Living The Live Supply Chain: Why You Need Data Scientists

Hans Thalbauer

In Part 1 of this series we explored the essentials of deploying a live supply chain. In Part 2 we look at why data scientists will be increasingly key to supply chain success.

When it’s completed in 2030, the Square Kilometer Array will be the largest telescope ever built, and will capture 35,000 DVDs of data every second. When astronomers showed off an early iteration in July 2016, they pointed it at a moon-size section of sky. What did they find? Nearly 1,300 previously unknown galaxies.

Supply chain operators can be forgiven for feeling like those astronomers. The trove of new data they’re capturing — from business systems, IoT devices, social media, and so on — has the potential to transform their views of customers, suppliers, manufacturing, logistics, and more. But making sense of all that data can be more than challenging. For that, they’ll increasingly need data scientists.

From business as usual to business-critical

Actively managing supply chain performance has never been more business-critical. Globalization, regulatory requirements, technology complexity, volatility of supply and demand, and greater dependence on suppliers have all increased business risk. The only way to make sure the supply chain operates in a way that meets customer needs and drives business success is by leveraging data in as close to real time as possible.

Increasingly, that data will be both structured and unstructured. Structured information from business systems includes traditional transactional data such as purchasing, production orders, and sales.

But you can’t operate a truly real-time, or “live,” supply chain without unstructured data. And that will come from a variety of sources. The rapidly falling cost of IoT technology means you can embed sensors in everything from production equipment to low-cost consumer goods. Social media can contribute customer sentiment about companies and products to help you sense demand, risk, and opportunities. Crowdsourcing apps can let you track everything from weather to traffic to holiday spending.

Data scientists to the rescue

In the meantime, logistics operators are grappling with an aging, shrinking talent pool. Logistics employs 6 million people in the United States, but it will need another 270,000 new workers per year to keep up with growth. At the same time, 60 million baby boomers will exit the workforce over the next nine years, but only 40 million younger workers will replace them, according to U.S. Census data.

It’s no wonder 79% of participants in the 2016 Third-Party Logistics Study feel unprepared for the impact of the labor shortage on their supply chains. And only 38% of executives are “extremely or very confident” their supply chain has the competencies it needs.

In particular, a live supply chain requires the data scientists — and technology — that can wring the most value from your data. That starts with identifying relevant data sources, figuring out how to capture the data streams, and understanding how to harmonize it at the most granular level. It continues with the ability to parse useful information from data noise, and to analyze the useful information to extract new insights.

Those insights then need to be placed in the proper context for each function. The same information holds different value — and needs to be delivered in different ways — for R&D, production planners, logistics managers, executive decision makers, and so on.

Perhaps most important, data scientists must empower the supply chain with predictive analytics that let you quickly and accurately forecast demand. That needs to happen before competitors make the same predictions — and before your customers realize they have desires your business isn’t meeting.

Thanks to sophisticated scientists and technology, researchers just determined that the universe holds 10 times more galaxies than previously thought. With the right talent and tools, what vast new opportunities will your supply chain discover?

Learn more about how running a live supply chain can help you thrive today and innovate for tomorrow, visit us at SAP.com.

Comments

Hans Thalbauer

About Hans Thalbauer

Hans Thalbauer is globally responsible for solution management and the go-to-market functions for SAP digital supply chain solutions and the SAP Leonardo portfolio of Internet of Things solutions. In this role, he is engaged in creative dialogues with businesses and operations worldwide, addressing customer needs and introducing innovative business processes, including the vision of creating a live business environment for everyone working in operations. Hans has more than 17 years with SAP and is based out of Palo Alto, CA, USA. He has held positions in development, product and solution management, and the go-to-market organization. Hans holds a degree in Business Information Systems from the University Vienna, Austria.

Data Analysts And Scientists More Important Than Ever For The Enterprise

Daniel Newman

The business world is now firmly in the age of data. Not that data wasn’t relevant before; it was just nowhere close to the speed and volume that’s available to us today. Businesses are buckling under the deluge of petabytes, exabytes, and zettabytes. Within these bytes lie valuable information on customer behavior, key business insights, and revenue generation. However, all that data is practically useless for businesses without the ability to identify the right data. Plus, if they don’t have the talent and resources to capture the right data, organize it, dissect it, draw actionable insights from it and, finally, deliver those insights in a meaningful way, their data initiatives will fail.

