(Re)Programming Life

Kai Görlich

We live in the Anthropocene era; human activity is very clearly the foremost impact on Earth. Today we require the resources of 1.6 Earths to survive, and the most moderate estimates suggest that, if current trends continue, we’ll need the equivalent of two Earths to support us.

At the same time, we are perfecting the ability to alter our ecosystems at the most fundamental level – DNA and RNA – that could theoretically reverse some of the damage we’ve done, or at least stem the continuing loss of biodiversity and habitat. Both are seen as posing great risk for our future, according to the World Economic Forum’s Global Risk Report. Of course, our quickly advancing genomic capabilities come with some difficult ethical questions.

However, gene editing will also introduce new possibilities for companies to create new lines of revenue and protect existing ones by making it possible to protect biodiversity, more safely manage ecosystem loss, and sustain agricultural production. A recent article in Nature points out that genome editing, for example, “allows much smaller changes to be made to DNA compared with conventional genetic engineering,” which might prove more palatable to the public and regulators.

The DNA revolution

The discovery in 1958 by James Watson, Francis Crick, and Rosalind Franklin of DNA as the primary building block of genetics had a major impact on how we study and interact with the world around us. The focus shifted from the analysis of plant and animal anatomy and exploring nature to the examination of life at the micro level. Over the following decades, humans have developed a comprehensive understanding of molecular biology.

Once the roles of DNA and RNA became clear – DNA stores the information of life and RNA translates the code and regulates the translation – it was only a matter of time before we figured out how to take on the role of programmers as well. When Kary Mullis discovered a way to relatively quickly synthesize DNA with polymerase chain reaction (PCR) technology (also called molecular photocopying) in 1983, the race was on.

The Human Genome Project sequenced the first full human genome in 2003. At that time, it took the collaboration of 20 universities working for 13 years and spending roughly $3 billion to do it. Thanks to high-throughput computing and massively parallel sequencing technologies (NG), sequencing speed has more than doubled every two years and costs have continued to drop (the field is advancing faster than Moore’s Law). Last September, Veritas Genetics announced $1,000 full-genome sequencing, including interpretation, for participants in the Personal Genome Project, and it’s just a matter of time before individuals can get their genomes sequenced for $100 or less.

“What we observe is a turning point in life sciences and medicine. Today our ability to generate massive amounts of biological data of any species and individual is ahead of our capabilities to interpret this vast amount of information. Working as a researcher, or even as a clinician, can feel like listening to all symphonies from Haydn to Shostakovich in parallel and trying to make sense out of it. Creating standards to annotate and exchange the data, finding the right algorithms and analytics to turn those curated data into insights will be a major challenge in the near future,” says Dr. Péter Adorján, principal expert, Precision Medicine at SAP.

Engineering life

Sequencing genomes is one thing, editing genes in living organisms is a different thing altogether. For the past 15 years, we have possessed techniques to edit human DNA by using a disabled virus (known as a viral vector) to deliver new genetic data to a cell. However, the introduction of foreign genomic materials into cells is an imprecise process and comes with a number of logistical drawbacks.

Then along came CRISPR/Cas9. Discovered in 2005, CRISPR/Cas9 is a naturally occurring immune system found in a wide range of bacteria. In a biological version of “cut-and-paste” CRISPR is able to snip out a short sequence of an invading virus’ DNA and, when invaded again, use this sequence to bind to the virus DNA and cut it at a specific part of the sequence. Less than a decade after its discovery, scientists figured out how to harness CRISPR/Cas9 for genome editing.

The approach is currently being tested for treating disease and could soon be used to treat a wide range of disorders. Once CRISPR is fully tested, it could be used to remove faulty genomes in embryos, basically eradicating those genomes from the gene pool. Theoretically, this form of gene editing should improve the safety of gene modifications; changes could be better planned, executed, and reviewed.

