Sections

Fraud Attacks Often Come From Unexpected Places – Can Predictive Analytics Help?

Jerome Pugnet

Looking at companies’ experiences, of various sizes and across all industries, I think we would all agree that fraud attacks often don’t come from where one would expect! Companies still rely too much on guesswork and empiric methods while investigating potentially fraudulent transactions.

And to make things worse, fraud patterns evolve quickly and constantly. Thus, as companies put in place measures to prevent fraud, perpetrators quickly adapt and find ways to circumvent them. There’s clearly a need for better processes and tools to enhance their fraud detection and investigation.

Investigators’ experience isn’t sufficient anymore

To analyse and understand how and where fraud happens, one can’t just rely on the experience and intuitions of even the best investigators, or the analysis of standard fraud reports and basic metrics. Also, the more common analytical tools appear ineffective to scan very high and fast-growing volumes of data – where critical information to understand fraud patterns and hidden paths is buried.

Moreover, the range of data to examine to properly identify fraud trends is increasingly diverse – structured and unstructured. More than ever, fraud detection is a Big Data problem!

Fast-developing predictive technologies offer great potential for improvement

On the other hand, predictive analysis technologies are fast developing, becoming more widely available and easier to use, yet more powerful. They can help companies get deep insights into how and where fraudulent transactions originate, and analyze changing fraud patterns, in order to enhance their fraud detection strategies and adapt faster to new types of attacks.

So the combination of traditional fraud management solutions complemented by predictive analytics not only enhances capabilities to detect fraud, but also contributes to better prevention of potential future fraud. It enables a deeper, more forensic approach against fraud, helping users to improve the effectiveness of their investigations by better focusing on new types of fraud risks, and continuously updating and refining their fraud detection strategies using the data from predictive analyses.

Today’s best fraud management and predictive analytics solutions have many benefits. They:

  • Identify fraud patterns and trends more precisely: where fraud comes from, how it happens, who is involved, what areas of the business it impacts, and so on.
  • Enable going after the less known and more complex patterns and networks, and detecting earlier to minimize the damage of cleverly hidden suspicious transactions.
  • Provide the needed capabilities to analyze a wide variety and very high volume of data very fast, leveraging in-memory computing technology.
  • Help fraud investigators by reducing false alerts resulting from inadequate fraud detection mechanisms— a critical issue today for many fraud investigators as they’re faced with an excessive workload of potential alerts to analyse, and wasted efforts as many turn out to be false positives.

Can predictive analytics benefit a wider audience?

The innovation brought by predictive analytics touches many other areas of the business, and in areas such as governance, risk and compliance (GRC), its use will develop to enable better predictability of risk, increased insight in areas of control weakness, support for internal audit programs, and so on.

These multiple applications create a high demand for experts such as data analysts and specialized business analysts, but the scarcity and high cost of these resources pushes for better usability of the tools. In the area of fraud in particular, invaluable expertise resides within fraud investigation teams who don’t have these skills as their primary asset.

For them, and others, it’s important that new predictive technologies become approachable for the non-experts, and more readily consumable by their most interested audience—which is just what the latest generations of predictive technologies enable.

For more on security strategies, see Cybersecurity: Is It Time To Change Our Mindset?

Comments

Real-Time Data Transforms Political Journalism, But Context Remains Vital

John Graham

The runup to the 2016 U.S. election is being covered in interesting new ways by the political media, with analysis of Big Data and real-time opinion polling offering journalists much deeper insight than ever before. The trend of “data journalism” is peaking as the media embraces advanced technologies that allow them to deliver a new breed of numbers-driven, fact-based journalism.

The tools being used for data journalism open up possibilities for fresh perspectives, more in-depth reporting, and new stories behind the numbers that have never been seen before. Traditional journalists are beginning to see how data journalism can complement their reporting, and the U.S. election is serving as an ideal testing ground. Political reporters are lapping up the improved data literacy and access to objective analysis, which is helping to make their reports more thorough and informative.

Consequently, American voters are becoming digital voters. They have access to real-time, data-driven information and public sentiment, which is empowering them with broader insight. They’re relying on this to help them make up their minds before they cast their vote, and it’s given many voters a renewed interest in becoming informed citizens able to make an educated choice.

