Sections

The (R)evolution of PLM, Part 3: Using Digital Twins Throughout The Product Lifecycle

John McNiff

In Part 1 of this series we explored why manufacturers must embrace “live” PLM. In Part 2 we examined the new dimensions of a product-centric enterprise. In Part 3 we look at the role of digital twins.

It’s time to start using digital twins throughout the product lifecycle. In fact, to compete in the digital economy, manufacturers will need to achieve a truly product-centric enterprise in which digital twins guide not only engineering and maintenance, but every business-critical function, from procurement to HR.

Why is this necessary? Because product lifecycles are shrinking. Companies are managing ever-growing streams of data. And customers are demanding product individualization. The only way for manufacturers to respond is to use digital twins to place the product – the highly configurable, endlessly customizable, increasingly connected product – at the center of their operations.

Double the insight

Digital twins are virtual representations of a real-world products or assets. They’re a Top 10 strategic trend for 2017, according to Gartner. And they’re part of a broader digital transformation in which IDC says companies will invest $2.1 trillion a year by 2019.

Digital twins aren’t a new concept, but their application throughout the product lifecycle is. Here are key ways smart manufacturers will leverage digital twins – and achieve a product-centric and model-based enterprise – across operations:

Design and engineering: Traditionally, digital twins have been used by design and engineering to create virtual representations for designing and enhancing products. In this application, the digital twin actually exists before its physical counterpart does, essentially starting out as a vision of what the product should be. But you can also capture data on in-the-field product use and apply that to the digital twin for continuous product improvement.

Maintenance and service: Today, the most common use case for digital twins is maintenance and service. By creating a virtual representation of an asset in the field using lightweight model visualization, and then capturing data from smart sensors embedded in the asset, you can gain a complete picture of real-world performance and operating conditions. You can also simulate that real-world environment for predictive maintenance. Let’s say you manufacture wind turbines. You can capture data on rotor speed, wind speed, operating temperature, ambient temperature, humidity, and so on to understand and predict product performance. By doing so, you can schedule maintenance before a crucial part breaks – optimizing uptime and saving time and cost for a repair.

Quality control: Just as digital twins can help with maintenance and service, they can predictively improve quality during manufacturing. You can also use digital twins to compare quality data across multiple products to better understand global quality issues and quickly visualize issues against the model. And you can apply data collected by maintenance and service to achieve ongoing quality improvements.

Customization: As products become more customizable, digital twins will allow design and engineering to model the various permutations. But digital twins can also incorporate customer demand and usage data to enhance customization options. That sounds obvious, but in the past it was very difficult to incorporate customer input into the manufacturing process. Let’s say you sell high-end custom bikes. You might allow customers to choose different colors, wheels, and other details. By capturing customer preferences in the digital twin, you can get a picture of customer demand. And by capturing customer usage data, you can understand how custom configurations affect product performance. So you can offer the most reliable options or allow customers to configure your products based on performance attributes. You can also visualize lightweight representations of the twin without the burden of heavyweight design systems and parameters.

Finance and procurement: In our custom-configured bike example, different configurations involve different costs. And those different costs involve not only the cost of the various components, but also the cost for assembling the various configurations. By capturing sales data in the digital twin, you can understand which configurations are being ordered and how configuration-specific revenues compare to the cost to build each configuration. What’s more, you can link that data with supplier information. That will help you understand which suppliers contribute to product configurations that perform well in the field. It also can help you identify opportunities to cost-effectively rid yourself of excess supply.

Sales and marketing: The digital twin can also inform sales and marketing. For instance, you can use the digital twin to populate an online product configurator and e-commerce website. That way you can be sure what you’re selling is always tied directly to what you’re engineering in the design studio and what you’re servicing in the field.

Human resources: The digital twin can even extend into HR. For example, you can use the digital twin to understand training and certification needs and be sure the right people are trained on the right product features.

One twin, many views

Digital twins should underlie all manufacturing operations. Ideally you should have a single set of digital twin master data that resides in a central location. That will give you one version of the truth, and with “in-memory” computing-based networks plus a lightweight, change-controlled model capability, you’ll be able to analyze and visualize that data rapidly.

But not all business functions care about the entire data set. You need to deliver the right data to the right people at the right time. Design and engineering requires one set of data, with every specification and tolerance needed to create and continuously improve the product. Sales and marketing requires another set of data, with the features and functions customers can select. And so on.

Ultimately, as the digital product innovation platform extends the dimensions of traditional PLM, at the heart of PLM is an extended version of the digital twin. In future blogs we’ll talk about how you can leverage the latest-generation platform from SAP, based on SAP S/4HANA and SAP’s platform for the Internet of Everything, to achieve a live, visual, and intelligent product-centric enterprise.