“The accuracy of the CRISPR method is simply stunning. The resulting medicine will improve outcomes and reduce side effects for many gene-based healthcare problems,” says Dr. Adorján. “If it holds its promises, it will probably change medicine within 10 years more than what we have observed in the last 50 years. But the methodology will raise fundamental ethical issues of how we cope with genetic optimizations of embryos or modifying germline cells, which would impact not only the individual but all subsequent generations as well.”

The impact on society and business could be profound and broad. In healthcare, gene editing is already showing progress in treating diseases such as curing chronic infection with hepatitis B and addressing the shortage of organs for transplants, for example. A group of scientists in San Diego used gene editing to create a population of mosquitoes resistant to spreading malaria. As an article in Chemistry World stated: gene editing is now “more than just a science – it’s big business too.” The genome editing market is expected to reach $3.5 billion by 2019, according to Markets and Markets. DuPont is already growing in greenhouses corn and wheat plants edited with CRISPR in an effort to make drought-resistant corn and improve wheat yields. The company’s vice president for agricultural biotechnology has predicted that gene editing will introduce a new wave of products and profits. Novartis is working with gene-editing startups on using CRISPR for engineering immune cells and blood stem cells and as a research tool for drug discovery.

Such advances are likely decades off, but they raise important ethical questions that we will have to answer, since such editing could impact not only the host organism, but the larger ecosystem, for better or for worse. For example, how might a genetically edited mosquito population impact the rest of the ecosystem? While these new tools will provide us with novel ways of managing our impact on the world around us – say, solving world hunger or reversing climate change – and create new business opportunities, there are risks.

Beyond gene hacking

The future of digital biology will not play out only at the molecular level, though. It will advance in the context of the larger world. Because ecological systems are complex, fragile networks, even the smallest changes can have a dramatic impact. That means the gene editing alone will not be enough to better deal with humanity’s impact on the world.

But genomics technology isn’t advancing in isolation.

As we’ve pointed out in previous Digital Futures posts, our world will be increasingly populated with sensors and the advanced computing power to collect and analyze the data they produce. By linking our growing wealth of biological data with rapidly advancing sensor-facilitated data, research organizations and companies could develop a more complete understanding of our environment, from rainforests to oceans and agricultural systems, at the macro level as well.

Researchers are already developing chip-scale sensors that can placed unobtrusively in the environment to measure molecular changes that could be used for such purposes as real-time monitoring of environmental pollutants, detecting toxic leaks in an industrial plant, or detecting disease by analyzing a patient’s breath. The data from such advanced sensors could also enable researchers and organizations to model and measure the impact of changes at the molecular level on larger ecosystems, and vice versa, with applications for everything from environmental sustainability to biomedicine. That intelligence will put scientists and businesses in a much better position to manage humanity’s impact on the Earth and the economy, our own health, and even help to deal with ethical questions about the impact of gene editing.

Businesses in healthcare and those with high ecological footprints, like agriculture, fishing, wood, mining, and oil & gas, could use modern sensor and genome technology to improve their risk assessment, act more sustainably, and potentially find new business ideas as well.

In order to get to that point, we’ll need to take three key steps. First, we must digitize our existing and growing understanding of life on Earth – all the existing biological, paleontological, and geological collections we’ve gathered over the centuries  in order to make them more easily accessible. Then, using the power of sensors and analytics, we can begin to scan the environment to gather critical data on our ecosystems and the impact we have on them. Finally, using gene sequencing, we can begin to explore the changes we might make by editing things at the molecular level and simulate the outcomes on a macro scale.

A designer future?

Where will these advances take us? There are a number of possible scenarios.

  1. Limited, regulated usage: We might see a future where we would simply fix molecular flaws and allow gene editing in only very specific contexts in the healthcare industry. While technology for fast and effective DNA sequencing and editing would continue to advance, the applications would be available to a niche of professionals only. We might enable gene editing to create certain designer plants to cope with climate change, for example, but that application would be highly regulated.
  1. A hybrid approach: Broader acceptance of complex gene editing would allow us to more significantly alter the natural world, editing known life forms and perhaps designing new ones. Gene editing would still be preserved for professionals. Healthcare would embrace a hybrid approach of classical medicine and gene editing. Mankind would begin to experiment with ecosystem engineering based on advanced insight and study, generating ethical controversy and long-term disputes. Some regulations would emerge in sensitive areas.
  1. Wide acceptance: In a world where IT and technology are entirely democratized and gene editing is widely accepted, we could wake up to a second creation. In this scenario, gene editing would be allowed with little restriction, with toolkits available to consumers and professionals. The healthcare industry would apply gene editing on a grand scale, and designer plants and animals would become commonplace. But, thanks to an increasingly advanced understanding of how nature operates on a macro and micro level, we could better understand and manage the consequences.

