3 Disruptive Technologies To Combat Global Warming

Anton Kroger

Climate change is arguably the biggest challenge facing the planet today. In my opinion, politicians, scientists, and energy consumers need to embrace 3 distinct disruptive technologies in order to drive change quickly enough to avert this impending global disaster.

EIA (Energy Information Agency) data tells us that the total CO2 emissions from carbon-based fuels has increased from about 21.45 billion metric tons in 1990 to 33.96 billion metric tons today. The EIA forecasts that emissions will reach 43.22 billion metric tons by 2040 if we continue what we are doing today.

Figure 1. Historical and forecasted CO2 emissions

CO2 emissions alone don’t actually tell us that much about pollution. To learn more, we need to convert the EIA figures to parts per million (PPM) .

We are at the 400 ppm mark today, and if we continue as usual we should hit 460 ppm by 2040. 400 ppm is considered by many scientists to be the maximum level that the ppm count can get to and maintain global warming averages below a 2 degC rise. Above this, the chances of capping global warming to 2 degC diminishes, as is shown in the next figure.

Figure 2. Calculated PPM curve – calibrated to the Keeling curve

So the question now is: How quickly do we need to reduce carbon emissions in order to reduce the likelihood of increased global warming?

Based on my own model and calculation, there are 3 possible scenarios, shown in Figure 3:

  1. We continue as we are today, with little change and an increasing demand for energy supplied by fossil fuels
  2. We reduce our carbon-producing footprint at a rate similar to what was created
  3. We drive a completely disruptive approach to reduce our carbon emissions

In order to reach zero emissions by 2050, we would need to reduce our carbon emissions by at least 10% year on year, which is a huge reduction.

Figure 3. Three possible outcomes for CO2 emissions

We again convert this to PPM, and Figure 4 shows that the only way is rapid disruption. Outcomes of global discussions for the most part only seem to have targets returning to the 1990 averages by mid-century, which is simply too slow. Some countries have adopted a more aggressive approach, which is good, but probably not enough to get us across the line.

Figure 4 – Three possible outcomes for CO2 emissions (PPM)

So the results are  clear: We must act very quickly. The question is what technology or combination of technologies can get us there in short timeframe. There is long-term stable nuclear, solar, wind, hydro, or of course a combination of all these, and storage is a also major part of the equation.

The challenge for governments is where to focus and what legislation or projects to back to ensure that change happens quickly enough. The problem today is that change is happening at a sustaining rate rather than a disruptive rate (Scenario 2). This means change is simply happening too slowly. We therefore need to shift our attention away from sustaining technology enhancements and look for disruptive ones.

The difference between disruptive technologies and sustaining technologies is probably best described by Clayton Christensen in his book, The Innovator’s Dilemma:

Sustaining technologies improve the performance of established products, along the dimensions of performance that mainstream customers in major markets have historically valued. Disruptive technologies bring to market a very different value proposition than had been available previously. Generally, disruptive technologies underperform established products in mainstream markets. But they have other features that a few fringe (and generally new) customers value.”

When we apply this thinking to renewable energies, there are two vital requirements that need to come together to drive a truly disruptive change:

  1. The technology needs to have new features that appeal to customers in a different way
  2. The technology needs to have a completely different revenue model or value proposition.

In my opinion, there are 3 technologies that need to come together to deliver these two vital requirements.

The first is rooftop solar.

While rooftop panels might seem like an expensive investment initially, there are some clear long-term financial benefits. Displaying them on your roof also says something valuable about you and your contribution to sustainable living.

Rooftop solar is also taking action at a macro level. It is driving us toward a distributed power model, which is completely different to the model we have today. For the first time in history, individuals have the power to decide where they get their power. This consumer-driven trend has sparked a movement not unlike the rise of the smartphone.

Consider, for example, the plot in Figure 5, which shows the drop in the price of solar PVs against the combined power being generated by solar from 2010 to 2014. The trend added 4.5 GW of power to the grid, while the price of that energy dropped by almost 500% over the 4 years. That’s the equivalent of adding about 8 large-scale power plants to the grid, the bulk of which would have been completed in 3 years or less.

