Why 3D Printed Food Just Transformed Your Supply Chain

Hans Thalbauer

Numerous sectors are experimenting with 3D printing, which has the potential to disrupt many markets. One that’s already making progress is the food industry.

The U.S. Army hopes to use 3D printers to customize food for each soldier. NASA is exploring 3D printing of food in space. The technology could eventually even end hunger around the world.

What does that have to do with your supply chain? Quite a bit — because 3D printing does more than just revolutionize the production process. It also requires a complete realignment of the supply chain.

Digitalist Newsletter

Don’t miss any Digitalist insights! Subscribe to our daily update and weekly topic specific newslettersSIGN UP

And the way 3D printing transforms the supply chain holds lessons for how organizations must reinvent themselves in the new era of the extended supply chain.

Supply chain spaghetti junction

The extended supply chain replaces the old linear chain with not just a network, but a network of networks. The need for this network of networks is being driven by four key factors: individualized products, the sharing economy, resource scarcity, and customer-centricity.

To understand these forces, imagine you operate a large restaurant chain, and you’re struggling to differentiate yourself against tough competition. You’ve decided you can stand out by delivering customized entrees. In fact, you’re going to leverage 3D printing to offer personalized pasta.

With 3D printing technology, you can make one-off pasta dishes on the fly. You can give customers a choice of ingredients (gluten-free!), flavors (salted caramel!), and shapes (Leaning Towers of Pisa!). You can offer the personalized pasta in your restaurants, in supermarkets, and on your ecommerce website.

You may think this initiative simply requires you to transform production. But that’s just the beginning. You also need to re-architect research and development, demand signals, asset management, logistics, partner management, and more.

First, you need to develop the matrix of ingredients, flavors, and shapes you’ll offer. As part of that effort, you’ll have to consider health and safety regulations.

Then, you need to shift some of your manufacturing directly into your kitchens. That will also affect packaging requirements. Logistics will change as well, because instead of full truckloads, you’ll be delivering more frequently, with more variety, and in smaller quantities.

Next, you need to perfect demand signals to anticipate which pasta variations in which quantities will come through which channels. You need to manage supply signals source more kinds of raw materials in closer to real time.

Last, the source of your signals will change. Some will continue to come from point of sale. But others, such as supplies replenishment and asset maintenance, can come direct from your 3D printers.

Four key ingredients of the extended supply chain

As with our pasta scenario, the drivers of the extended supply chain require transformation across business models and business processes. First, growing demand for individualized products calls for the same shifts in R&D, asset management, logistics, and more that 3D printed pasta requires.

Second, as with the personalized entrees, the sharing economy integrates a network of partners, from suppliers to equipment makers to outsourced manufacturing, all electronically and transparently interconnected, in real time and all the time.

Third, resource scarcity involves pressures not just on raw materials but also on full-time and contingent labor, with the necessary skills and flexibility to support new business models and processes.

And finally, for personalized pasta sellers and for your own business, it all comes down to customer-centricity. To compete in today’s business environment and to meet current and future customer expectations, all your operations must increasingly revolve around rapidly comprehending and responding to customer demand.

Want to learn more? Digitalize your operations to uncover new business models and a new world of work.

Comments

Hans Thalbauer

About Hans Thalbauer

Hans Thalbauer is globally responsible for solution management and the go-to-market functions for SAP digital supply chain solutions and the SAP Leonardo portfolio of Internet of Things solutions. In this role, he is engaged in creative dialogues with businesses and operations worldwide, addressing customer needs and introducing innovative business processes, including the vision of creating a live business environment for everyone working in operations. Hans has more than 17 years with SAP and is based out of Palo Alto, CA, USA. He has held positions in development, product and solution management, and the go-to-market organization. Hans holds a degree in Business Information Systems from the University Vienna, Austria.

Transform Or Die: What Will You Do In The Digital Economy?

Scott Feldman and Puneet Suppal

By now, most executives are keenly aware that the digital economy can be either an opportunity or a threat. The question is not whether they should engage their business in it. Rather, it’s how to unleash the power of digital technology while maintaining a healthy business, leveraging existing IT investments, and innovating without disrupting themselves.

Yet most of those executives are shying away Businesspeople in a Meeting --- Image by © Monalyn Gracia/Corbisfrom such a challenge. According to a recent study by MIT Sloan and Capgemini, only 15% of CEOs are executing a digital strategy, even though 90% agree that the digital economy will impact their industry. As these businesses ignore this reality, early adopters of digital transformation are achieving 9% higher revenue creation, 26% greater impact on profitability, and 12% more market valuation.

Why aren’t more leaders willing to transform their business and seize the opportunity of our hyperconnected world? The answer is as simple as human nature. Innately, humans are uncomfortable with the notion of change. We even find comfort in stability and predictability. Unfortunately, the digital economy is none of these – it’s fast and always evolving.