However, the rise of data-driven journalism brings with it a potential pitfall for media organizations and readers alike. Digital information overload will bring about a fatigue around numbers if reporting quantity becomes more highly valued than quality. Having access to mountains of data is a huge benefit, but a reporter still has to be a journalist first to ensure they’re not getting buried under the numbers and missing the stories.

In other words, a political journalist still needs to be a politico, not just a statistician. They could fall into the trap of placing too much importance on meaningless correlations as indicators of voter sentiment, losing their grasp on what made them a great political reporter in the first place. As data gets bigger, this will become harder to resist. So they need to become experts in making Big Data small—rather than obsessing over the numbers, obsessing over figuring out what they really mean. In doing that, they have an unprecedented opportunity to make people more informed rather than simply overwhelming with them a series of conflicting data sets.

Some media organizations are already tackling the challenge of remaining relevant in a world of information overload. Using big data and visualizations, they are making great strides in making data journalism more accessible to reporters, politicos, and voters, which is proving its worth in giving political reporting a new lease of life.

Reuters’ Polling Explorer tool is an example of how this is being done, offering up customizable data visualizations focusing on the biggest talking points in the U.S. leading up to the election. It’s an entirely new scale of public opinion measurement, presented in a way anyone can understand and use, while enabling Reuters to usher in its own improved brand of accurate, fact-based, and timely journalism.

We can see the true potential of using real-time data analysis to measure up-to-the-minute public opinion in one poll on the most important problem facing the US today. Immediately after the Paris attacks in November, terrorism skyrocketed way above the economy as the number-one issue, rising sharply again straight after the December San Bernardino attack. For Reuters, this is just one of many examples of their greatly increased ability to find outliers in the data.

Reuters Polling Explorer runs on SAP HANA, an in-memory data platform that allows Reuters to access and analyze 100 million survey responses for quicker and more efficient reporting of public opinion.

For more on data analytics in today’s media environment, see How Big Data Is Changing The News Industry.

Comments

John Graham

About John Graham

John Graham is president of SAP Canada. Driving growth across SAP’s industry-leading cloud, mobile, and database solutions, he is helping more than 9,500 Canadian customers in 25 industries become best-run businesses.

Smart Machines Create Markets For Cyber-Physical Advances

Marion Heindenreich

Today, industrial machines are more intelligent than ever before. These intelligent machines are changing companies in many ways.

Why smart machines?

Mobile networked computers were a key breakthrough for making smart machines. Big Data allows machines and computers to store information and analyze complex patterns. Cloud computing offers broad access to information and more storage.

These computerized machines are both physical and virtual. Some call them “cyber-physical” machines. Technology lets them be self-aware and connected to each other and larger systems.

Businesses change their approaches

Intelligent machines allow companies to innovate in many areas. For one, the value proposition for customers is evolving. Businesses now model and plan in different ways in many industries.

Makers of industrial machines and parts work in new ways within the organization. Engineering now partners with mechanical, electronic, and software staff to develop new products. Manufacturing now seamlessly ties what happens on the shop floor to the customer.

Service models are changing too. Scheduled and reactionary servicing of machines is fading. Now intelligent machines track themselves. Machines detect problems and report them automatically. Major problems or failures are predicted and reported.

A data mining example

One good industrial example is mining, which can be dangerous and difficult. As ores become scarce, the costs of mining have increased.

“Smart machines” started in mining in the late 1990s. Software and hardware let remote users change settings. Operators moved hydraulic levers from a safe distance. Sensors observed performance and diagnosed issues.

Data cables connected machines to computers on the surface. Continuous and remote monitoring of the machines grew. Over time, embedded sensors helped improve monitoring, diagnostics, and data storage.

The technology means workers only go underground to fix specific issues. As a result, accident and injury risk is lower.

New wireless technology now lets mining companies connect data from many mine sites. Service centers access large amounts of data and can improve performance. Maintenance is prioritized and equipment downtime is reduced.

Opportunity abounds

For companies the time is now. Today, mobile “connected things” generate 17% of the digital universe. By 2020 that share grows to 27%.

You might not be investing in this so-called “Internet of Things” (devices that connect to each other). But it’s a good bet your competitors are. A December 2015 study reported 33% of industrial companies are investing in the Internet of Things. Another 25% are considering it.

There are risks

This new dawning era of manufacturing is exciting. But there are concerns. Cyber attacks on the Internet of Things are not new. But as the use of intelligent machines grows, the threat of cyber attacks in industry grows.