Rise of the CDO

Companies of all sizes can easily find themselves drowning in data generated from websites, landing pages, social streams, emails, text messages, and many other sources. Additionally, there is data in their own repositories. With so much data at their disposal, companies are under mounting pressure to utilize it to generate insights. These insights are critical because they can (and should) drive the overall business strategy and help companies make better business decisions. To leverage the power of data analytics, businesses need more “top-management muscle” specialized in the field of data science. This specialized field has lead to the creation of roles like Chief Data Officer (CDO).

In addition, with more companies undertaking digital transformations, there’s greater impetus for the C-suite to make data-driven decisions. The CDO helps make data-driven decisions and also develops a digital business strategy around those decisions. As data grows at an unstoppable rate, becoming an inseparable part of key business functions, we will see the CDO act as a bridge between other C-suite execs.

Data skills an emerging business necessity

So far, only large enterprises with bigger data mining and management needs maintain in-house solutions. These in-house teams and technologies handle the growing sets of diverse and dispersed data. Others work with third-party service providers to develop and execute their big data strategies.

As the amount of data grows, the need to mine it for insights becomes a key business requirement. For both large and small businesses, data-centric roles will experience endless upward mobility. These roles include data anlysts and scientists. There is going to be a huge opportunity for critical thinkers to turn their analytical skills into rapidly growing roles in the field of data science. In fact, data skills are now a prized qualification for titles like IT project managers and computer systems analysts.

Forbes cited the McKinsey Global Institute’s prediction that by 2018 there could be a massive shortage of data-skilled professionals. This indicates a disruption at the demand-supply level with the needs for data skills at an all-time high. With an increasing number of companies adopting big data strategies, salaries for data jobs are going through the roof. This is turning the position into a highly coveted one.

According to Harvard Professor Gary King, “There is a big data revolution. The big data revolution is that now we can do something with the data.” The big problem is that most enterprises don’t know what to do with data. Data professionals are helping businesses figure that out. So if you’re casting about for where to apply your skills and want to take advantage of one of the best career paths in the job market today, focus on data science.

I’m compensated by University of Phoenix for this blog. As always, all thoughts and opinions are my own.

For more insight on our increasingly connected future, see The $19 Trillion Question: Are You Undervaluing The Internet Of Things?

The post Data Analysts and Scientists More Important Than Ever For the Enterprise appeared first on Millennial CEO.

Comments

Daniel Newman

About Daniel Newman

Daniel Newman serves as the Co-Founder and CEO of EC3, a quickly growing hosted IT and Communication service provider. Prior to this role Daniel has held several prominent leadership roles including serving as CEO of United Visual. Parent company to United Visual Systems, United Visual Productions, and United GlobalComm; a family of companies focused on Visual Communications and Audio Visual Technologies.
Daniel is also widely published and active in the Social Media Community. He is the Author of Amazon Best Selling Business Book “The Millennial CEO.” Daniel also Co-Founded the Global online Community 12 Most and was recognized by the Huffington Post as one of the 100 Business and Leadership Accounts to Follow on Twitter.
Newman is an Adjunct Professor of Management at North Central College. He attained his undergraduate degree in Marketing at Northern Illinois University and an Executive MBA from North Central College in Naperville, IL. Newman currently resides in Aurora, Illinois with his wife (Lisa) and his two daughters (Hailey 9, Avery 5).
A Chicago native all of his life, Newman is an avid golfer, a fitness fan, and a classically trained pianist

When Good Is Good Enough: Guiding Business Users On BI Practices

Ina Felsheim

Image_part2-300x200In Part One of this blog series, I talked about changing your IT culture to better support self-service BI and data discovery. Absolutely essential. However, your work is not done!

Self-service BI and data discovery will drive the number of users using the BI solutions to rapidly expand. Yet all of these more casual users will not be well versed in BI and visualization best practices.

When your user base rapidly expands to more casual users, you need to help educate them on what is important. For example, one IT manager told me that his casual BI users were making visualizations with very difficult-to-read charts and customizing color palettes to incredible degrees.

I had a similar experience when I was a technical writer. One of our lead writers was so concerned with readability of every sentence that he was going through the 300+ page manuals (yes, they were printed then) and manually adjusting all of the line breaks and page breaks. (!) Yes, readability was incrementally improved. But now any number of changes–technical capabilities, edits, inserting larger graphics—required re-adjusting all of those manual “optimizations.” The time it took just to do the additional optimization was incredible, much less the maintenance of these optimizations! Meanwhile, the technical writing team was falling behind on new deliverables.