Digital transformation is no longer an option – it’s the imperative

At this moment, we are witnessing an explosion of connections, data, and innovations. And even though this hyperconnectivity has changed the game, customers are radically changing the rules – demanding simple, seamless, and personalized experiences at every touch point.

Billions of people are using social and digital communities to provide services, share insights, and engage in commerce. All the while, new channels for engaging with customers are created, and new ways for making better use of resources are emerging. It is these communities that allow companies to not only give customers what they want, but also align efforts across the business network to maximize value potential.

To seize the opportunities ahead, businesses must go beyond sensors, Big Data, analytics, and social media. More important, they need to reinvent themselves in a manner that is compatible with an increasingly digital world and its inhabitants (a.k.a. your consumers).

Here are a few companies that understand the importance of digital transformation – and are reaping the rewards:

  1. Under Armour:  No longer is this widely popular athletic brand just selling shoes and apparel. They are connecting 38 million people on a digital platform. By focusing on this services side of the business, Under Armour is poised to become a lifestyle advisor and health consultant, using his product side as the enabler.
  1. Port of Hamburg: Europe’s second-largest port is keeping carrier trucks and ships productive around the clock. By fusing facility, weather, and traffic conditions with vehicle availability and shipment schedules, the Port increased container handling capacity by 178% without expanding its physical space.
  1. Haier Asia: This top-ranking multinational consumer electronics and home appliances company decided to disrupt itself before someone else did. The company used a two-prong approach to digital transformation to create a service-based model to seize the potential of changing consumer behaviors and accelerate product development. 
  1. Uber: This startup darling is more than just a taxi service. It is transforming how urban logistics operates through a technology trifecta: Big Data, cloud, and mobile.
  1. American Society of Clinical Oncologists (ASCO): Even nonprofits can benefit from digital transformation. ASCO is transforming care for cancer patients worldwide by consolidating patient information with its CancerLinQ. By unlocking knowledge and value from the 97% of cancer patients who are not involved in clinical trials, healthcare providers can drive better, more data-driven decision making and outcomes.

It’s time to take action 

During the SAP Executive Technology Summit at SAP TechEd on October 19–20, an elite group of CIOs, CTOs, and corporate executives will gather to discuss the challenges of digital transformation and how they can solve them. With the freedom of open, candid, and interactive discussions led by SAP Board Members and senior technology leadership, delegates will exchange ideas on how to get on the right path while leveraging their existing technology infrastructure.

Stay tuned for exclusive insights from this invitation-only event in our next blog!
Scott Feldman is Global Head of the SAP HANA Customer Community at SAP. Connect with him on Twitter @sfeldman0.

Puneet Suppal drives Solution Strategy and Adoption (Customer Innovation & IoT) at SAP Labs. Connect with him on Twitter @puneetsuppal.

 

Comments

Scott Feldman and Puneet Suppal

About Scott Feldman and Puneet Suppal

Scott Feldman is the Head of SAP HANA International Customer Community. Puneet Suppal is the Customer Co-Innovation & Solution Adoption Executive at SAP.

What Is Digital Transformation?

Andreas Schmitz

Achieving quantum leaps through disruption and using data in new contexts, in ways designed for more than just Generation Y — indeed, the digital transformation affects us all. It’s time for a detailed look at its key aspects.

Data finding its way into new settings

Archiving all of a company’s internal information until the end of time is generally a good idea, as it gives the boss the security that nothing will be lost. Meanwhile, enabling him or her to create bar graphs and pie charts based on sales trends – preferably in real time, of course – is even better.

But the best scenario of all is when the boss can incorporate data from external sources. All of a sudden, information on factors as seemingly mundane as the weather start helping to improve interpretations of fluctuations in sales and to make precise modifications to the company’s offerings. When the gusts of autumn begin to blow, for example, energy providers scale back solar production and crank up their windmills. Here, external data provides a foundation for processes and decisions that were previously unattainable.

Quantum leaps possible through disruption

While these advancements involve changes in existing workflows, there are also much more radical approaches that eschew conventional structures entirely.

“The aggressive use of data is transforming business models, facilitating new products and services, creating new processes, generating greater utility, and ushering in a new culture of management,” states Professor Walter Brenner of the University of St. Gallen in Switzerland, regarding the effects of digitalization.

Harnessing these benefits requires the application of innovative information and communication technology, especially the kind termed “disruptive.” A complete departure from existing structures may not necessarily be the actual goal, but it can occur as a consequence of this process.

Having had to contend with “only” one new technology at a time in the past, be it PCs, SAP software, SQL databases, or the Internet itself, companies are now facing an array of concurrent topics, such as the Internet of Things, social media, third-generation e-business, and tablets and smartphones. Professor Brenner thus believes that every good — and perhaps disruptive — idea can result in a “quantum leap in terms of data.”