Figure 5 – Cumulative global solar photovoltaic deployment and solar photovoltaic module prices 2000 to 2014

It’s probably no surprise that batteries, or power storage, is the second disrupter. Storage allows us to take advantage of the sun during the day, storing excess power for when there is less sun.

Batteries like solar PV’s are also on a disruptive price curve, meaning that the year on year price decline is making them noticably cheaper every day.

So that is great for consumers living in suburbia with plenty roof space and sunlight, but how does it help apartment-dwellers whose only option is to buy power from the grid?

Peer-to-peer trading is the third important disrupter. This essentially cuts out the retailer and allows individuals to trade directly with each other. To make peer-to-peer trading a reality we need to bring together smart grids and network-based trading. The smart grid conversation is well underway, and some companies are starting to look at leveraging blockchain technology to allow peer-to-peer trading.

Peer-to-peer trading would allow city dwellers to partake in the digital energy revolution by buying excess power from the cheapest provider on the grid. What is interesting here is that the longer peer-to-peer trading takes to implement, the more pressure there will be on large power facilities when it does happen. As more users make the jump to rooftop solar (potentially going off the grid), fewer people remain on the grid to pay for the infrastructure. With demand dropping, costs are likely to go up, further fuelling the move to rooftop solar.

This ultimately means more and more solar PVs, which will likely lead to a huge energy glut in the market. When peer-to-peer trading eventually does kick in, large power facilities will need to compete with plenty cheap home- grown solar. (We see a similar phenomenon with AirBnB, where hotels are now competing with individuals who have a much lower cost base).

Electricity generation contributes only about 70% of CO2 emissions, so it’s not the only major contributor to the carbon footprint. The second-largest contributor to CO2 emissions is the transportation sector. With a potential electricity glut driven by the abundance of solar power, storage, and peer-to-peer trading, it follows naturally that electric cars will soon become much cheaper to run than their carbon-consuming alternatives.

This will likely happen more quickly in urban environments, with long-range travel taking a little longer. In fact, we are already seeing similar rapid price declines in the transportation sector, where the cost of electric cars is dropping and the variety of options is increasing dramatically. Electric cars also don’t face the challenge of a network to supply “electric fuel,” unlike competitors such as hydrogen-powered cars.

The final dimension to consider is how all this plays out in third-world countries. Today non-OECD countries, which predominantly represent the poorer countries, account for about 60% of global emissions.

At the rate at which solar and battery prices are dropping, it won’t be long before we see a massive jump in the uptake of individualised power generation in emerging countries. A decentralised power model will leapfrog the traditional grid model, reducing not only the cost of power but also the time required to provide power in remote places from years to literally days. We saw a similar trend when cellular phones emerged, with networks and adoption proliferating even in high-poverty areas.

In conclusion, it is my opinion that unless governments and lawmakers support rapid reduction of CO2 emissions by getting behind energy disruption, supporting a decentralised solar model, and adopting new laws that facilitate peer-to-peer trading and accelerate smart grid technology, we will fail as a society to stop global warming. Unfortunately, I don’t see sustaining technologies like nuclear, wind, and large-scale solar as sufficient, because they don’t make the leap from sustaining incremental improvement to disruptive change.

A decentralised power model supported by power storage and peer-to-peer trading, all linked via a smart grid, will enable the economic drivers necessary to change how we generate and buy power. There is nothing like a financial incentive to ultimately unite consumers toward the common cause of reducing the threat of climate change.

Companies like SAP are helping their customers not only transform their business models to adapt to this massive energy change but also to optimise and save energy at the same time. For more information, click here. To learn more about what SAP is doing with blockchain technologies, click here.

Comments

Anton Kroger

About Anton Kroger

Anton Kroger is an Energy and Natural Resources industry solution specialist for SAP based in Australia. Anton has worked in the resources sector for 16 years and has field operations and management experience, both locally in Australia and internationally. He now works with Energy and Natural resources companies across Australia and New Zealand to help them run better, more innovatively and imagine new ways of doing business. He is an advocate for clean energy and resources and believes that innovation is critical to the future of this industry. Anton believes that despite the disruption taking place in the industry today there is still a lot of opportunity for existing companies in the future.