Download the executive brief Gene Editing: Big Science, Big Business.


To learn more about how exponential technology will affect business and life, see Digital Futures in the Digitalist Magazine.


Kai Görlich

About Kai Görlich

Kai Goerlich is the Idea Director of Thought Leadership at SAP. His specialties include Competitive Intelligence, Market Intelligence, Corporate Foresight, Trends, Futuring and ideation. Share your thoughts with Kai on Twitter @KaiGoe.

Transform Or Die: What Will You Do In The Digital Economy?

Scott Feldman and Puneet Suppal

By now, most executives are keenly aware that the digital economy can be either an opportunity or a threat. The question is not whether they should engage their business in it. Rather, it’s how to unleash the power of digital technology while maintaining a healthy business, leveraging existing IT investments, and innovating without disrupting themselves.

Yet most of those executives are shying away Businesspeople in a Meeting --- Image by © Monalyn Gracia/Corbisfrom such a challenge. According to a recent study by MIT Sloan and Capgemini, only 15% of CEOs are executing a digital strategy, even though 90% agree that the digital economy will impact their industry. As these businesses ignore this reality, early adopters of digital transformation are achieving 9% higher revenue creation, 26% greater impact on profitability, and 12% more market valuation.

Why aren’t more leaders willing to transform their business and seize the opportunity of our hyperconnected world? The answer is as simple as human nature. Innately, humans are uncomfortable with the notion of change. We even find comfort in stability and predictability. Unfortunately, the digital economy is none of these – it’s fast and always evolving.

Digital transformation is no longer an option – it’s the imperative

At this moment, we are witnessing an explosion of connections, data, and innovations. And even though this hyperconnectivity has changed the game, customers are radically changing the rules – demanding simple, seamless, and personalized experiences at every touch point.

Billions of people are using social and digital communities to provide services, share insights, and engage in commerce. All the while, new channels for engaging with customers are created, and new ways for making better use of resources are emerging. It is these communities that allow companies to not only give customers what they want, but also align efforts across the business network to maximize value potential.

To seize the opportunities ahead, businesses must go beyond sensors, Big Data, analytics, and social media. More important, they need to reinvent themselves in a manner that is compatible with an increasingly digital world and its inhabitants (a.k.a. your consumers).

Here are a few companies that understand the importance of digital transformation – and are reaping the rewards:

  1. Under Armour:  No longer is this widely popular athletic brand just selling shoes and apparel. They are connecting 38 million people on a digital platform. By focusing on this services side of the business, Under Armour is poised to become a lifestyle advisor and health consultant, using his product side as the enabler.
  1. Port of Hamburg: Europe’s second-largest port is keeping carrier trucks and ships productive around the clock. By fusing facility, weather, and traffic conditions with vehicle availability and shipment schedules, the Port increased container handling capacity by 178% without expanding its physical space.
  1. Haier Asia: This top-ranking multinational consumer electronics and home appliances company decided to disrupt itself before someone else did. The company used a two-prong approach to digital transformation to create a service-based model to seize the potential of changing consumer behaviors and accelerate product development. 
  1. Uber: This startup darling is more than just a taxi service. It is transforming how urban logistics operates through a technology trifecta: Big Data, cloud, and mobile.
  1. American Society of Clinical Oncologists (ASCO): Even nonprofits can benefit from digital transformation. ASCO is transforming care for cancer patients worldwide by consolidating patient information with its CancerLinQ. By unlocking knowledge and value from the 97% of cancer patients who are not involved in clinical trials, healthcare providers can drive better, more data-driven decision making and outcomes.