Products and services shaped by customers

It has already been nearly seven years since the release of an app that enables customers to order and pay for taxis. Initially introduced in Berlin, Germany, mytaxi makes it possible to avoid waiting on hold for the next phone representative and pay by credit card while giving drivers greater independence from taxi dispatch centers. In addition, analyses of user data can lead to the creation of new services, such as for people who consistently order taxis at around the same time of day.

“Successful models focus on providing utility to the customer,” Professor Brenner explains. “In the beginning, at least, everything else is secondary.”

In this regard, the private taxi agency Uber is a fair bit more radical. It bypasses the entire taxi industry and hires private individuals interested in making themselves and their vehicles available for rides on the Uber platform. Similarly, Airbnb runs a platform travelers can use to book private accommodations instead of hotel rooms.

Long-established companies are also undergoing profound changes. The German publishing house Axel Springer SE, for instance, has acquired a number of startups, launched an online dating platform, and released an app with which users can collect points at retail. Chairman and CEO Matthias Döpfner also has an interest in getting the company’s newspapers and other periodicals back into the black based on payment models, of course, but these endeavors are somewhat at odds with the traditional notion of publishing houses being involved solely in publishing.

The impact of digitalization transcends Generation Y

Digitalization is effecting changes in nearly every industry. Retailers will likely have no choice but to integrate their sales channels into an omnichannel approach. Seeking to make their data services as attractive as possible, BMW, Mercedes, and Audi have joined forces to purchase the digital map service HERE. Mechanical engineering companies are outfitting their equipment with sensors to reduce downtime and achieve further product improvements.

“The specific potential and risks at hand determine how and by what means each individual company approaches the subject of digitalization,” Professor Brenner reveals. The resulting services will ultimately benefit every customer – not just those belonging to Generation Y, who present a certain basic affinity for digital methods.

“Think of cars that notify the service center when their brakes or drive belts need to be replaced, offer parking assistance, or even handle parking for you,” Brenner offers. “This can be a big help to elderly people in particular.”

Chief digital officers: team members, not miracle workers

Making the transition to the digital future is something that involves not only a CEO or a head of marketing or IT, but the entire company. Though these individuals do play an important role as proponents of digital models, it also takes more than just a chief digital officer alone.

For Professor Brenner, appointing a single person to the board of a DAX company to oversee digitalization is basically absurd. “Unless you’re talking about Da Vinci or Leibnitz born again, nobody could handle such a task,” he states.

In Brenner’s view, this is a topic for each and every department, and responsibilities should be assigned much like on a soccer field: “You’ve got a coach and the players – and the fans, as well, who are more or less what it’s all about.”

Here, the CIO neither competes with the CDO nor assumes an elevated position in the process of digital transformation. Implementing new databases like SAP HANA or Hadoop, leveraging sensor data in both technical and commercially viable ways, these are the tasks CIOs will face going forward.

“There are some fantastic jobs out there,” Brenner affirms.

Want more insight on managing digital transformation? See Three Keys To Winning In A World Of Disruption.

Image via Shutterstock

Comments

Andreas Schmitz

About Andreas Schmitz

Andreas Schmitz is a Freelance Journalist for SAP, covering a wide range of topics from big data to Internet of Things, HR, business innovation and mobile.

Tick Tock: Start Preparing for Resource Disruption

By Maurizio Cattaneo, Joerg Ferchow, Daniel Wellers, and Christopher Koch

Businesses share something important with lions. When a lion captures and consumes its prey, only about 10% to 20% of the prey’s energy is directly transferred into the lion’s metabolism. The rest evaporates away, mostly as heat loss, according to research done in the 1940s by ecologist Raymond Lindeman.

Today, businesses do only about as well as the big cats. When you consider the energy required to manage, power, and move products and services, less than 20% goes directly into the typical product or service—what economists call aggregate efficiency (the ratio of potential work to the actual useful work that gets embedded into a product or service at the expense of the energy lost in moving products and services through all of the steps of their value chains). Aggregate efficiency is a key factor in determining productivity.

After making steady gains during much of the 20th century, businesses’ aggregate energy efficiency peaked in the 1980s and then stalled. Japan, home of the world’s most energy-efficient economy, has been skating along at or near 20% ever since. The U.S. economy, meanwhile, topped out at about 13% aggregate efficiency in the 1990s, according to research.

Why does this matter? Jeremy Rifkin says he knows why. Rifkin is an economic and social theorist, author, consultant, and lecturer at the Wharton School’s Executive Education program who believes that economies experience major increases in growth and productivity only when big shifts occur in three integrated infrastructure segments around the same time: communications, energy, and transportation.