Digitization Is Crucial To Achieve UN Global Goals

Daniel Schmid

Concern, hope, enthusiasm: This was the mixture of sentiments that I perceived during the World Economic Forum (WEF) Sustainable Development Impact Summit in New York City last month.

More than 700 leaders from more than 70 countries took part—including government, business, international organizations, research centers, and not-for profits. Panelists included Salesforce CEO Marc R. Benioff, Mars president Jean-Christophe Flatin, Roche vice-chairman André S. Hoffmann, and Royal Philips president and CEO Frans van Houten.

Concern

Former U.S. Vice President and Nobel Peace Prize winner* Al Gore pointed out, in a panel discussion titled “Global Progress through Partnerships,” that the past two weeks saw two record-breaking climate-connected storms. Hurricane Harvey crossed the Gulf of Mexico, which was over four degrees warmer than normal, resulting in enormous amounts of rain. The rainfall totals in Houston were a once-every-25,000-years event. The monsoon in South Asia also brought 70 cm more rain than normal, with one-third of Bangladesh underwater.

Gore said, “We are departing the familiar bounds of history as we have known it since civilization began.” In contrast, other areas are experiencing devastating droughts: 80 percent of Portugal is in drought, and 70 large fires have burned in the western part of North America.

These conditions also create climate refugees. “Long before the civil war in Syria started, the worst drought in 900 years of record-keeping destroyed 60 percent of farms. One and a half million climate refugees entered the cities,” Gore pointed out, adding that this is a contributing factor to the war in Syria.

Hope

“But,” Gore added, “we are also meeting in a time of extraordinary and unprecedented hope.” The World Economic Forum was incremental in building the success of the Paris Agreement, and will continue to play a key role in implementing it. “Public private partnerships are the keys to putting in place the solutions we need.”

The day after the U.S. government announced it would leave the Paris Agreement, Gore said, political and business leaders, states, cities, etc., doubled down on their commitment, saying “We are still there!” SAP is one of the companies that is strongly committed to climate action: We plan to be carbon-neutral by 2025.

According to Gore, there are additional reasons for hope: Technology becomes better and cheaper all the time, a phenomenon known as the “cost-down curve.” Gadgets can now be run with wind or solar energy, and efficiency is better than ever. “The Fourth Industrial Revolution is also a sustainability revolution,” Gore said. Technology is key to meeting the sustainable development goals.

This was also consensus in the panel discussion “The Fourth Industrial Revolution: Technology-Driven, Human-Centred”: Panelists emphasized the opportunities technology brings, from artificial intelligence (AI) to improve working conditions to mobile phones in India that enable everyone to play a part in the economy (e.g. have a bank account)—even those who were formerly excluded. For girls in Africa, learning IT and coding skills bring hope for a better life.

My take? It is up to us to ensure that the opportunities technology offers outweigh the risks. To help drive awareness around the sustainable development goals (SDGs) and showcase examples of how IT can help contribute to them, SAP has published an interactive web book and iPad app as well as a free online course on openSAP: “Sustainability through Digital Transformation.”

Enthusiasm

The theme of most of the speeches and discussions I witnessed at the summit was “There is no planet B,” but also “Together we can make it,” meaning that government, public, and private-sector organizations need to cooperate to tackle the UN Sustainable Development Goals (SDGs). With partnerships and cooperation, they have the power to create positive economic, social, and environmental value through technology, solutions, and skills.

World Economic Forum founder and executive chairman Klaus Schwab described the summit’s intention: “What is needed is a true agenda for global public-private cooperation, with the objective not to defend individual interests, but to keep the destiny of humankind as a whole in mind.”

As a result of the summit, several major new initiatives that will advance public-private cooperation on the global goals were announced or launched, including:

These initiatives show the will to cooperate and the readiness to act of leaders from all over the world—let us all have a part in tackling the biggest challenges of the planet!