Learn how a live supply chain can help your business, visit us at SAP.com.

Comments

John McNiff

About John McNiff

John McNiff is the Vice President of Solution Management for the R&D/Engineering line-of-business business unit at SAP. John has held a number of sales and business development roles at SAP, focused on the manufacturing and engineering topics.

The Insider’s Guide To Improving Payments And Cash Flow: Executive Sponsorship And Project Resources

Alan Cohen and Scott Pezza

Part 3 of the Payments and Cash Flow Series

Imagine that you’ve developed a fantastic program to improve payments and cash flow, but you’ve neglected one key component: You haven’t gained executive support.

Your program may never get off the ground.

Executive support is crucial for many aspects of a successful program: goal setting, investment approval, resources allocation, meeting deadlines, and achieving goals. Cash flow initiatives are typically sponsored by the CFO with a combined focus on metrics (such as a $100 million cash flow improvement) and outcomes.

The value of outcomes can’t be overestimated. Here’s a partial list of investing options for this free cash flow:

  • Build a new plant
  • Open a new store
  • Refurbish an existing store
  • Invest in research and development
  • Pursue merger and acquisitions

There are other stakeholders who must be consulted. Payment and cash flow/discount initiatives are often supported by leadership in procurement, treasury, and accounts payable. Procurement owns supplier relationships and should be involved early as a collaborative partner in these initiatives.

Day-to-day responsibility: Successful programs require accountable leaders. Choosing the right person to lead the initiative is critical for achieving the desired goals. Focus more on their skill set than on the functional group they support.

The ideal candidate will have existing relationships within the company, can sell the program internally, be innovative and results-oriented, act as a change agent, and work as the trusted link between executive leadership and the project team.

Project team: A cross-functional team is required to execute a payment and/or cash flow initiative. Each person is vital to the overall success of the initiative:

  • Executive sponsor. Executive leadership, governance, goal setting, and resourcing
  • Program manager. Strategy definition and execution, ongoing program support, program growth plan, and executive readouts
  • Procurement lead. Supplier communications and payment terms negotiations (when appropriate)
  • Accounts payable lead: Support for supplier outreach and vendor master updates
  • Treasury lead. Payment type and terms strategy, hurdle rate or cash flow goal setting
  • IT: Connectivity, integration, data uploads, and setup of payment terms/types

Call to action At this stage, you need to identify and formalize two key stakeholders:

  1. Your champion – executive sponsor. Ensure that there is a clear executive sponsor who is committed to the initiative’s success. (Note: Estimating value to help gain executive support is the focus of the next blog in this series.)
  2. Your day-to-day lead – program manager. Identify a list of candidates who can take ownership of and lead the initiative. Ideal candidate characteristics are referenced above under “day-to-day responsibility.”

How we can help

To help you implement the call to action, we have a Project Team Overview that highlights the team structure, skill sets, and time commitment required. To request it, email SAP_improve-cashflow@sap.com.

If you could benefit from a working capital management improvement program or have one underway, consider attending the Treasury & Risk complimentary webinar on August 30. You will hear a panel of analysts and experts share best practices, KPIs, and key strategies for managing working capital in a rising interest-rate environment.

Follow SAP Finance online: @SAPFinance (Twitter)  | LinkedIn | FacebookYouTube

Comments

Alan Cohen

About Alan Cohen

Alan Cohen is VP Payments & Financing Strategy, SAP Ariba. Alan has over 20 years of payments and working capital experience as a practitioner, consultant, and banker. In his current role, he leads the payments and financing strategy for SAP Ariba to help clients achieve improved business outcomes. Previously, at Coca-Cola Enterprises, Alan led the procure-to-pay transformation that encompassed sourcing, procurement, and payables automation, and the company became one of the first to benefit from dynamic discounting. Alan holds a supply chain management degree from Arizona State University. In 2015, he was part of a team that won SAP’s Hasso Plattner Founders Award for an innovative approach to B2B payments. Alan lives in Atlanta with his wife and 2 daughters. He has served on the board of the Weinstein School since 2007 and actively participates in 2nd Helpings, a nonprofit to rescue and deliver surplus food.

Scott Pezza

About Scott Pezza

As part of SAP Ariba's Nework Value Organization Center of Excellence, Scott researches, compiles, and shares best-practice information to help customers get the most out of their investments. With a focus on the financial supply chain (invoice management, payments, discounting, and supply chain finance), his research helps inform strategic planning, performance measurement, and program execution. He has spent the past 15 years in the B2B technology space, in roles ranging from software development and support to research and consulting. Scott earned his BA in English and Philosophy from Clark University, his MBA from Boston University Graduate School of Management, and his JD from Boston University School of Law, where he served on the Executive Board of the Annual Review of Banking and Financial Law.