But it’s only a matter of time before information technology blows all three wide open, says Rifkin. He envisions a new economic infrastructure based on digital integration of communications, energy, and transportation, riding atop an Internet of Things (IoT) platform that incorporates Big Data, analytics, and artificial intelligence. This platform will disrupt the world economy and bring dramatic levels of efficiency and productivity to businesses that take advantage of it,
he says.

Some economists consider Rifkin’s ideas controversial. And his vision of a new economic platform may be problematic—at least globally. It will require massive investments and unusually high levels of government, community, and private sector cooperation, all of which seem to be at depressingly low levels these days.

However, Rifkin has some influential adherents to his philosophy. He has advised three presidents of the European Commission—Romano Prodi, José Manuel Barroso, and the current president, Jean-Claude Juncker—as well as the European Parliament and numerous European Union (EU) heads of state, including Angela Merkel, on the ushering in of what he calls “a smart, green Third Industrial Revolution.” Rifkin is also advising the leadership of the People’s Republic of China on the build out and scale up of the “Internet Plus” Third Industrial Revolution infrastructure to usher in a sustainable low-carbon economy.

The internet has already shaken up one of the three major economic sectors: communications. Today it takes little more than a cell phone, an internet connection, and social media to publish a book or music video for free—what Rifkin calls zero marginal cost. The result has been a hollowing out of once-mighty media empires in just over 10 years. Much of what remains of their business models and revenues has been converted from physical (remember CDs and video stores?) to digital.

But we haven’t hit the trifecta yet. Transportation and energy have changed little since the middle of the last century, says Rifkin. That’s when superhighways reached their saturation point across the developed world and the internal-combustion engine came close to the limits of its potential on the roads, in the air, and at sea. “We have all these killer new technology products, but they’re being plugged into the same old infrastructure, and it’s not creating enough new business opportunities,” he says.

All that may be about to undergo a big shake-up, however. The digitalization of information on the IoT at near-zero marginal cost generates Big Data that can be mined with analytics to create algorithms and apps enabling ubiquitous networking. This digital transformation is beginning to have a big impact on the energy and transportation sectors. If that trend continues, we could see a metamorphosis in the economy and society not unlike previous industrial revolutions in history. And given the pace of technology change today, the shift could happen much faster than ever before.

The speed of change is dictated by the increase in digitalization of these three main sectors; expensive physical assets and processes are partially replaced by low-cost virtual ones. The cost efficiencies brought on by digitalization drive disruption in existing business models toward zero marginal cost, as we’ve already seen in entertainment and publishing. According to research company Gartner, when an industry gets to the point where digital drives at least 20% of revenues, you reach the tipping point.

“A clear pattern has emerged,” says Peter Sondergaard, executive vice president and head of research and advisory for Gartner. “Once digital revenues for a sector hit 20% of total revenue, the digital bloodbath begins,” he told the audience at Gartner’s annual 2017 IT Symposium/ITxpo, according to The Wall Street Journal. “No matter what industry you are in, 20% will be the point of no return.”

Communications is already there, and energy and transportation are heading down that path. If they hit the magic 20% mark, the impact will be felt not just within those industries but across all industries. After all, who doesn’t rely on energy and transportation to power their value chains?

The eye of the technology disruption hurricane has moved beyond communications and is heading toward … the rest of the economy.

That’s why businesses need to factor potentially massive business model disruptions into their plans for digital transformation today if they want to remain competitive with organizations in early adopter countries like China and Germany. China, for example, is already halfway through an US$88 billion upgrade to its state electricity grid that will enable renewable energy transmission around the country—all managed and moved digitally, according to an article in The Economist magazine. And it is competing with the United States for leadership in self-driving vehicles, which will shift the transportation process and revenue streams heavily to digital, according to an article in Wired magazine.

Once China’s and Germany’s renewables and driverless infrastructures are in place, the only additional costs are management and maintenance. That could bring businesses in these countries dramatic cost savings over those that still rely on fossil fuels and nuclear energy to power their supply chains and logistics. “Once you pay the fixed costs of renewables, the marginal costs are near zero,” says Rifkin. “The sun and wind haven’t sent us invoices yet.”

In other words, zero marginal cost has become a zero-sum game.

To understand why that is, consider the major industrial revolutions in history, writes Rifkin in his books, The Zero Marginal Cost Society and The Third Industrial Revolution. The first major shift occurred in the 19th century when cheap, abundant coal provided an efficient new source of power (steam) for manufacturing and enabled the creation of a vast railway transportation network. Meanwhile, the telegraph gave the world near-instant communication over a globally connected network.

The second big change occurred at the beginning of the 20th century, when inexpensive oil began to displace coal and gave rise to a much more flexible new transportation network of cars and trucks. Telephones, radios, and televisions had a similar impact on communications.