*The Nobel Peace Prize for 2007 was awarded to the Intergovernmental Panel on Climate Change (IPCC) and former US Vice President Al Gore for their efforts to obtain and disseminate information about the climate challenge. In Gore’s case, the award was grounded in his tireless campaign to put the climate crisis on the political agenda.

This story originally appeared on the SAP Community.

Comments

Daniel Schmid

About Daniel Schmid

Daniel Schmid was appointed Chief Sustainability Officer at SAP in 2014. Since 2008 he has been engaged in transforming SAP into a role model of a sustainable organization, establishing mid and long term sustainability targets. Linking non-financial and financial performance are key achievements of Daniel and his team.

Digitalist Flash Briefing : Is Downsizing A Radical Solution To Save Planet Earth?

Bonnie D. Graham

Today’s briefing takes us to the question of what YOU would do to save our planet.

  • Amazon Echo or Dot: Enable the “Digitalist” flash briefing skill, and ask Alexa to “play my flash briefings” on every business day.
  • Alexa on a mobile device:
    • Download the Amazon Alexa app: Select Skills, and search “Digitalist”. Then, select Digitalist, and click on the Enable button.
    • Download the Amazon app: Click on the microphone icon and say “Play my flash briefing.”

Find and listen to previous Flash Briefings on Digitalistmag.com.

Read more on today’s topic

 

Comments

Bonnie D. Graham

About Bonnie D. Graham

Bonnie D. Graham is the creator, producer and host/moderator of 29 Game-Changers Radio series presented by SAP, bringing technology and business strategy thought leadership panel discussions to a global audience via the Business Channel on World Talk Radio. A broadcast journalist with nearly 20 years in media production and hosting, Bonnie has held marketing communications management roles in the business software, financial services, and real estate industries. She calls SAP Radio her "dream job". Listen to Coffee Break with Game-Changers.

Diving Deep Into Digital Experiences

Kai Goerlich

 

Google Cardboard VR goggles cost US$8
By 2019, immersive solutions
will be adopted in 20% of enterprise businesses
By 2025, the market for immersive hardware and software technology could be $182 billion
In 2017, Lowe’s launched
Holoroom How To VR DIY clinics

Link to Sources


From Dipping a Toe to Fully Immersed

The first wave of virtual reality (VR) and augmented reality (AR) is here,

using smartphones, glasses, and goggles to place us in the middle of 360-degree digital environments or overlay digital artifacts on the physical world. Prototypes, pilot projects, and first movers have already emerged:

  • Guiding warehouse pickers, cargo loaders, and truck drivers with AR
  • Overlaying constantly updated blueprints, measurements, and other construction data on building sites in real time with AR
  • Building 3D machine prototypes in VR for virtual testing and maintenance planning
  • Exhibiting new appliances and fixtures in a VR mockup of the customer’s home
  • Teaching medicine with AR tools that overlay diagnostics and instructions on patients’ bodies

A Vast Sea of Possibilities

Immersive technologies leapt forward in spring 2017 with the introduction of three new products:

  • Nvidia’s Project Holodeck, which generates shared photorealistic VR environments
  • A cloud-based platform for industrial AR from Lenovo New Vision AR and Wikitude
  • A workspace and headset from Meta that lets users use their hands to interact with AR artifacts

The Truly Digital Workplace

New immersive experiences won’t simply be new tools for existing tasks. They promise to create entirely new ways of working.

VR avatars that look and sound like their owners will soon be able to meet in realistic virtual meeting spaces without requiring users to leave their desks or even their homes. With enough computing power and a smart-enough AI, we could soon let VR avatars act as our proxies while we’re doing other things—and (theoretically) do it well enough that no one can tell the difference.

We’ll need a way to signal when an avatar is being human driven in real time, when it’s on autopilot, and when it’s owned by a bot.


What Is Immersion?

A completely immersive experience that’s indistinguishable from real life is impossible given the current constraints on power, throughput, and battery life.

To make current digital experiences more convincing, we’ll need interactive sensors in objects and materials, more powerful infrastructure to create realistic images, and smarter interfaces to interpret and interact with data.

When everything around us is intelligent and interactive, every environment could have an AR overlay or VR presence, with use cases ranging from gaming to firefighting.