Data confidentiality and privacy are concerns. So too are software and hardware vulnerabilities. Exposure to attack lies not just in the virtual space but the physical too. Tampering with unattended machines and theft pose serious risk.

To address these threats, industries must invest in cybersecurity along with smart machines.

Conclusion

The potential advantages of smart machines are staggering. They can reshape industries and change how companies produce new products and create new markets.

For more information, please download the white paper Digital Manufacturing: Powering the Fourth Industrial Revolution.

Comments

Marion Heindenreich

About Marion Heindenreich

Marion Heidenreich is a solution manager for the SAP Industrial Machinery and Components Business Unit who focuses on solution innovations like Product Costing on SAP HANA and cloud solutions, as well as providing financial and business analysis for industry business strategy definition and business planning.

Robots: Job Destroyers or Human Partners? [INFOGRAPHIC]

Christopher Koch

Robots: Job Destroyers or Human Partners? [INFOGRAPHIC]

To learn more about how humans and robots will co-evolve, read the in-depth report Bring Your Robot to Work.

Download the PDF (91KB)

Comments

About Christopher Koch

Christopher Koch is the Editorial Director of the SAP Center for Business Insight. He is an experienced publishing professional, researcher, editor, and writer in business, technology, and B2B marketing. Share your thoughts with Chris on Twitter @Ckochster.

Tags:

What Is The Key To Rapid Innovation In Healthcare?

Paul Clark

Healthcare technology has already made incredible advancements, but digital transformation of the healthcare industry is still considered in its infancy. According to the SAP eBook, Connected Care: The Digital Pulse of Global Healthcare, the possibilities and opportunities that lie ahead for the Internet of Healthcare Things (IoHT) are astounding.

Many health organizations recognize the importance of going digital and have already deployed programs involving IoT, cloud, Big Data, analytics, and mobile technologies. However, over the last decade, investments in many e-health programs have delivered only modest returns, so the progress of healthcare technology has been slow out of the gate.

What’s slowing the pace of healthcare innovation?

In the past, attempts at rapid innovation in healthcare have been bogged down by a slew of stakeholders, legacy systems, and regulations that are inherent to the industry. This presents some Big Data challenges with connected healthcare, such as gathering data from disparate silos of medical information. Secrecy is also an ongoing challenge, as healthcare providers, researchers, pharmaceutical companies, and academic institutions tend to protect personal and proprietary data. These issues have caused enormous complexity and have delayed or deterred attempts to build fully integrated digital healthcare systems.

So what is the key to rapid innovation?

According to the Connected Care eBook, healthcare organizations can overcome these challenges by using new technologies and collaborating with other players in the healthcare industry, as well as partners outside of the industry, to get the most benefit out of digital technology.

To move forward with digital transformation in healthcare, there is a need for digital architectures and platforms where a number of different technologies can work together from both a technical and a business perspective.

The secret to healthcare innovation: connected health platforms

New platforms are emerging that foster collaboration between different technologies and healthcare organizations to solve complex medical system challenges. These platforms can support a broad ecosystem of partners, including developers, researchers, and healthcare organizations. Healthcare networks that are connected through this type of technology will be able to accelerate the development and delivery of innovative, patient-centered solutions.

Platforms and other digital advancements present exciting new business opportunities for numerous healthcare stakeholders striving to meet the increasing expectations of tech-savvy patients.

The digital evolution of the healthcare industry may still be in its infancy, but it is growing up fast as new advancements in technology quickly develop. Are you ready for the next phase of digital transformation in the global healthcare industry?

For an in-depth look at how technology is changing the face of healthcare, download the SAP eBook Connected Care: The Digital Pulse of Global Healthcare.

See how the digital era is affecting the business environment in the SAP eBook The Digital Economy: Reinventing the Business World.

Discover the driving forces behind digital transformation in the SAP eBook Digital Disruption: How Digital Technology is Transforming Our World.

Comments

About Paul Clark

Paul Clark is the Senior Director of Technology Partner Marketing at SAP. He is responsible for developing and executing partner marketing strategies, activities, and programs in joint go-to-market plans with global technology partners. The goal is to increase opportunities, pipeline, and revenue through demand generation via SAP's global and local partner ecosystems.