Breaking Down the Walls Between Sectors

Now, according to Rifkin, we’re poised for the third big shift. The eye of the technology disruption hurricane has moved beyond communications and is heading toward—or as publishing and entertainment executives might warn, coming for—the rest of the economy. With its assemblage of global internet and cellular network connectivity and ever-smaller and more powerful sensors, the IoT, along with Big Data analytics and artificial intelligence, is breaking down the economic walls that have protected the energy and transportation sectors for the past 50 years.

Daimler is now among the first movers in transitioning into a digitalized mobility internet. The company has equipped nearly 400,000 of its trucks with external sensors, transforming the vehicles into mobile Big Data centers. The sensors are picking up real-time Big Data on weather conditions, traffic flows, and warehouse availability. Daimler plans to establish collaborations with thousands of companies, providing them with Big Data and analytics that can help dramatically increase their aggregate efficiency and productivity in shipping goods across their value chains. The Daimler trucks are autonomous and capable of establishing platoons of multiple trucks driving across highways.

It won’t be long before vehicles that navigate the more complex transportation infrastructures around the world begin to think for themselves. Autonomous vehicles will bring massive economic disruption to transportation and logistics thanks to new aggregate efficiencies. Without the cost of having a human at the wheel, autonomous cars could achieve a shared cost per mile below that of owned vehicles by as early as 2030, according to research from financial services company Morgan Stanley.

The transition is getting a push from governments pledging to give up their addiction to cars powered by combustion engines. Great Britain, France, India, and Norway are seeking to go all electric as early as 2025 and by 2040 at the latest.

The Final Piece of the Transition

Considering that automobiles account for 47% of petroleum consumption in the United States alone—more than twice the amount used for generators and heating for homes and businesses, according to the U.S. Energy Information Administration—Rifkin argues that the shift to autonomous electric vehicles could provide the momentum needed to upend the final pillar of the economic platform: energy. Though energy has gone through three major disruptions over the past 150 years, from coal to oil to natural gas—each causing massive teardowns and rebuilds of infrastructure—the underlying economic model has remained constant: highly concentrated and easily accessible fossil fuels and highly centralized, vertically integrated, and enormous (and enormously powerful) energy and utility companies.

Now, according to Rifkin, the “Third Industrial Revolution Internet of Things infrastructure” is on course to disrupt all of it. It’s neither centralized nor vertically integrated; instead, it’s distributed and networked. And that fits perfectly with the commercial evolution of two energy sources that, until the efficiencies of the IoT came along, made no sense for large-scale energy production: the sun and the wind.

But the IoT gives power utilities the means to harness these batches together and to account for variable energy flows. Sensors on solar panels and wind turbines, along with intelligent meters and a smart grid based on the internet, manage a new, two-way flow of energy to and from the grid.

Today, fossil fuel–based power plants need to kick in extra energy if insufficient energy is collected from the sun and wind. But industrial-strength batteries and hydrogen fuel cells are beginning to take their place by storing large reservoirs of reserve power for rainy or windless days. In addition, electric vehicles will be able to send some of their stored energy to the digitalized energy internet during peak use. Demand for ever-more efficient cell phone and vehicle batteries is helping push the evolution of batteries along, but batteries will need to get a lot better if renewables are to completely replace fossil fuel energy generation.

Meanwhile, silicon-based solar cells have not yet approached their limits of efficiency. They have their own version of computing’s Moore’s Law called Swanson’s Law. According to data from research company Bloomberg New Energy Finance (BNEF), Swanson’s Law means that for each doubling of global solar panel manufacturing capacity, the price falls by 28%, from $76 per watt in 1977 to $0.41 in 2016. (Wind power is on a similar plunging exponential cost curve, according to data from the U.S. Department of Energy.)

Thanks to the plummeting solar price, by 2028, the cost of building and operating new sun-based generation capacity will drop below the cost of running existing fossil power plants, according to BNEF. “One of the surprising things in this year’s forecast,” says Seb Henbest, lead author of BNEF’s annual long-term forecast, the New Energy Outlook, “is that the crossover points in the economics of new and old technologies are happening much sooner than we thought last year … and those were all happening a bit sooner than we thought the year before. There’s this sense that it’s not some distant risk or distant opportunity. A lot of these realities are rushing toward us.”

The conclusion, he says, is irrefutable. “We can see the data and when we map that forward with conservative assumptions, these technologies just get cheaper than everything else.”

The smart money, then—72% of total new power generation capacity investment worldwide by 2040—will go to renewable energy, according to BNEF. The firm’s research also suggests that there’s more room in Swanson’s Law along the way, with solar prices expected to drop another 66% by 2040.