Top Uses For Machine Learning In Life Sciences

Mandar Paralkar

Empowering business growth with disruptive technologies like the Internet of Things (IoT), predictive analytics, and artificial intelligence has become a norm in IT, and machine learning is leading the way, as software applications are becoming smarter to improve our business and personal lives. With massive improvements in hardware and Big Data, machines can sense, understand, interact, predict, and respond to solve industry business problems.

Bio-pharmaceutical brands are critical intellectual property for life sciences companies, and marketing intelligence and insights are powerful ways to improve brand recognition and marketing ROI. Similarly, service ticket intelligence can automate error and issue classification and customer support ticket responses, improving service levels for medical devices.

A few key questions can help determine whether a use case is fit for machine learning. For example, can you automate the high-volume task? Is there a pattern involved in the business process’ unstructured data sets? Enterprise data is transformed into business value, with the help of a model, by using input and output parameters. Predictive models may have some bias with respect to the degree to which a model fits the data, and the variance amount can change with a model’s parameters.

There are a number of potential use cases for machine learning in life sciences. Here are some that you may wish to incorporate into your business model.

  • Quality must be enforced in supply chain and manufacturing business process for regulatory compliance. Root-cause analysis is a key aspect of corrective and preventive action (CAPA), which aligns with industry initiatives like QbD (quality by design), PAT (process analytical technique), and CPV (continued process verification). There is a clear need to identify main causes for reported defects in material assets and understand the impact of identified causes to manage the overall defect count. Based on gathered data, machines can predict what production can be produced vs. planned for a specific duration (based on historical production), thereby preventing deviations and nonconformances. Analyzing the cause of deviation from standard cycle time for manufacturing equipment, and prescribing measures to achieve standard cycle time, affect yield and scrap.
  • Life science companies spend huge amounts on direct and indirect materials and services with contract organizations. Machine learning services help commodity managers optimize global spend. Common machine learning uses in strategic sourcing and procurement include: assessment of contract-negotiation behavior, optimization of contract awards to suitable candidates, detection of single-sourcing risks, and determination of components to outsource to contract manufacturers. Intelligent enterprise strategies can recommend replacements for poorly performing suppliers; replace a supplier that poses a compliance risk; select additional suppliers to comply with purchasing policies, expansion to a new territory, or adding a category of spend; or find cheaper options for materials or services.
  • Learning management is critical in regulated industries, and training is a big part of human resources’ duties in life sciences. In hiring, HR business partners can identify the best candidates by parsing resumes into structured information, then visualize candidate profiles by skills, education, and experience, to compare and generate best-fit scores of profiles to jobs and vice versa. Talent management can take a more personalized approach towards career mapping based on employees’ unique situations, skill trajectory, and training, thereby opening opportunities to employees for fast-track growth.
  • Consider use cases where matching algorithms are used extensively for shared services like cash. Matching incoming payments with invoices is now a simplified process for intelligent enterprises to clear volumes of backlog data. Machines can match accounts receivable invoices based on learned criteria and provide a confidence score to help finance to clear payments faster (e.g., if the matching rate is within a given threshold). For payments that cannot be cleared automatically due to lower confidence levels, a list of the best-fitting invoices can be generated in order to save time identifying relevant receivables.
  • Similarly, accounts payables must release payment blocks to pay supplier invoices and receive cash discounts for early payment. Based on historical data, current user interaction, and machine learning algorithms, the system can react automatically or suggest resolution proposals. Decisions may be based on supplier rating, deviation vs. cash discount available, or purchasing category. Matching invoice line items with purchase order line items, and providing remittance advice to reduce manual errors, are ways automation helps life science accounting.
  • Sales and marketing can leverage machine learning during sales negotiations with wholesalers, hospitals, clinics, and retail pharmacies by capturing keywords, sentiments, competitors, and new contacts to feed into deal scoring, ultimately improving the win rate. Bio-pharma sales reps can share marketing collateral of interest to physicians and key opinion leaders. Third-party prescription data can create target groups for behavior-based marketing campaigns to boost sales. Thus, machine learning can help build customer loyalty with proactive retention strategies in the life sciences industry.

Smart business process enabled by machine learning, automation, and artificial intelligence can help achieve intelligent enterprise goals for the life science industry, particularly as the IoT technology adoption rate improves.

SAP machine learning services in its SAP Leonardo IoT platform help life science companies automate and prioritize routine decision making processes in order to adapt to rapidly changing business environments.