It’s time to take action 

During the SAP Executive Technology Summit at SAP TechEd on October 19–20, an elite group of CIOs, CTOs, and corporate executives will gather to discuss the challenges of digital transformation and how they can solve them. With the freedom of open, candid, and interactive discussions led by SAP Board Members and senior technology leadership, delegates will exchange ideas on how to get on the right path while leveraging their existing technology infrastructure.

Stay tuned for exclusive insights from this invitation-only event in our next blog!
Scott Feldman is Global Head of the SAP HANA Customer Community at SAP. Connect with him on Twitter @sfeldman0.

Puneet Suppal drives Solution Strategy and Adoption (Customer Innovation & IoT) at SAP Labs. Connect with him on Twitter @puneetsuppal.



Scott Feldman and Puneet Suppal

About Scott Feldman and Puneet Suppal

Scott Feldman is the Head of SAP HANA International Customer Community. Puneet Suppal is the Customer Co-Innovation & Solution Adoption Executive at SAP.

What Is Digital Transformation?

Andreas Schmitz

Achieving quantum leaps through disruption and using data in new contexts, in ways designed for more than just Generation Y — indeed, the digital transformation affects us all. It’s time for a detailed look at its key aspects.

Data finding its way into new settings

Archiving all of a company’s internal information until the end of time is generally a good idea, as it gives the boss the security that nothing will be lost. Meanwhile, enabling him or her to create bar graphs and pie charts based on sales trends – preferably in real time, of course – is even better.

But the best scenario of all is when the boss can incorporate data from external sources. All of a sudden, information on factors as seemingly mundane as the weather start helping to improve interpretations of fluctuations in sales and to make precise modifications to the company’s offerings. When the gusts of autumn begin to blow, for example, energy providers scale back solar production and crank up their windmills. Here, external data provides a foundation for processes and decisions that were previously unattainable.

Quantum leaps possible through disruption

While these advancements involve changes in existing workflows, there are also much more radical approaches that eschew conventional structures entirely.

“The aggressive use of data is transforming business models, facilitating new products and services, creating new processes, generating greater utility, and ushering in a new culture of management,” states Professor Walter Brenner of the University of St. Gallen in Switzerland, regarding the effects of digitalization.

Harnessing these benefits requires the application of innovative information and communication technology, especially the kind termed “disruptive.” A complete departure from existing structures may not necessarily be the actual goal, but it can occur as a consequence of this process.

Having had to contend with “only” one new technology at a time in the past, be it PCs, SAP software, SQL databases, or the Internet itself, companies are now facing an array of concurrent topics, such as the Internet of Things, social media, third-generation e-business, and tablets and smartphones. Professor Brenner thus believes that every good — and perhaps disruptive — idea can result in a “quantum leap in terms of data.”

Products and services shaped by customers

It has already been nearly seven years since the release of an app that enables customers to order and pay for taxis. Initially introduced in Berlin, Germany, mytaxi makes it possible to avoid waiting on hold for the next phone representative and pay by credit card while giving drivers greater independence from taxi dispatch centers. In addition, analyses of user data can lead to the creation of new services, such as for people who consistently order taxis at around the same time of day.

“Successful models focus on providing utility to the customer,” Professor Brenner explains. “In the beginning, at least, everything else is secondary.”

In this regard, the private taxi agency Uber is a fair bit more radical. It bypasses the entire taxi industry and hires private individuals interested in making themselves and their vehicles available for rides on the Uber platform. Similarly, Airbnb runs a platform travelers can use to book private accommodations instead of hotel rooms.

Long-established companies are also undergoing profound changes. The German publishing house Axel Springer SE, for instance, has acquired a number of startups, launched an online dating platform, and released an app with which users can collect points at retail. Chairman and CEO Matthias Döpfner also has an interest in getting the company’s newspapers and other periodicals back into the black based on payment models, of course, but these endeavors are somewhat at odds with the traditional notion of publishing houses being involved solely in publishing.