Another factor could push the economic shift to renewables even faster. Just as computers transitioned from being strictly corporate infrastructure to becoming consumer products with the invention of the PC in the 1980s, ultimately causing a dramatic increase in corporate IT investments, energy generation has also made the transition to the consumer side.

Thanks to future tech media star Elon Musk, consumers can go to his Tesla Energy company website and order tempered glass solar panels that look like chic, designer versions of old-fashioned roof shingles. Models that look like slate or a curved, terracotta-colored, ceramic-style glass that will make roofs look like those of Tuscan country villas, are promised soon. Consumers can also buy a sleek-looking battery called a Powerwall to store energy from the roof.

The combination of solar panels, batteries, and smart meters transforms homeowners from passive consumers of energy into active producers and traders who can choose to take energy from the grid during off-peak hours, when some utilities offer discounts, and sell energy back to the grid during periods when prices are higher. And new blockchain applications promise to accelerate the shift to an energy market that is laterally integrated rather than vertically integrated as it is now. Consumers like their newfound sense of control, according to Henbest. “Energy’s never been an interesting consumer decision before and suddenly it is,” he says.

As the price of solar equipment continues to drop, homes, offices, and factories will become like nodes on a computer network. And if promising new solar cell technologies, such as organic polymers, small molecules, and inorganic compounds, supplant silicon, which is not nearly as efficient with sunlight as it is with ones and zeroes, solar receivers could become embedded into windows and building compounds. Solar production could move off the roof and become integrated into the external facades of homes and office buildings, making nearly every edifice in town a node.

The big question, of course, is how quickly those nodes will become linked together—if, say doubters, they become linked at all. As we learned from Metcalfe’s Law, the value of a network is proportional to its number of connected users.

The Will Determines the Way

Right now, the network is limited. Wind and solar account for just 5% of global energy production today, according to Bloomberg.

But, says Rifkin, technology exists that could enable the network to grow exponentially. We are seeing the beginnings of a digital energy network, which uses a combination of the IoT, Big Data, analytics, and artificial intelligence to manage distributed energy sources, such as solar and wind power from homes and businesses.

As nodes on this network, consumers and businesses could take a more active role in energy production, management, and efficiency, according to Rifkin. Utilities, in turn, could transition from simply transmitting power and maintaining power plants and lines to managing the flow to and from many different energy nodes; selling and maintaining smart home energy management products; and monitoring and maintaining solar panels and wind turbines. By analyzing energy use in the network, utilities could create algorithms that automatically smooth the flow of renewables. Consumers and businesses, meanwhile, would not have to worry about connecting their wind and solar assets to the grid and keeping them up and running; utilities could take on those tasks more efficiently.

Already in Germany, two utility companies, E.ON and RWE, have each split their businesses into legacy fossil and nuclear fuel companies and new services companies based on distributed generation from renewables, new technologies, and digitalization.

The reason is simple: it’s about survival. As fossil fuel generation winds down, the utilities need a new business model to make up for lost revenue. Due to Germany’s population density, “the utilities realize that they won’t ever have access to enough land to scale renewables themselves,” says Rifkin. “So they are starting service companies to link together all the different communities that are building solar and wind and are managing energy flows for them and for their customers, doing their analytics, and managing their Big Data. That’s how they will make more money while selling less energy in the future.”

The digital energy internet is already starting out in pockets and at different levels of intensity around the world, depending on a combination of citizen support, utility company investments, governmental power, and economic incentives.

China and some countries within the EU, such as Germany and France, are the most likely leaders in the transition toward a renewable, energy-based infrastructure because they have been able to align the government and private sectors in long-term energy planning. In the EU for example, wind has already overtaken coal as the second largest form of power capacity behind natural gas, according to an article in The Guardian newspaper. Indeed, Rifkin has been working with China, the EU, and governments, communities, and utilities in Northern France, the Netherlands, and Luxembourg to begin building these new internets.

Hauts-de-France, a region that borders the English Channel and Belgium and has one of the highest poverty rates in France, enlisted Rifkin to develop a plan to lift it out of its downward spiral of shuttered factories and abandoned coal mines. In collaboration with a diverse group of CEOs, politicians, teachers, scientists, and others, it developed Rev3, a plan to put people to work building a renewable energy network, according to an article in Vice.

Today, more than 1,000 Rev3 projects are underway, encompassing everything from residential windmills made from local linen to a fully electric car–sharing system. Rev3 has received financial support from the European Investment Bank and a handful of private investment funds, and startups have benefited from crowdfunding mechanisms sponsored by Rev3. Today, 90% of new energy in the region is renewable and 1,500 new jobs have been created in the wind energy sector alone.

Meanwhile, thanks in part to generous government financial support, Germany is already producing 35% of its energy from renewables, according to an article in The Independent, and there is near unanimous citizen support (95%, according to a recent government poll) for its expansion.