Comments

Mandar Paralkar

About Mandar Paralkar

Mandar Paralkar is the director of Global Life Sciences Industry Solution Management at SAP, where he has a leading role in creating the industry solution strategy and global business plans. He works with customers to define industry requirements to corporate development and shares global life sciences trends and solution innovations internally and externally. Further, he supports customer engagements with his deep industry expertise that includes a sound compliance and validation background.

Data Lakes: Deep Insights

Timo Elliott, John Schitka, Michael Eacrett, and Carolyn Marsan

Dan McCaffrey has an ambitious goal: solving the world’s looming food shortage.

As vice president of data and analytics at The Climate Corporation (Climate), which is a subsidiary of Monsanto, McCaffrey leads a team of data scientists and engineers who are building an information platform that collects massive amounts of agricultural data and applies machine-learning techniques to discover new patterns. These analyses are then used to help farmers optimize their planting.

“By 2050, the world is going to have too many people at the current rate of growth. And with shrinking amounts of farmland, we must find more efficient ways to feed them. So science is needed to help solve these things,” McCaffrey explains. “That’s what excites me.”

“The deeper we can go into providing recommendations on farming practices, the more value we can offer the farmer,” McCaffrey adds.

But to deliver that insight, Climate needs data—and lots of it. That means using remote sensing and other techniques to map every field in the United States and then combining that information with climate data, soil observations, and weather data. Climate’s analysts can then produce a massive data store that they can query for insights.

Meanwhile, precision tractors stream data into Climate’s digital agriculture platform, which farmers can then access from iPads through easy data flow and visualizations. They gain insights that help them optimize their seeding rates, soil health, and fertility applications. The overall goal is to increase crop yields, which in turn boosts a farmer’s margins.

Climate is at the forefront of a push toward deriving valuable business insight from Big Data that isn’t just big, but vast. Companies of all types—from agriculture through transportation and financial services to retail—are tapping into massive repositories of data known as data lakes. They hope to discover correlations that they can exploit to expand product offerings, enhance efficiency, drive profitability, and discover new business models they never knew existed.

The internet democratized access to data and information for billions of people around the world. Ironically, however, access to data within businesses has traditionally been limited to a chosen few—until now. Today’s advances in memory, storage, and data tools make it possible for companies both large and small to cost effectively gather and retain a huge amount of data, both structured (such as data in fields in a spreadsheet or database) and unstructured (such as e-mails or social media posts). They can then allow anyone in the business to access this massive data lake and rapidly gather insights.

It’s not that companies couldn’t do this before; they just couldn’t do it cost effectively and without a lengthy development effort by the IT department. With today’s massive data stores, line-of-business executives can generate queries themselves and quickly churn out results—and they are increasingly doing so in real time. Data lakes have democratized both the access to data and its role in business strategy.

Indeed, data lakes move data from being a tactical tool for implementing a business strategy to being a foundation for developing that strategy through a scientific-style model of experimental thinking, queries, and correlations. In the past, companies’ curiosity was limited by the expense of storing data for the long term. Now companies can keep data for as long as it’s needed. And that means companies can continue to ask important questions as they arise, enabling them to future-proof their strategies.

Prescriptive Farming

Climate’s McCaffrey has many questions to answer on behalf of farmers. Climate provides several types of analytics to farmers including descriptive services, which are metrics about the farm and its operations, and predictive services related to weather and soil fertility. But eventually the company hopes to provide prescriptive services, helping farmers address all the many decisions they make each year to achieve the best outcome at the end of the season. Data lakes will provide the answers that enable Climate to follow through on its strategy.

Behind the scenes at Climate is a deep-science data lake that provides insights, such as predicting the fertility of a plot of land by combining many data sets to create accurate models. These models allow Climate to give farmers customized recommendations based on how their farm is performing.

“Machine learning really starts to work when you have the breadth of data sets from tillage to soil to weather, planting, harvest, and pesticide spray,” McCaffrey says. “The more data sets we can bring in, the better machine learning works.”

The deep-science infrastructure already has terabytes of data but is poised for significant growth as it handles a flood of measurements from field-based sensors.

“That’s really scaling up now, and that’s what’s also giving us an advantage in our ability to really personalize our advice to farmers at a deeper level because of the information we’re getting from sensor data,” McCaffrey says. “As we roll that out, our scale is going to increase by several magnitudes.”

Also on the horizon is more real-time data analytics. Currently, Climate receives real-time data from its application that streams data from the tractor’s cab, but most of its analytics applications are run nightly or even seasonally.

In August 2016, Climate expanded its platform to third-party developers so other innovators can also contribute data, such as drone-captured data or imagery, to the deep-science lake.