The same scenario applies to your new casual BI users. This new group needs guidance to help them focus on the highest value practices:

  • Customization of color and appearance of visualizations: When is this customization necessary for a management deliverable, versus indulging an OCD tendency? I too have to stop myself from obsessing about the font, line spacing, and that a certain blue is just a bit different than another shade of blue. Yes, these options do matter. But help these casual users determine when that time is well spent.
  • Proper visualizations: When is a spinning 3D pie chart necessary to grab someone’s attention? BI professionals would firmly say “NEVER!” But these casual users do not have a lot of depth on BI best practices. Give them a few simple guidelines as to when “flash” needs to subsume understanding. Consider offering a monthly one-hour Lunch and Learn that shows them how to create impactful, polished visuals. Understanding if their visualizations are going to be viewed casually on the way to a meeting, or dissected at a laptop, also helps determine how much time to spend optimizing a visualization. No, you can’t just mandate that they all read Tufte.
  • Predictive: Provide advanced analytics capabilities like forecasting and regression directly in their casual BI tools. Using these capabilities will really help them wow their audience with substance instead of flash.
  • Feature requests: Make sure you understand the motivation and business value behind some of the casual users’ requests. These casual users are less likely to understand the implications of supporting specific requests across an enterprise, so make sure you are collaborating on use cases and priorities for substantive requests.

By working with your casual BI users on the above points, you will be able to collectively understand when the absolute exact request is critical (and supports good visualization practices), and when it is an “optimization” that may impact productivity. In many cases, “good” is good enough for the fast turnaround of data discovery.

Next week, I’ll wrap this series up with hints on getting your casual users to embrace the “we” not “me” mentality.

Read Part One of this series: Changing The IT Culture For Self-Service BI Success.

Follow me on Twitter: @InaSAP

Comments

Why Strategic Plans Need Multiple Futures

By Dan Wellers, Kai Goerlich, and Stephanie Overby , Kai Goerlich and Stephanie Overby

When members of Lowe’s Innovation Labs first began talking with the home improvement retailer’s senior executives about how disruptive technologies would affect the future, the presentations were well received but nothing stuck.

“We’d give a really great presentation and everyone would say, ‘Great job,’ but nothing would really happen,” says Amanda Manna, head of narratives and partnerships for the lab.

The team realized that it needed to ditch the PowerPoints and try something radical. The team’s leader, Kyle Nel, is a behavioral scientist by training. He knows people are wired to receive new information best through stories. Sharing far-future concepts through narrative, he surmised, could unlock hidden potential to drive meaningful change.

So Nel hired science fiction writers to pen the future in comic book format, with characters and a narrative arc revealed pane by pane.

The first storyline, written several years before Oculus Rift became a household name, told the tale of a couple envisioning their kitchen renovation using virtual reality headsets. The comic might have been fun and fanciful, but its intent was deadly serious. It was a vision of a future in which Lowe’s might solve one of its long-standing struggles: the approximately US$70 billion left on the table when people are unable to start a home improvement project because they can’t envision what it will look like.

When the lab presented leaders with the first comic, “it was like a light bulb went on,” says Manna. “Not only did they immediately understand the value of the concept, they were convinced that if we didn’t build it, someone else would.”

Today, Lowe’s customers in select stores can use the HoloRoom How To virtual reality tool to learn basic DIY skills in an interactive and immersive environment.

Other comics followed and were greeted with similar enthusiasm—and investment, where possible. One tells the story of robots that help customers navigate stores. That comic spawned the LoweBot, which roamed the aisles of several Lowe’s stores during a pilot program in California and is being evaluated to determine next steps.

And the comic about tools that can be 3D-printed in space? Last year, Lowe’s partnered with Made in Space, which specializes in making 3D printers that can operate in zero gravity, to install the first commercial 3D printer in the International Space Station, where it was used to make tools and parts for astronauts.

The comics are the result of sending writers out on an open-ended assignment, armed with trends, market research, and other input, to envision what home improvement planning might look like in the future or what the experience of shopping will be in 10 years. The writers come back with several potential story ideas in a given area and work collaboratively with lab team members to refine it over time.

The process of working with writers and business partners to develop the comics helps the future strategy team at Lowe’s, working under chief development officer Richard D. Maltsbarger, to inhabit that future. They can imagine how it might play out, what obstacles might surface, and what steps the company would need to take to bring that future to life.