The impact of digitalization transcends Generation Y

Digitalization is effecting changes in nearly every industry. Retailers will likely have no choice but to integrate their sales channels into an omnichannel approach. Seeking to make their data services as attractive as possible, BMW, Mercedes, and Audi have joined forces to purchase the digital map service HERE. Mechanical engineering companies are outfitting their equipment with sensors to reduce downtime and achieve further product improvements.

“The specific potential and risks at hand determine how and by what means each individual company approaches the subject of digitalization,” Professor Brenner reveals. The resulting services will ultimately benefit every customer – not just those belonging to Generation Y, who present a certain basic affinity for digital methods.

“Think of cars that notify the service center when their brakes or drive belts need to be replaced, offer parking assistance, or even handle parking for you,” Brenner offers. “This can be a big help to elderly people in particular.”

Chief digital officers: team members, not miracle workers

Making the transition to the digital future is something that involves not only a CEO or a head of marketing or IT, but the entire company. Though these individuals do play an important role as proponents of digital models, it also takes more than just a chief digital officer alone.

For Professor Brenner, appointing a single person to the board of a DAX company to oversee digitalization is basically absurd. “Unless you’re talking about Da Vinci or Leibnitz born again, nobody could handle such a task,” he states.

In Brenner’s view, this is a topic for each and every department, and responsibilities should be assigned much like on a soccer field: “You’ve got a coach and the players – and the fans, as well, who are more or less what it’s all about.”

Here, the CIO neither competes with the CDO nor assumes an elevated position in the process of digital transformation. Implementing new databases like SAP HANA or Hadoop, leveraging sensor data in both technical and commercially viable ways, these are the tasks CIOs will face going forward.

“There are some fantastic jobs out there,” Brenner affirms.

Want more insight on managing digital transformation? See Three Keys To Winning In A World Of Disruption.

Image via Shutterstock


Andreas Schmitz

About Andreas Schmitz

Andreas Schmitz is a Freelance Journalist for SAP, covering a wide range of topics from big data to Internet of Things, HR, business innovation and mobile.

The Future of Cybersecurity: Trust as Competitive Advantage

Justin Somaini and Dan Wellers


The cost of data breaches will reach US$2.1 trillion globally by 2019—nearly four times the cost in 2015.

Cyberattacks could cost up to $90 trillion in net global economic benefits by 2030 if cybersecurity doesn’t keep pace with growing threat levels.

Cyber insurance premiums could increase tenfold to $20 billion annually by 2025.

Cyberattacks are one of the top 10 global risks of highest concern for the next decade.

Companies are collaborating with a wider network of partners, embracing distributed systems, and meeting new demands for 24/7 operations.

But the bad guys are sharing intelligence, harnessing emerging technologies, and working round the clock as well—and companies are giving them plenty of weaknesses to exploit.

  • 33% of companies today are prepared to prevent a worst-case attack.
  • 25% treat cyber risk as a significant corporate risk.
  • 80% fail to assess their customers and suppliers for cyber risk.

The ROI of Zero Trust

Perimeter security will not be enough. As interconnectivity increases so will the adoption of zero-trust networks, which place controls around data assets and increases visibility into how they are used across the digital ecosystem.

A Layered Approach

Companies that embrace trust as a competitive advantage will build robust security on three core tenets:

  • Prevention: Evolving defensive strategies from security policies and educational approaches to access controls
  • Detection: Deploying effective systems for the timely detection and notification of intrusions
  • Reaction: Implementing incident response plans similar to those for other disaster recovery scenarios

They’ll build security into their digital ecosystems at three levels:

  1. Secure products. Security in all applications to protect data and transactions
  2. Secure operations. Hardened systems, patch management, security monitoring, end-to-end incident handling, and a comprehensive cloud-operations security framework
  3. Secure companies. A security-aware workforce, end-to-end physical security, and a thorough business continuity framework

Against Digital Armageddon

Experts warn that the worst-case scenario is a state of perpetual cybercrime and cyber warfare, vulnerable critical infrastructure, and trillions of dollars in losses. A collaborative approach will be critical to combatting this persistent global threat with implications not just for corporate and personal data but also strategy, supply chains, products, and physical operations.