We could see a backlash touting the superiority of the unmediated physical world—but multisensory immersive experiences that we can navigate in 360-degree space will change what we consider “real.”


Download the executive brief Diving Deep Into Digital Experiences.


Read the full article Swimming in the Immersive Digital Experience.

Comments

Kai Goerlich

About Kai Goerlich

Kai Goerlich is the Chief Futurist at SAP Innovation Center network His specialties include Competitive Intelligence, Market Intelligence, Corporate Foresight, Trends, Futuring and ideation. Share your thoughts with Kai on Twitter @KaiGoe.heif Futu

Tags:

Blockchain: Much Ado About Nothing? How Very Wrong!

Juergen Roehricht

Let me start with a quote from McKinsey, that in my view hits the nail right on the head:

“No matter what the context, there’s a strong possibility that blockchain will affect your business. The very big question is when.”

Now, in the industries that I cover in my role as general manager and innovation lead for travel and transportation/cargo, engineering, construction and operations, professional services, and media, I engage with many different digital leaders on a regular basis. We are having visionary conversations about the impact of digital technologies and digital transformation on business models and business processes and the way companies address them. Many topics are at different stages of the hype cycle, but the one that definitely stands out is blockchain as a new enabling technology in the enterprise space.

Just a few weeks ago, a customer said to me: “My board is all about blockchain, but I don’t get what the excitement is about – isn’t this just about Bitcoin and a cryptocurrency?”

I can totally understand his confusion. I’ve been talking to many blockchain experts who know that it will have a big impact on many industries and the related business communities. But even they are uncertain about the where, how, and when, and about the strategy on how to deal with it. The reason is that we often look at it from a technology point of view. This is a common mistake, as the starting point should be the business problem and the business issue or process that you want to solve or create.

In my many interactions with Torsten Zube, vice president and blockchain lead at the SAP Innovation Center Network (ICN) in Potsdam, Germany, he has made it very clear that it’s mandatory to “start by identifying the real business problem and then … figure out how blockchain can add value.” This is the right approach.

What we really need to do is provide guidance for our customers to enable them to bring this into the context of their business in order to understand and define valuable use cases for blockchain. We need to use design thinking or other creative strategies to identify the relevant fields for a particular company. We must work with our customers and review their processes and business models to determine which key blockchain aspects, such as provenance and trust, are crucial elements in their industry. This way, we can identify use cases in which blockchain will benefit their business and make their company more successful.

My highly regarded colleague Ulrich Scholl, who is responsible for externalizing the latest industry innovations, especially blockchain, in our SAP Industries organization, recently said: “These kinds of use cases are often not evident, as blockchain capabilities sometimes provide minor but crucial elements when used in combination with other enabling technologies such as IoT and machine learning.” In one recent and very interesting customer case from the autonomous province of South Tyrol, Italy, blockchain was one of various cloud platform services required to make this scenario happen.

How to identify “blockchainable” processes and business topics (value drivers)

To understand the true value and impact of blockchain, we need to keep in mind that a verified transaction can involve any kind of digital asset such as cryptocurrency, contracts, and records (for instance, assets can be tangible equipment or digital media). While blockchain can be used for many different scenarios, some don’t need blockchain technology because they could be handled by a simple ledger, managed and owned by the company, or have such a large volume of data that a distributed ledger cannot support it. Blockchain would not the right solution for these scenarios.

Here are some common factors that can help identify potential blockchain use cases:

  • Multiparty collaboration: Are many different parties, and not just one, involved in the process or scenario, but one party dominates everything? For example, a company with many parties in the ecosystem that are all connected to it but not in a network or more decentralized structure.
  • Process optimization: Will blockchain massively improve a process that today is performed manually, involves multiple parties, needs to be digitized, and is very cumbersome to manage or be part of?
  • Transparency and auditability: Is it important to offer each party transparency (e.g., on the origin, delivery, geolocation, and hand-overs) and auditable steps? (e.g., How can I be sure that the wine in my bottle really is from Bordeaux?)
  • Risk and fraud minimization: Does it help (or is there a need) to minimize risk and fraud for each party, or at least for most of them in the chain? (e.g., A company might want to know if its goods have suffered any shocks in transit or whether the predefined route was not followed.)