Once the final vision hits the page, the lab team can clearly envision how to work backward to enable the innovation. Importantly, the narrative is shared not only within the company but also out in the world. It serves as a kind of “bat signal” to potential technology partners with capabilities that might be required to make it happen, says Manna. “It’s all part of our strategy for staking a claim in the future.”

Planning must become completely oriented toward—and sourced from—the future.

Companies like Lowe’s are realizing that standard ways of planning for the future won’t get them where they need to go. The problem with traditional strategic planning is that the approach, which dates back to the 1950s and has remained largely unchanged since then, is based on the company’s existing mission, resources, core competencies, and competitors.

Yet the future rarely looks like the past. What’s more, digital technology is now driving change at exponential rates. Companies must be able to analyze and assess the potential impacts of the many variables at play, determine the possible futures they want to pursue, and develop the agility to pivot as conditions change along the way.

This is why planning must become completely oriented toward—and sourced from—the future, rather than from the past or the present. “Every winning strategy is based on a compelling insight, but most strategic planning originates in today’s marketplace, which means the resulting plans are constrained to incremental innovation,” says Bob Johansen, distinguished fellow at the Institute for the Future. “Most corporate strategists and CEOs are just inching their way to the future.” (Read more from Bob Johansen in the Thinkers story, “Fear Factor.”)

Inching forward won’t cut it anymore. Half of the S&P 500 organizations will be replaced over the next decade, according to research company Innosight. The reason? They can’t see the portfolio of possible futures, they can’t act on them, or both. Indeed, when SAP conducts future planning workshops with clients, we find that they usually struggle to look beyond current models and assumptions and lack clear ideas about how to work toward radically different futures.

Companies that want to increase their chances of long-term survival are incorporating three steps: envisioning, planning for, and executing on possible futures. And doing so all while the actual future is unfolding in expected and unexpected ways.

Those that pull it off are rewarded. A 2017 benchmarking report from the Strategic Foresight Research Network (SFRN) revealed that vigilant companies (those with the most mature processes for identifying, interpreting, and responding to factors that induce change) achieved 200% greater market capitalization growth and 33% higher profitability than the average, while the least mature companies experienced negative market-cap growth and had 44% lower profitability.

Looking Outside the Margins

“Most organizations lack sufficient capacity to detect, interpret, and act on the critically important but weak and ambiguous signals of fresh threats or new opportunities that emerge on the periphery of their usual business environment,” write George S. Day and Paul J. H. Schoemaker in their book Peripheral Vision.

But that’s exactly where effective future planning begins: examining what is happening outside the margins of day-to-day business as usual in order to peer into the future.

Business leaders who take this approach understand that despite the uncertainties of the future there are drivers of change that can be identified and studied and actions that can be taken to better prepare for—and influence—how events unfold.

That starts with developing foresight, typically a decade out. Ten years, most future planners agree, is the sweet spot. “It is far enough out that it gives you a bit more latitude to come up with a broader way to the future, allowing for disruption and innovation,” says Brian David Johnson, former chief futurist for Intel and current futurist in residence at Arizona State University’s Center for Science and the Imagination. “But you can still see the light from it.”

The process involves gathering information about the factors and forces—technological, business, sociological, and industry or ecosystem trends—that are effecting change to envision a range of potential impacts.

Seeing New Worlds

Intel, for example, looks beyond its own industry boundaries to envision possible future developments in adjacent businesses in the larger ecosystem it operates in. In 2008, the Intel Labs team, led by anthropologist Genevieve Bell, determined that the introduction of flexible glass displays would open up a whole new category of foldable consumer electronic devices.

To take advantage of that advance, Intel would need to be able to make silicon small enough to fit into some imagined device of the future. By the time glass manufacturer Corning unveiled its ultra-slim, flexible glass surface for mobile devices, laptops, televisions, and other displays of the future in 2012, Intel had already created design prototypes and kicked its development into higher gear. “Because we had done the future casting, we were already imagining how people might use flexible glass to create consumer devices,” says Johnson.

Because future planning relies so heavily on the quality of the input it receives, bringing in experts can elevate the practice. They can come from inside an organization, but the most influential insight may come from the outside and span a wide range of disciplines, says Steve Brown, a futurist, consultant, and CEO of BaldFuturist.com who worked for Intel Labs from 2007 to 2016.