Download the executive brief The Future of Cybersecurity: Trust as Competitive Advantage.



How Digital Transformation Is Rewriting Business Models

Ginger Shimp

Everybody knows someone who has a stack of 3½-inch floppies in a desk drawer “just in case we may need them someday.” While that might be amusing, the truth is that relatively few people are confident that they’re making satisfactory progress on their digital journey. The boundaries between the digital and physical worlds continue to blur — with profound implications for the way we do business. Virtually every industry and every enterprise feels the effects of this ongoing digital transformation, whether from its own initiative or due to pressure from competitors.

What is digital transformation? It’s the wholesale reimagining and reinvention of how businesses operate, enabled by today’s advanced technology. Businesses have always changed with the times, but the confluence of technologies such as mobile, cloud, social, and Big Data analytics has accelerated the pace at which today’s businesses are evolving — and the degree to which they transform the way they innovate, operate, and serve customers.

The process of digital transformation began decades ago. Think back to how word processing fundamentally changed the way we write, or how email transformed the way we communicate. However, the scale of transformation currently underway is drastically more significant, with dramatically higher stakes. For some businesses, digital transformation is a disruptive force that leaves them playing catch-up. For others, it opens to door to unparalleled opportunities.

Upending traditional business models

To understand how the businesses that embrace digital transformation can ultimately benefit, it helps to look at the changes in business models currently in process.

Some of the more prominent examples include:

  • A focus on outcome-based models — Open the door to business value to customers as determined by the outcome or impact on the customer’s business.
  • Expansion into new industries and markets — Extend the business’ reach virtually anywhere — beyond strictly defined customer demographics, physical locations, and traditional market segments.
  • Pervasive digitization of products and services — Accelerate the way products and services are conceived, designed, and delivered with no barriers between customers and the businesses that serve them.
  • Ecosystem competition — Create a more compelling value proposition in new markets through connections with other companies to enhance the value available to the customer.
  • Access a shared economy — Realize more value from underutilized sources by extending access to other business entities and customers — with the ability to access the resources of others.
  • Realize value from digital platforms — Monetize the inherent, previously untapped value of customer relationships to improve customer experiences, collaborate more effectively with partners, and drive ongoing innovation in products and services,

In other words, the time-tested assumptions about how to identify customers, develop and market products and services, and manage organizations may no longer apply. Every aspect of business operations — from forecasting demand to sourcing materials to recruiting and training staff to balancing the books — is subject to this wave of reinvention.

The question is not if, but when

These new models aren’t predictions of what could happen. They’re already realities for innovative, fast-moving companies across the globe. In this environment, playing the role of late adopter can put a business at a serious disadvantage. Ready or not, digital transformation is coming — and it’s coming fast.

Is your company ready for this sea of change in business models? At SAP, we’ve helped thousands of organizations embrace digital transformation — and turn the threat of disruption into new opportunities for innovation and growth. We’d relish the opportunity to do the same for you. Our Digital Readiness Assessment can help you see where you are in the journey and map out the next steps you’ll need to take.

Up next I’ll discuss the impact of digital transformation on processes and work. Until then, you can read more on how digital transformation is impacting your industry.


Ginger Shimp

About Ginger Shimp

With more than 20 years’ experience in marketing, Ginger Shimp has been with SAP since 2004. She has won numerous awards and honors at SAP, including being designated “Top Talent” for two consecutive years. Not only is she a Professional Certified Marketer with the American Marketing Association, but she's also earned her Connoisseur's Certificate in California Reds from the Chicago Wine School. She holds a bachelor's degree in journalism from the University of San Francisco, and an MBA in marketing and managerial economics from the Kellogg Graduate School of Management at Northwestern University. Personally, Ginger is the proud mother of a precocious son and happy wife of one of YouTube's 10 EDU Gurus, Ed Shimp.