“That helps us in a lot of ways, in that we can get more data to help the grower,” McCaffrey says. “It’s the machine learning that allows us to find the insights in all of the data. Machine learning allows us to take mathematical shortcuts as long as you’ve got enough data and enough breadth of data.”

Predictive Maintenance

Growth is essential for U.S. railroads, which reinvest a significant portion of their revenues in maintenance and improvements to their track systems, locomotives, rail cars, terminals, and technology. With an eye on growing its business while also keeping its costs down, CSX, a transportation company based in Jacksonville, Florida, is adopting a strategy to make its freight trains more reliable.

In the past, CSX maintained its fleet of locomotives through regularly scheduled maintenance activities, which prevent failures in most locomotives as they transport freight from shipper to receiver. To achieve even higher reliability, CSX is tapping into a data lake to power predictive analytics applications that will improve maintenance activities and prevent more failures from occurring.

Beyond improving customer satisfaction and raising revenue, CSX’s new strategy also has major cost implications. Trains are expensive assets, and it’s critical for railroads to drive up utilization, limit unplanned downtime, and prevent catastrophic failures to keep the costs of those assets down.

That’s why CSX is putting all the data related to the performance and maintenance of its locomotives into a massive data store.

“We are then applying predictive analytics—or, more specifically, machine-learning algorithms—on top of that information that we are collecting to look for failure signatures that can be used to predict failures and prescribe maintenance activities,” says Michael Hendrix, technical director for analytics at CSX. “We’re really looking to better manage our fleet and the maintenance activities that go into that so we can run a more efficient network and utilize our assets more effectively.”

“In the past we would have to buy a special storage device to store large quantities of data, and we’d have to determine cost benefits to see if it was worth it,” says Donna Crutchfield, assistant vice president of information architecture and strategy at CSX. “So we were either letting the data die naturally, or we were only storing the data that was determined to be the most important at the time. But today, with the new technologies like data lakes, we’re able to store and utilize more of this data.”

CSX can now combine many different data types, such as sensor data from across the rail network and other systems that measure movement of its cars, and it can look for correlations across information that wasn’t previously analyzed together.

One of the larger data sets that CSX is capturing comprises the findings of its “wheel health detectors” across the network. These devices capture different signals about the bearings in the wheels, as well as the health of the wheels in terms of impact, sound, and heat.

“That volume of data is pretty significant, and what we would typically do is just look for signals that told us whether the wheel was bad and if we needed to set the car aside for repair. We would only keep the raw data for 10 days because of the volume and then purge everything but the alerts,” Hendrix says.

With its data lake, CSX can keep the wheel data for as long as it likes. “Now we’re starting to capture that data on a daily basis so we can start applying more machine-learning algorithms and predictive models across a larger history,” Hendrix says. “By having the full data set, we can better look for trends and patterns that will tell us if something is going to fail.”

Another key ingredient in CSX’s data set is locomotive oil. By analyzing oil samples, CSX is developing better predictions of locomotive failure. “We’ve been able to determine when a locomotive would fail and predict it far enough in advance so we could send it down for maintenance and prevent it from failing while in use,” Crutchfield says.

“Between the locomotives, the tracks, and the freight cars, we will be looking at various ways to predict those failures and prevent them so we can improve our asset allocation. Then we won’t need as many assets,” she explains. “It’s like an airport. If a plane has a failure and it’s due to connect at another airport, all the passengers have to be reassigned. A failure affects the system like dominoes. It’s a similar case with a railroad. Any failure along the road affects our operations. Fewer failures mean more asset utilization. The more optimized the network is, the better we can service the customer.”

Detecting Fraud Through Correlations

Traditionally, business strategy has been a very conscious practice, presumed to emanate mainly from the minds of experienced executives, daring entrepreneurs, or high-priced consultants. But data lakes take strategy out of that rarefied realm and put it in the environment where just about everything in business seems to be going these days: math—specifically, the correlations that emerge from applying a mathematical algorithm to huge masses of data.

The Financial Industry Regulatory Authority (FINRA), a nonprofit group that regulates broker behavior in the United States, used to rely on the experience of its employees to come up with strategies for combating fraud and insider trading. It still does that, but now FINRA has added a data lake to find patterns that a human might never see.

Overall, FINRA processes over five petabytes of transaction data from multiple sources every day. By switching from traditional database and storage technology to a data lake, FINRA was able to set up a self-service process that allows analysts to query data themselves without involving the IT department; search times dropped from several hours to 90 seconds.

While traditional databases were good at defining relationships with data, such as tracking all the transactions from a particular customer, the new data lake configurations help users identify relationships that they didn’t know existed.