Companies may look to sociologists or behaviorists who have insight into the needs and wants of people and how that influences their actions. Some organizations bring in an applied futurist, skilled at scanning many different forces and factors likely to coalesce in important ways (see Do You Need a Futurist?).

Do You Need a Futurist?

Most organizations need an outsider to help envision their future. Futurists are good at looking beyond the big picture to the biggest picture.

Business leaders who want to be better prepared for an uncertain and disruptive future will build future planning as a strategic capability into their organizations and create an organizational culture that embraces the approach. But working with credible futurists, at least in the beginning, can jump-start the process.

“The present can be so noisy and business leaders are so close to it that it’s helpful to provide a fresh outside-in point of view,” says veteran futurist Bob Johansen.

To put it simply, futurists like Johansen are good at connecting dots—lots of them. They look beyond the boundaries of a single company or even an industry, incorporating into their work social science, technical research, cultural movements, economic data, trends, and the input of other experts.

They can also factor in the cultural history of the specific company with whom they’re working, says Brian David Johnson, futurist in residence at Arizona State University’s Center for Science and the Imagination. “These large corporations have processes and procedures in place—typically for good reasons,” Johnson explains. “But all of those reasons have everything to do with the past and nothing to do with the future. Looking at that is important so you can understand the inertia that you need to overcome.”

One thing the best futurists will say they can’t do: predict the future. That’s not the point. “The future punishes certainty,” Johansen says, “but it rewards clarity.” The methods futurists employ are designed to trigger discussions and considerations of possibilities corporate leaders might not otherwise consider.

You don’t even necessarily have to buy into all the foresight that results, says Johansen. Many leaders don’t. “Every forecast is debatable,” Johansen says. “Foresight is a way to provoke insight, even if you don’t believe it. The value is in letting yourself be provoked.”

External expert input serves several purposes. It brings everyone up to a common level of knowledge. It can stimulate and shift the thinking of participants by introducing them to new information or ideas. And it can challenge the status quo by illustrating how people and organizations in different sectors are harnessing emerging trends.

The goal is not to come up with one definitive future but multiple possibilities—positive and negative—along with a list of the likely obstacles or accelerants that could surface on the road ahead. The result: increased clarity—rather than certainty—in the face of the unknown that enables business decision makers to execute and refine business plans and strategy over time.

Plotting the Steps Along the Way

Coming up with potential trends is an important first step in futuring, but even more critical is figuring out what steps need to be taken along the way: eight years from now, four years from now, two years from now, and now. Considerations include technologies to develop, infrastructure to deploy, talent to hire, partnerships to forge, and acquisitions to make. Without this vital step, says Brown, everybody goes back to their day jobs and the new thinking generated by future planning is wasted. To work, the future steps must be tangible, concrete, and actionable.

Organizations must build a roadmap for the desired future state that anticipates both developments and detours, complete with signals that will let them know if they’re headed in the right direction. Brown works with corporate leaders to set indicator flags to look out for on the way to the anticipated future. “If we see these flagged events occurring in the ecosystem, they help to confirm the strength of our hypothesis that a particular imagined future is likely to occur,” he explains.

For example, one of Brown’s clients envisioned two potential futures: one in which gestural interfaces took hold and another in which voice control dominated. The team set a flag to look out for early examples of the interfaces that emerged in areas such as home appliances and automobiles. “Once you saw not just Amazon Echo but also Google Home and other copycat speakers, it would increase your confidence that you were moving more towards a voice-first era rather than a gesture-first era,” Brown says. “It doesn’t mean that gesture won’t happen, but it’s less likely to be the predominant modality for communication.”

How to Keep Experiments from Being Stifled

Once organizations have a vision for the future, making it a reality requires testing ideas in the marketplace and then scaling them across the enterprise. “There’s a huge change piece involved,”
says Frank Diana, futurist and global consultant with Tata Consultancy Services, “and that’s the place where most
businesses will fall down.”

Many large firms have forgotten what it’s like to experiment in several new markets on a small scale to determine what will stick and what won’t, says René Rohrbeck, professor of strategy at the Aarhus School of Business and Social Sciences. Companies must be able to fail quickly, bring the lessons learned back in, adapt, and try again.

Lowe’s increases its chances of success by creating master narratives across a number of different areas at once, such as robotics, mixed-reality tools, on-demand manufacturing, sustainability, and startup acceleration. The lab maps components of each by expected timelines: short, medium, and long term. “From there, we’ll try to build as many of them as quickly as we can,” says Manna. “And we’re always looking for that next suite of things that we should be working on.” Along the way certain innovations, like the HoloRoom How-To, become developed enough to integrate into the larger business as part of the core strategy.