If renewables are to move forward …, it must come from the ability to make green, not act green.

If renewable energy is to move forward in other areas of the world that don’t enjoy such strong economic and political support, however, it must come from the ability to make green, not act green.

Not everyone agrees that renewables will produce cost savings sufficient to cause widespread cost disruption anytime soon. A recent forecast by the U.S. Energy Information Administration predicts that in 2040, oil, natural gas, and coal will still be the planet’s major electricity producers, powering 77% of worldwide production, while renewables such as wind, solar, and biofuels will account for just 15%.

Skeptics also say that renewables’ complex management needs, combined with the need to store reserve power, will make them less economical than fossil fuels through at least 2035. “All advanced economies demand full-time electricity,” Benjamin Sporton, chief executive officer of the World Coal Association told Bloomberg. “Wind and solar can only generate part-time, intermittent electricity. While some renewable technologies have achieved significant cost reductions in recent years, it’s important to look at total system costs.”

On the other hand, there are many areas of the world where distributed, decentralized, renewable power generation already makes more sense than a centralized fossil fuel–powered grid. More than 20% of Indians in far flung areas of the country have no access to power today, according to an article in The Guardian. Locally owned and managed solar and wind farms are the most economical way forward. The same is true in other developing countries, such as Afghanistan, where rugged terrain, war, and tribal territorialism make a centralized grid an easy target, and mountainous Costa Rica, where strong winds and rivers have pushed the country to near 100% renewable energy, according to The Guardian.

The Light and the Darknet

Even if all the different IoT-enabled economic platforms become financially advantageous, there is another concern that could disrupt progress and potentially cause widespread disaster once the new platforms are up and running: hacking. Poorly secured IoT sensors have allowed hackers to take over everything from Wi-Fi enabled Barbie dolls to Jeep Cherokees, according to an article in Wired magazine.

Humans may be lousy drivers, but at least we can’t be hacked (yet). And while the grid may be prone to outages, it is tightly controlled, has few access points for hackers, and is physically separated from the Wild West of the internet.

If our transportation and energy networks join the fray, however, every sensor, from those in the steering system on vehicles to grid-connected toasters, becomes as vulnerable as a credit card number. Fake news and election hacking are bad enough, but what about fake drivers or fake energy? Now we’re talking dangerous disruptions and putting millions of people in harm’s way.

The only answer, according to Rifkin, is for businesses and governments to start taking the hacking threat much more seriously than they do today and to begin pouring money into research and technologies for making the internet less vulnerable. That means establishing “a fully distributed, redundant, and resilient digital infrastructure less vulnerable to the kind of disruptions experienced by Second Industrial Revolution–centralized communication systems and power grids that are increasingly subject to climate change, disasters, cybercrime, and cyberterrorism,” he says. “The ability of neighborhoods and communities to go off centralized grids during crises and re-aggregate in locally decentralized networks is the key to advancing societal security in the digital era,” he adds.

Start Looking Ahead

Until today, digital transformation has come mainly through the networking and communications efficiencies made possible by the internet. Airbnb thrives because web communications make it possible to create virtual trust markets that allow people to feel safe about swapping their most private spaces with one another.

But now these same efficiencies are coming to two other areas that have never been considered core to business strategy. That’s why businesses need to begin managing energy and transportation as key elements of their digital transformation portfolios.

Microsoft, for example, formed a senior energy team to develop an energy strategy to mitigate risk from fluctuating energy prices and increasing demands from customers to reduce carbon emissions, according to an article in Harvard Business Review. “Energy has become a C-suite issue,” Rob Bernard, Microsoft’s top environmental and sustainability executive told the magazine. “The CFO and president are now actively involved in our energy road map.”

As Daimler’s experience shows, driverless vehicles will push autonomous transportation and automated logistics up the strategic agenda within the next few years. Boston Consulting Group predicts that the driverless vehicle market will hit $42 billion by 2025. If that happens, it could have a lateral impact across many industries, from insurance to healthcare to the military.

Businesses must start planning now. “There’s always a period when businesses have to live in the new and the old worlds at the same time,” says Rifkin. “So businesses need to be considering new business models and structures now while continuing to operate their existing models.”

He worries that many businesses will be left behind if their communications, energy, and transportation infrastructures don’t evolve. Companies that still rely on fossil fuels for powering traditional transportation and logistics could be at a major competitive disadvantage to those that have moved to the new, IoT-based energy and transportation infrastructures.

Germany, for example, has set a target of 80% renewables for gross power consumption by 2050, according to The Independent. If the cost advantages of renewables bear out, German businesses, which are already the world’s third-largest exporters behind China and the United States, could have a major competitive advantage.

“How would a second industrial revolution society or country compete with one that has energy at zero marginal cost and driverless vehicles?” asks Rifkin. “It can’t be done.” D!