Leveraging its data lake, FINRA creates an environment for curiosity, empowering its data experts to search for suspicious patterns of fraud, marketing manipulation, and compliance. As a result, FINRA was able to hand out 373 fines totaling US$134.4 million in 2016, a new record for the agency, according to Law360.

Data Lakes Don’t End Complexity for IT

Though data lakes make access to data and analysis easier for the business, they don’t necessarily make the CIO’s life a bed of roses. Implementations can be complex, and companies rarely want to walk away from investments they’ve already made in data analysis technologies, such as data warehouses.

“There have been so many millions of dollars going to data warehousing over the last two decades. The idea that you’re just going to move it all into a data lake isn’t going to happen,” says Mike Ferguson, managing director of Intelligent Business Strategies, a UK analyst firm. “It’s just not compelling enough of a business case.” But Ferguson does see data lake efficiencies freeing up the capacity of data warehouses to enable more query, reporting, and analysis.

Data lakes also don’t free companies from the need to clean up and manage data as part of the process required to gain these useful insights. “The data comes in very raw, and it needs to be treated,” says James Curtis, senior analyst for data platforms and analytics at 451 Research. “It has to be prepped and cleaned and ready.”

Companies must have strong data governance processes, as well. Customers are increasingly concerned about privacy, and rules for data usage and compliance have become stricter in some areas of the globe, such as the European Union.

Companies must create data usage policies, then, that clearly define who can access, distribute, change, delete, or otherwise manipulate all that data. Companies must also make sure that the data they collect comes from a legitimate source.

Many companies are responding by hiring chief data officers (CDOs) to ensure that as more employees gain access to data, they use it effectively and responsibly. Indeed, research company Gartner predicts that 90% of large companies will have a CDO by 2019.

Data lakes can be configured in a variety of ways: centralized or distributed, with storage on premise or in the cloud or both. Some companies have more than one data lake implementation.

“A lot of my clients try their best to go centralized for obvious reasons. It’s much simpler to manage and to gather your data in one place,” says Ferguson. “But they’re often plagued somewhere down the line with much more added complexity and realize that in many cases the data lake has to be distributed to manage data across multiple data stores.”

Meanwhile, the massive capacities of data lakes mean that data that once flowed through a manageable spigot is now blasting at companies through a fire hose.

“We’re now dealing with data coming out at extreme velocity or in very large volumes,” Ferguson says. “The idea that people can manually keep pace with the number of data sources that are coming into the enterprise—it’s just not realistic any more. We have to find ways to take complexity away, and that tends to mean that we should automate. The expectation is that the information management software, like an information catalog for example, can help a company accelerate the onboarding of data and automatically classify it, profile it, organize it, and make it easy to find.”

Beyond the technical issues, IT and the business must also make important decisions about how data lakes will be managed and who will own the data, among other things (see How to Avoid Drowning in the Lake).

How to Avoid Drowning in the Lake

The benefits of data lakes can be squandered if you don’t manage the implementation and data ownership carefully.

Deploying and managing a massive data store is a big challenge. Here’s how to address some of the most common issues that companies face:

Determine the ROI. Developing a data lake is not a trivial undertaking. You need a good business case, and you need a measurable ROI. Most importantly, you need initial questions that can be answered by the data, which will prove its value.

Find data owners. As devices with sensors proliferate across the organization, the issue of data ownership becomes more important.

Have a plan for data retention. Companies used to have to cull data because it was too expensive to store. Now companies can become data hoarders. How long do you store it? Do you keep it forever?

Manage descriptive data. Software that allows you to tag all the data in one or multiple data lakes and keep it up-to-date is not mature yet. We still need tools to bring the metadata together to support self-service and to automate metadata to speed up the preparation, integration, and analysis of data.

Develop data curation skills. There is a huge skills gap for data repository development. But many people will jump at the chance to learn these new skills if companies are willing to pay for training and certification.

Be agile enough to take advantage of the findings. It used to be that you put in a request to the IT department for data and had to wait six months for an answer. Now, you get the answer immediately. Companies must be agile to take advantage of the insights.

Secure the data. Besides the perennial issues of hacking and breaches, a lot of data lakes software is open source and less secure than typical enterprise-class software.

Measure the quality of data. Different users can work with varying levels of quality in their data. For example, data scientists working with a huge number of data points might not need completely accurate data, because they can use machine learning to cluster data or discard outlying data as needed. However, a financial analyst might need the data to be completely correct.

Avoid creating new silos. Data lakes should work with existing data architectures, such as data warehouses and data marts.