One way Lowe’s accelerates the process of deciding what is ready to scale is by being open about its nascent plans with the world. “In the past, Lowe’s would never talk about projects that weren’t at scale,” says Manna. Now the company is sharing its future plans with the media and, as a result, attracting partners that can jump-start their realization.

Seeing a Lowe’s comic about employee exoskeletons, for example, led Virginia Tech engineering professor Alan Asbeck to the retailer. He helped develop a prototype for a three-month pilot with stock employees at a Christiansburg, Virginia, store.

The high-tech suit makes it easier to move heavy objects. Employees trying out the suits are also fitted with an EEG headset that the lab incorporates into all its pilots to gauge unstated, subconscious reactions. That direct feedback on the user experience helps the company refine its innovations over time.

Make the Future Part of the Culture

Regardless of whether all the elements of its master narratives come to pass, Lowe’s has already accomplished something important: It has embedded future thinking into the culture of the company.

Companies like Lowe’s constantly scan the environment for meaningful economic, technology, and cultural changes that could impact its future assessments and plans. “They can regularly draw on future planning to answer challenges,” says Rohrbeck. “This intensive, ongoing, agile strategizing is only possible because they’ve done their homework up front and they keep it updated.”

It’s impossible to predict what’s going to happen in the future, but companies can help to shape it, says Manna of Lowe’s. “It’s really about painting a picture of a preferred future state that we can try to achieve while being flexible and capable of change as we learn things along the way.” D!


About the Authors

Dan Wellers is Global Lead, Digital Futures, at SAP.

Kai Goerlich is Chief Futurist at SAP’s Innovation Center Network.

Stephanie Overby is a Boston-based business and technology journalist.


Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.

Comments

Dan Wellers

About Dan Wellers

Dan Wellers is founder and leader of Digital Futures at SAP, a strategic insights and thought leadership discipline that explores how digital technologies drive exponential change in business and society.

Kai Goerlich

About Kai Goerlich

Kai Goerlich is the Chief Futurist at SAP Innovation Center network His specialties include Competitive Intelligence, Market Intelligence, Corporate Foresight, Trends, Futuring and ideation.

Share your thoughts with Kai on Twitter @KaiGoe.heif Futu

About Stephanie Overby

Tags:

The Human Factor In An AI Future

Dan Wellers and Kai Goerlich

As artificial intelligence becomes more sophisticated and its ability to perform human tasks accelerates exponentially, we’re finally seeing some attempts to wrestle with what that means, not just for business, but for humanity as a whole.

From the first stone ax to the printing press to the latest ERP solution, technology that reduces or even eliminates physical and mental effort is as old as the human race itself. However, that doesn’t make each step forward any less uncomfortable for the people whose work is directly affected – and the rise of AI is qualitatively different from past developments.

Until now, we developed technology to handle specific routine tasks. A human needed to break down complex processes into their component tasks, determine how to automate each of those tasks, and finally create and refine the automation process. AI is different. Because AI can evaluate, select, act, and learn from its actions, it can be independent and self-sustaining.

Some people, like investor/inventor Elon Musk and Alibaba founder and chairman Jack Ma, are focusing intently on how AI will impact the labor market. It’s going to do far more than eliminate repetitive manual jobs like warehouse picking. Any job that involves routine problem-solving within existing structures, processes, and knowledge is ripe for handing over to a machine. Indeed, jobs like customer service, travel planning, medical diagnostics, stock trading, real estate, and even clothing design are already increasingly automated.

As for more complex problem-solving, we used to think it would take computers decades or even centuries to catch up to the nimble human mind, but we underestimated the exponential explosion of deep learning. IBM’s Watson trounced past Jeopardy champions in 2011 – and just last year, Google’s DeepMind AI beat the reigning European champion at Go, a game once thought too complex for even the most sophisticated computer.

Where does AI leave human?

This raises an urgent question for the future: How do human beings maintain our economic value in a world in which AI will keep getting better than us at more and more things?

The concept of the technological singularity – the point at which machines attain superhuman intelligence and permanently outpace the human mind – is based on the idea that human thinking can’t evolve fast enough to keep up with technology. However, the limits of human performance have yet to be found. It’s possible that people are only at risk of lagging behind machines because nothing has forced us to test ourselves at scale.

