not just consumer-driven ones—need timely insights and the ability to respond quickly. Even A&D manufacturers want to understand the impact of changes before they continue with designs that could be difficult to make at the right quantity or prone to problems in the field.

The Internet of Everything?

Internet of Things (IoT) technologies promise to give manufacturers these insights. But there’s still a lot of confusion around IoT. Some people think it is about connected appliances; others think it’s just a rebranded “shop floor to top floor.”

The better way to think about IoT is from the perspective of data: We want to get data from the connected “thing.” If you’re the manufacturer, that thing is a product. If you buy the product and sell it to an end customer, that thing is an asset. If you’re the end customer, that thing is a fleet. Each stakeholder wants different data in different volumes for different reasons.

It’s also important to remember that the Internet has existed for far longer than IoT.

There’s a huge amount of non-IoT data that can offer useful insights. Point-of-sale data, news feeds, and market insights from social channels are all valuable. And think about how much infrastructure is now connected in “smart” cities. So in addition to products, assets, and fleets, there are also people, markets, and infrastructure. Big Data is everywhere, and it should influence what you release and when.

New data, new processes

It has been said that data in the 21st century is like oil in the 18th century: an immense, valuable, yet untapped asset. But if data is the new oil, then do we need a new refinery? The answer is yes.

On top of business data, we now have a plethora of information sources outside our company walls. Ownership of, and access to, this data is becoming complex. Manufacturers collecting data about equipment at customer sites, for example, may want to sell that data to customers as an add-on service. But those customers are likely using equipment from multiple manufacturers, and they likely have their own unique uses for the information.

So the new information refinery needs to capture information from everywhere and turn it into something that has meaning for the end user. It needs to leverage data science and machine learning to remove the noise and add insight and intelligence. It also needs to be an open platform to gather information from all six sources (products, assets, fleets, people, markets, infrastructure).

And wouldn’t it be great if the data refinery ran on the same platform as your business processes, so that you could sense, respond, and act to achieve your business goals?

Digital product innovation platform

If you start with the concept of a smart connected product, the data refinery — the digital product innovation platform — has five requirements:

  1. Systems design — Manufacturers need to design across disciplines in a systems approach. Mechanical, mechatronic, electrical, electronics, and software all need to be supported, with modeling capabilities that cover physical, functional, and logical structures.
  1. Requirements-linked platform design — Designers need to think about where and how to embed sensors and intelligence to match functional requirements. This will need to be forward-thinking to cover unforeseen methods of machine-to-machine interactions. In a world of performance-based contracts, it will be important to minimize the impact of design changes as innovation opportunities grow.
  1. Instant impact and insight environment — The platform must support fully traceable requirements throughout the lifecycle, from design concept to asset performance.
  1. Product-based enterprise processes — The platform needs to share model-based product data visually — through electrical CAD, electronic CAD, 3D, and software functions — to the people who need it. This isn’t new, but what’s different is that the platform can’t wait for complex integrations between systems. Think about software-enabled innovation or virtual inventory made possible by on-demand 3D printing. Production is almost real time, so design will have to be as well.
  1. Product and thing network — A complex, cross-domain design process involves a growing number of partners. That calls for a product network to allow for secure collaboration across functions and outside the company walls. Instead of every partner having its own portal for product data, the product network would store digital twins and allow instant sharing of asset intelligence.

If the network is connected to the digital product innovation platform, you can control the lifecycle both internally and externally — and take the product right into the service and maintenance domain. You can then provide field information directly from the assets back to design to inform what to update, and when. Add over-the-air software compatibility checks and updates, and discrete manufacturers can achieve a true live engineering environment.

Sound like a dream? It’s coming sooner than you think.

Come to SAPPHIRE NOW 2017 in Orlando, Florida from May 16 – 18th, 2017, and check out my session “Boost Visibility into Operations for Connected Products with SAP Leonardo” on Tuesday, May 16th, 2017 from 1-1:40 p.m. in Business Application BA324, or check out our R&D sessions.

Follow the conversation on @SCMatSAP and #SAPPHIRENOW.

Comments

John McNiff

About John McNiff

John McNiff is the Vice President of Solution Management for the R&D/Engineering line-of-business business unit at SAP. John has held a number of sales and business development roles at SAP, focused on the manufacturing and engineering topics.

The Future of Cybersecurity: Trust as Competitive Advantage

Justin Somaini and Dan Wellers

 

The cost of data breaches will reach US$2.1 trillion globally by 2019—nearly four times the cost in 2015.

Cyberattacks could cost up to $90 trillion in net global economic benefits by 2030 if cybersecurity doesn’t keep pace with growing threat levels.

Cyber insurance premiums could increase tenfold to $20 billion annually by 2025.

Cyberattacks are one of the top 10 global risks of highest concern for the next decade.


Companies are collaborating with a wider network of partners, embracing distributed systems, and meeting new demands for 24/7 operations.