From Data Queries to New Business Models

The ability of data lakes to uncover previously hidden data correlations can massively impact any part of the business. For example, in the past, a large soft drink maker used to stock its vending machines based on local bottlers’ and delivery people’s experience and gut instincts. Today, using vast amounts of data collected from sensors in the vending machines, the company can essentially treat each machine like a retail store, optimizing the drink selection by time of day, location, and other factors. Doing this kind of predictive analysis was possible before data lakes came along, but it wasn’t practical or economical at the individual machine level because the amount of data required for accurate predictions was simply too large.

The next step is for companies to use the insights gathered from their massive data stores not just to become more efficient and profitable in their existing lines of business but also to actually change their business models.

For example, product companies could shield themselves from the harsh light of comparison shopping by offering the use of their products as a service, with sensors on those products sending the company a constant stream of data about when they need to be repaired or replaced. Customers are spared the hassle of dealing with worn-out products, and companies are protected from competition as long as customers receive the features, price, and the level of service they expect. Further, companies can continuously gather and analyze data about customers’ usage patterns and equipment performance to find ways to lower costs and develop new services.

Data for All

Given the tremendous amount of hype that has surrounded Big Data for years now, it’s tempting to dismiss data lakes as a small step forward in an already familiar technology realm. But it’s not the technology that matters as much as what it enables organizations to do. By making data available to anyone who needs it, for as long as they need it, data lakes are a powerful lever for innovation and disruption across industries.

“Companies that do not actively invest in data lakes will truly be left behind,” says Anita Raj, principal growth hacker at DataRPM, which sells predictive maintenance applications to manufacturers that want to take advantage of these massive data stores. “So it’s just the option of disrupt or be disrupted.” D!

Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.


About the Authors:

Timo Elliott is Vice President, Global Innovation Evangelist, at SAP.

John Schitka is Senior Director, Solution Marketing, Big Data Analytics, at SAP.

Michael Eacrett is Vice President, Product Management, Big Data, Enterprise Information Management, and SAP Vora, at SAP.

Carolyn Marsan is a freelance writer who focuses on business and technology topics.

Comments

Timo Elliott

About Timo Elliott

Timo Elliott is an Innovation Evangelist for SAP and a passionate advocate of innovation, digital business, analytics, and artificial intelligence. He was the eighth employee of BusinessObjects and for the last 25 years he has worked closely with SAP customers around the world on new technology directions and their impact on real-world organizations. His articles have appeared in articles such as Harvard Business Review, Forbes, ZDNet, The Guardian, and Digitalist Magazine. He has worked in the UK, Hong Kong, New Zealand, and Silicon Valley, and currently lives in Paris, France. He has a degree in Econometrics and a patent in mobile analytics. 

Tags:

Artificial Intelligence: The Future Of Oil And Gas

Anoop Srivastava

Oil prices have fallen dramatically over last few years, forcing some major oil companies to take drastic actions such as layoffs, cutting investments and budgets, and more. Shell, for example, shelved its plan to invest in Qatar, Aramco put on hold its deep-water exploration in the Red Sea, Schlumberger fired a few thousand employees, and the list goes on…

In view of falling oil prices and the resulting squeeze on cash flows, the oil and gas industry has been challenged to adapt and optimize its performance to remain profitable while maintaining a long-term investment and operating outlook. Currently, oil and gas companies find it difficult to maintain the same level of investment in exploration and production as when crude prices were at their peak. Operations in the oil and gas industry today means balancing a dizzying array of trade-offs in the drive for competitive advantage while maximizing return on investment.

The result is a dire need to optimize performance and optimize the cost of production per barrel. Companies have many optimization opportunities once they start using the massive data being generated by oil fields. Oil and gas companies can turn this crisis into an opportunity by leveraging technological innovations like artificial intelligence to build a foundation for long-term success. If volatility in oil prices is the new norm, the push for “value over volume” is the key to success going forward.

Using AI tools, upstream oil and gas companies can shift their approach from production at all costs to producing in context. They will need to do profit and loss management at the well level to optimize the production cost per barrel. To do this, they must integrate all aspects of production management, collect the data for analysis and forecasting, and leverage artificial intelligence to optimize operations.

When remote sensors are connected to wireless networks, data can be collected and centrally analyzed from any location. According to the consulting firm McKinsey, the oil and gas supply chain stands to gain $50 billion in savings and increased profit by adopting AI. As an example, using AI algorithms to more accurately sift through signals and noise in seismic data can decrease dry wellhead development by 10 percent.

How oil and gas can leverage artificial intelligence

1. Planning and forecasting

On a macro scale, deep machine learning can help increase awareness of macroeconomic trends to drive investment decisions in exploration and production. Economic conditions and even weather patterns can be considered to determine where investments should take place as well as intensity of production.