Other than a handful of notable individual thinkers, scientists, and artists, most of humanity has met survival-level needs through mostly repetitive tasks. Most people don’t have the time or energy for higher-level activities. But as the human race faces the unique challenge of imminent obsolescence, we need to think of those activities not as luxuries, but as necessities. As technology replaces our traditional economic value, the economic system may stop attaching value to us entirely unless we determine the unique value humanity offers – and what we can and must do to cultivate the uniquely human skills that deliver that value.

Honing the human advantage

As a species, humans are driven to push past boundaries, to try new things, to build something worthwhile, and to make a difference. We have strong instincts to explore and enjoy novelty and risk – but according to psychologist Mihaly Csikszentmihalyi, these instincts crumble if we don’t cultivate them.

AI is brilliant at automating routine knowledge work and generating new insights from existing data. What it can’t do is deduce the existence, or even the possibility, of information it isn’t already aware of. It can’t imagine radical new products and business models. Or ask previously unconceptualized questions. Or envision unimagined opportunities and achievements. AI doesn’t even have common sense! As theoretical physicist Michio Kaku says, a robot doesn’t know that water is wet or that strings can pull but not push. Nor can robots engage in what Kaku calls “intellectual capitalism” – activities that involve creativity, imagination, leadership, analysis, humor, and original thought.

At the moment, though, we don’t generally value these so-called “soft skills” enough to prioritize them. We expect people to develop their competency in emotional intelligence, cross-cultural awareness, curiosity, critical thinking, and persistence organically, as if these skills simply emerge on their own given enough time. But there’s nothing soft about these skills, and we can’t afford to leave them to chance.

Lessons in being human

To stay ahead of AI in an increasingly automated world, we need to start cultivating our most human abilities on a societal level – and to do so not just as soon as possible, but as early as possible.

Singularity University chairman Peter Diamandis, for example, advocates revamping the elementary school curriculum to nurture the critical skills of passion, curiosity, imagination, critical thinking, and persistence. He envisions a curriculum that, among other things, teaches kids to communicate, ask questions, solve problems with creativity, empathy, and ethics, and accept failure as an opportunity to try again. These concepts aren’t necessarily new – Waldorf and Montessori schools have been encouraging similar approaches for decades – but increasing automation and digitization make them newly relevant and urgent.

The Mastery Transcript Consortium is approaching the same problem from the opposite side, by starting with outcomes. This organization is pushing to redesign the secondary school transcript to better reflect whether and how high school students are acquiring the necessary combination of creative, critical, and analytical abilities. By measuring student achievement in a more nuanced way than through letter grades and test scores, the consortium’s approach would inherently require schools to reverse-engineer their curricula to emphasize those abilities.

Most critically, this isn’t simply a concern of high-tuition private schools and “good school districts” intended to create tomorrow’s executives and high-level knowledge workers. One critical aspect of the challenge we face is the assumption that the vast majority of people are inevitably destined for lives that don’t require creativity or critical thinking – that either they will somehow be able to thrive anyway or their inability to thrive isn’t a cause for concern. In the era of AI, no one will be able to thrive without these abilities, which means that everyone will need help acquiring them. For humanitarian, political, and economic reasons, we cannot just write off a large percentage of the population as disposable.

In the end, anything an AI does has to fit into a human-centered value system that takes our unique human abilities into account. Why would we want to give up our humanity in favor of letting machines determine whether or not an action or idea is valuable? Instead, while we let artificial intelligence get better at being what it is, we need to get better at being human. That’s how we’ll keep coming up with groundbreaking new ideas like jazz music, graphic novels, self-driving cars, blockchain, machine learning – and AI itself.

Read the executive brief Human Skills for the Digital Future.

Build an intelligent enterprise with AI and machine learning to unite human expertise and computer insights. Run live with SAP Leonardo.


Comments

Dan Wellers

About Dan Wellers

Dan Wellers is founder and leader of Digital Futures at SAP, a strategic insights and thought leadership discipline that explores how digital technologies drive exponential change in business and society.

Kai Goerlich

About Kai Goerlich

Kai Goerlich is the Chief Futurist at SAP Innovation Center network His specialties include Competitive Intelligence, Market Intelligence, Corporate Foresight, Trends, Futuring and ideation.

Share your thoughts with Kai on Twitter @KaiGoe.heif Futu