About the Authors

Maurizio Cattaneo is Director, Delivery Execution, Energy and Natural Resources, at SAP.

Joerg Ferchow is Senior Utilities Expert and Design Thinking Coach, Digital Transformation, at SAP.

Daniel Wellers is Digital Futures Lead, Global Marketing, at SAP.

Christopher Koch is Editorial Director, SAP Center for Business Insight, at SAP.


Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.

Comments

Tags:

No Longer Soft Skills: Five Crucial Workplace Skills Everyone Should Learn

Carmen O'Shea

My child’s elementary school focuses on skills they believe support children in becoming changemakers. Through use of an integrated, project-based curriculum, they explicitly teach and assess “learner values” such as iteration, risk, failure, collaboration, and perspective. Their philosophy is that these attributes long considered “soft skills” have become the crucial educational priorities for this generation.

Why do they believe this? Much knowledge is now easily accessed and readily queried, such that the acquisition of specific content or know-how is far less important than how to apply that content in different situations and how to interact with others in the pursuit of goals. This holds true in the workplace as well as the academic environment. When I think about how I operate in my job at a large technology company, it’s not really what I know but what I do with what I know, and whom I engage to get things accomplished.

Watching the school teach these skills just as they do math or language has made me stop and consider what they look like for an employee. I wanted to share my thoughts on five qualities beyond relevant academic skills or professional experience that are just as important (if not more so) in predicting top work performance. These are more qualitative skills that managers should hire for, employees should develop, and organizations should optimize for.

  • Empathythe ability to see and integrate multiple perspectives and to understand the impact of how others think. Empathy can also mean advocating and showing empathy for oneself and for others. Empathy is assuming a good intention even when someone has said or done something we dislike – to stop and pause, attempt to understand, and respond compassionately in a difficult workplace situation. Empathy also extends to intuiting beyond just the professional environment to more of a personal level to truly understand what drives a colleague or employee.
  • Resiliencethe ability to take risks even when you know you may fail and then to bounce back, sometimes repeatedly, from failure. Inherent in resilience is the idea of iteration – that it is often essential to try things multiple times, in multiple ways, from multiple angles, before achieving a desired outcome. Resilience is receiving difficult yet constructive feedback from a manager or peer and resolving to act positively on it instead of wallowing or harboring a grudge. Resilience is maintaining a sense of optimism even in a down quarter at work.
  • Creativitythe ability to think differently or expansively and to approach a problem from multiple angles. Sometimes it’s called “thinking outside the box.” Creativity often includes inquiry, the act of questioning and satisfying one’s curiosity about particular topics. Torrance defined it along several parameters – number of ideas generated, number of categories of ideas, originality of ideas, and how detailed each idea is elaborated. We see it in action during brainstorming phases of projects, but it’s also possible to apply creativity on a continual basis, by pushing colleagues to expand on their thoughts, by not being satisfied with a less than stellar answer, by taking time to understand how multiple approaches to an issue could be combined, or by simply trying something new in a familiar situation.
  • Collaborationthe ability to interact and work productively with others, in all size groups. Effective collaboration requires empathy, especially when collaborators have different backgrounds, styles, or thought processes. Collaboration also requires exemplary communication skills, both oral and written, as well as reflective listening. So much of our tasks on the job require collaboration with others, whether to inform, persuade, learn, or engage, and these interactions form the bedrock for innovation. It’s tough to innovate without collaborating.
  • Flexibilitythe ability to adapt or change course if that is what the situation demands. Flexibility includes letting go of one’s idea in the interest of attaining a goal more quickly. It can also include development a comfort level with uncertainty or ambiguity, especially in times of change. Flexibility is a willingness to absorb feedback objectively and course correct as needed without personalizing the information or demonizing the provider of it. Expounding on another’s idea (not our own) in a brainstorming session demonstrates flexibility, as does remaining calm while an org change takes effect and roles are temporarily unclear.

When employees exhibit these qualities, they are better able to understand their purpose at work and to unleash their passions in the pursuit of that purpose. When teams exhibit these qualities, achievement and employee engagement are higher.  I wager that retention and innovation will improve as well. It’s heartening that as a society we’re beginning to consider how to best prepare our children educationally for the kind of work environments they will encounter after they finish their academic journey.

Do you also see these qualities as valuable in assessing employee fit? How can managers and organizations better identify, train and reward employees for living these qualities?

For more on this topic, see Your Business Needs People With Skills, Not Just Qualifications.

Comments

Carmen O'Shea

About Carmen O'Shea

Carmen O’Shea is the Senior Vice President of HR Change & Engagement at SAP. She leads a global team supporting major transformation initiatives across the company, focused on change management, employee engagement, and creative marketing and interaction. You can follow Carmen on Twitter.