2. Eliminate costly risks in drilling

Drilling is an expensive and risky investment, and applying AI in the operational planning and execution stages can significantly improve well planning, real-time drilling optimization, frictional drag estimation, and well cleaning predictions. Additionally, geoscientists can better assess variables such as the rate of penetration (ROP) improvement, well integrity, operational troubleshooting, drilling equipment condition recognition, real-time drilling risk recognition, and operational decision-making.

When drilling, machine-learning software takes into consideration a plethora of factors, such as seismic vibrations, thermal gradients, and strata permeability, along with more traditional data such as pressure differentials. AI can help optimize drilling operations by driving decisions such as direction and speed in real time, and it can predict failure of equipment such as semi-submersible pumps (ESPs) to reduce unplanned downtime and equipment costs.

3. Well reservoir facility management

Wells, reservoirs, and facility management includes integration of multiple disciplines: reservoir engineering, geology, production technology, petro physics, operations, and seismic interpretation. AI can help to create tools that allow asset teams to build professional understanding and identify opportunities to improve operational performance.

AI techniques can also be applied in other activities such as reservoir characterization, modeling and     field surveillance. Fuzzy logic, artificial neural networks and expert systems are used extensively across the industry to accurately characterize reservoirs in order to attain optimum production level.

Today, AI systems form the backbone of digital oil field (DOF) concepts and implementations. However, there is still great potential for new ways to optimize field development and production costs, prolong field life, and increase the recovery factor.

4. Predictive maintenance

Today, artificial intelligence is taking the industry by storm. AI-powered software and sensor hardware enables us to use very large amounts of data to gain real-time responses on the best future course of action. With predictive analytics and cognitive security, for example, oil and gas companies can operate equipment safely and securely while receiving recommendations on how to avoid future equipment failure or mediate potential security breaches.

5. Oil and gas well surveying and inspections

Drones have been part of the oil and gas industry since 2013, when ConocoPhillips used the Boeing ScanEagle drone in trials in the Chukchi Sea.  In June 2014, the Federal Aviation Administration (FAA) issued the first commercial permit for drone use over United States soil to BP, allowing the company to survey pipelines, roads, and equipment in Prudhoe Bay, Alaska. In January, Sky-Futures completed the first drone inspection in the Gulf of Mexico.

While drones are primarily used in the midstream sector, they can be applied to almost every aspect of the industry, including land surveying and mapping, well and pipeline inspections, and security. Technology is being developed to enable drones to detect early methane leaks. In addition, one day, drones could be used to find oil and gas reservoirs underlying remote uninhabited regions, from the comfort of a warm office.

6. Remote logistics

As logistics to offshore locations is always a challenge, AI-enhanced drones can be used to deliver materials to remote offshore locations.

Current adoption of AI

Chevron is currently using AI to identify new well locations and simulation candidates in California. By using AI software to analyze the company’s large collection of historical well performance data, the company is drilling in better locations and has seen production rise 30% over conventional methods. Chevron is also using predictive models to analyze the performance of thousands of pieces of rotating equipment to detect failures before they occur. By addressing problems before they become critical, Chevron has avoided unplanned shutdowns and lowered repair expenses. Increased production and lower costs have translated to more profit per well.

Future journey

Today’s oil and gas industry has been transformed by two industry downturns in one decade. Although adoption of new hard technology such as directional drilling and hydraulic fracturing (fracking) has helped, the oil and gas industry needs to continue to innovate in today’s low-price market to survive. AI has the potential to differentiate companies that thrive and those that are left behind.

The promise of AI is already being realized in the oil and gas industry. Early adopters are taking advantage of their position  to get a head start on the competition and protect their assets. The industry has always leveraged technology to adapt to change, and early adopters have always benefited the most. As competition in the oil and gas industry continues to heat up, companies cannot afford to be left behind. For those that understand and seize the opportunities inherent in adopting cognitive technologies, the future looks bright.

For more insight on advanced technology in the energy sector, see How Digital Transformation Is Refueling The Energy Industry.

Comments

Anoop Srivastava

About Anoop Srivastava

Anoop Srivastava is Senior Director of the Energy and Natural Resources Industries at SAP Value Engineering in Middle East and North Africa. He advises clients on their digital transformation strategies and helps them align their business strategy with IT strategy leveraging digital technology innovations such as the Internet of Things, Big Data, Advanced Analytics, Cloud etc. He has 21+ years of work experience spanning across Oil& Gas Industry, Business Consulting, Industry Value Advisory and Digital Transformation.