But the bad guys are sharing intelligence, harnessing emerging technologies, and working round the clock as well—and companies are giving them plenty of weaknesses to exploit.

  • 33% of companies today are prepared to prevent a worst-case attack.
  • 25% treat cyber risk as a significant corporate risk.
  • 80% fail to assess their customers and suppliers for cyber risk.

The ROI of Zero Trust

Perimeter security will not be enough. As interconnectivity increases so will the adoption of zero-trust networks, which place controls around data assets and increases visibility into how they are used across the digital ecosystem.


A Layered Approach

Companies that embrace trust as a competitive advantage will build robust security on three core tenets:

  • Prevention: Evolving defensive strategies from security policies and educational approaches to access controls
  • Detection: Deploying effective systems for the timely detection and notification of intrusions
  • Reaction: Implementing incident response plans similar to those for other disaster recovery scenarios

They’ll build security into their digital ecosystems at three levels:

  1. Secure products. Security in all applications to protect data and transactions
  2. Secure operations. Hardened systems, patch management, security monitoring, end-to-end incident handling, and a comprehensive cloud-operations security framework
  3. Secure companies. A security-aware workforce, end-to-end physical security, and a thorough business continuity framework

Against Digital Armageddon

Experts warn that the worst-case scenario is a state of perpetual cybercrime and cyber warfare, vulnerable critical infrastructure, and trillions of dollars in losses. A collaborative approach will be critical to combatting this persistent global threat with implications not just for corporate and personal data but also strategy, supply chains, products, and physical operations.


Download the executive brief The Future of Cybersecurity: Trust as Competitive Advantage.


Comments

Tags:

To Get Past Blockchain Hype, We Must Think Differently

Susan Galer

Blockchain hype is reaching fever pitch, making it the perfect time to separate market noise from valid signals. As part of my ongoing conversations about blockchain, I reached out to several experts to find out where companies should consider going from here. Raimund Gross, Solution Architect and Futurist at SAP, acknowledged the challenges of understanding and applying such a complex leading-edge technology as blockchain.

“The people who really get it today are those able to put the hype in perspective with what’s realistically doable in the near future, and what’s unlikely to become a reality any time soon, if ever,” Gross said. “You need to commit the resources and find the right partners to lay the groundwork for success.”

Gross told me one of the biggest problems with blockchain – besides the unproven technology itself – was the mindset shift it demands. “Many people aren’t thinking about decentralized architectures with peer-to-peer networks and mash-ups, which is what blockchain is all about. People struggle because often discussions end up with a centralized approach based on past constructs. It will take training and experience to think decentrally.”

Here are several more perspectives on blockchain beyond the screaming headlines.

How blockchain disrupts insurance, banking

Blockchain has the potential to dramatically disrupt industries because the distributed ledger embeds automatic trust across processes. This changes the role of longstanding intermediaries like insurance companies and banks, essentially restructuring business models for entire industries.

“With the distributed ledger, all of the trusted intelligence related to insuring the risk resides in the cloud, providing everyone with access to the same information,” said Nadine Hoffmann, global solution manager for Innovation at SAP Financial Services. “Payment is automatically triggered when the agreed-upon risk scenario occurs. There are limitations given regulations, but blockchain can open up new services opportunities for established insurers, fintech startups, and even consumer-to-consumer offerings.”

Banks face a similar digitalized transformation. Long built on layers of steps to mitigate risk, blockchain offers the banking industry a network of built-in trust to improve efficiencies along with the customer experience in areas such as cross-border payments, trade settlements for assets, and other contractual and payment processes. What used to take days or even months could be completed in hours.

Finance departments evolve

Another group keenly watching blockchain developments are CFOs. Just as Uber and Airbnb have disrupted transportation and hospitality, blockchain has the potential to change not only the finance department — everything from audits and customs documentation to letters of credit and trade finance – but also the entire company.

“The distributed ledger’s capabilities can automate processes in shared service centers, allowing accountants and other employees in finance to speed up record keeping including proof of payment supporting investigations,” said Georg Koester, senior developer, LoB Finance at the Innovation Center Potsdam. “This lowers costs for the company and improves the customer experience.”

Koester said that embedding blockchain capabilities in software company-wide will also have a tremendous impact on product development, lean supply chain management, and other critical areas of the company.

While financial services dominate blockchain conversations right now, Gross named utilities, healthcare, public sector, real estate, and pretty much any industry as prime candidates for blockchain disruption. “Blockchain is specific to certain business scenarios in any industry,” said Gross. “Every organization can benefit from trust and transparency that mitigates risk and optimizes processes.”

Get started today! Run Live with SAP for Banking. Blast past the hype by attending the SAP Next-Gen Boot Camp on Blockchain in Financial Services and Public Sector event being held April 26-27 in Regensdorf, Switzerland.

Follow me on Twitter, SCN Business Trends, or Facebook. Read all of my Forbes articles here.

Comments