Connecting blockchain with the Internet of Things

This is where blockchain’s value can be increased and automated. Just think about a blockchain that is not just maintained or simply added by a human, but automatically acquires different signals from sensors, such as geolocation, temperature, shock, usage hours, alerts, etc. One that knows when a payment or any kind of money transfer has been made, a delivery has been received or arrived at its destination, or a digital asset has been downloaded from the Internet. The relevant automated actions or signals are then recorded in the distributed ledger/blockchain.

Of course, given the massive amount of data that is created by those sensors, automated signals, and data streams, it is imperative that only the very few pieces of data coming from a signal that are relevant for a specific business process or transaction be stored in a blockchain. By recording non-relevant data in a blockchain, we would soon hit data size and performance issues.

Ideas to ignite thinking in specific industries

  • The digital, “blockchained” physical asset (asset lifecycle management): No matter whether you build, use, or maintain an asset, such as a machine, a piece of equipment, a turbine, or a whole aircraft, a blockchain transaction (genesis block) can be created when the asset is created. The blockchain will contain all the contracts and information for the asset as a whole and its parts. In this scenario, an entry is made in the blockchain every time an asset is: sold; maintained by the producer or owner’s maintenance team; audited by a third-party auditor; has malfunctioning parts; sends or receives information from sensors; meets specific thresholds; has spare parts built in; requires a change to the purpose or the capability of the assets due to age or usage duration; receives (or doesn’t receive) payments; etc.
  • The delivery chain, bill of lading: In today’s world, shipping freight from A to B involves lots of manual steps. For example, a carrier receives a booking from a shipper or forwarder, confirms it, and, before the document cut-off time, receives the shipping instructions describing the content and how the master bill of lading should be created. The carrier creates the original bill of lading and hands it over to the ordering party (the current owner of the cargo). Today, that original paper-based bill of lading is required for the freight (the container) to be picked up at the destination (the port of discharge). Imagine if we could do this as a blockchain transaction and by forwarding a PDF by email. There would be one transaction at the beginning, when the shipping carrier creates the bill of lading. Then there would be look-ups, e.g., by the import and release processing clerk of the shipper at the port of discharge and the new owner of the cargo at the destination. Then another transaction could document that the container had been handed over.

The future

I personally believe in the massive transformative power of blockchain, even though we are just at the very beginning. This transformation will be achieved by looking at larger networks with many participants that all have a nearly equal part in a process. Today, many blockchain ideas still have a more centralistic approach, in which one company has a more prominent role than the (many) others and often is “managing” this blockchain/distributed ledger-supported process/approach.

But think about the delivery scenario today, where goods are shipped from one door or company to another door or company, across many parties in the delivery chain: from the shipper/producer via the third-party logistics service provider and/or freight forwarder; to the companies doing the actual transport, like vessels, trucks, aircraft, trains, cars, ferries, and so on; to the final destination/receiver. And all of this happens across many countries, many borders, many handovers, customs, etc., and involves a lot of paperwork, across all constituents.

“Blockchaining” this will be truly transformational. But it will need all constituents in the process or network to participate, even if they have different interests, and to agree on basic principles and an approach.

As Torsten Zube put it, I am not a “blockchain extremist” nor a denier that believes this is just a hype, but a realist open to embracing a new technology in order to change our processes for our collective benefit.

Turn insight into action, make better decisions, and transform your business. Learn how.

Comments

Juergen Roehricht

About Juergen Roehricht

Juergen Roehricht is General Manager of Services Industries and Innovation Lead of the Middle and Eastern Europe region for SAP. The industries he covers include travel and transportation; professional services; media; and engineering, construction and operations. Besides managing the business in those segments, Juergen is focused on supporting innovation and digital transformation strategies of SAP customers. With more than 20 years of experience in IT, he stays up to date on the leading edge of innovation, pioneering and bringing new technologies to market and providing thought leadership. He has published several articles and books, including Collaborative Business and The Multi-Channel Company.