Is The Digital Customer Experience Relevant To B2B Brands?

Jennifer Arnold

Last year SAP Australia/New Zealand released the 2016 Digital Customer Experience research, which investigates consumers’ views about the quality of digital customer experiences they receive from local consumer brands and identifies the impact of this on brand loyalty and advocacy. In sharing our research with SAP customers, I meet with many business-to-business (B2B) organisations.

Often the first question I’m asked is, “Our customers are other businesses, so is this research relevant to us?” And my response is always, “Yes, because until Artificial Intelligence runs the world and all future business engagements are conducted chatbot to chatbot, your customer on the other side of the screen isn’t a business, it’s a real person, who is also a consumer.”

Our research with 6,000 ANZ consumers found they’re nearly 5 x more likely to remain loyal to a consumer brand if it provides them delightful digital experiences.

In a business setting, employees typically will have less or no choice about the businesses they have to engage with compared to the wide choice they have as an individual consumer. Therefore, we expect in the B2B segment the impact of an individual employee’s experience on brand loyalty will be less critical to the brand’s business.

However, based on conversations with customers and partners, we’ve found the quality of the digital experience does affect how an employee chooses to engage with a business, which impacts productivity, cost, and efficiency. For example, if a manufacturer wants customers to use an online ordering tool but the tool doesn’t work properly or is hard to use, the customer’s employees may choose to work around it by emailing or phoning in orders. This can increase the processing time and result in the manufacturer having to double-handle the order information to enter it into its system.

When it comes to the impact on brand advocacy, nearly 70% of ANZ consumers would be willing to recommend consumer brands that provide them with a delightful digital experience.

The feedback we receive from SAP’s customers also suggests that the impact on brand advocacy is slightly less for B2B organisations than for B2C brands. This is primarily because large numbers of consumers share feedback about their experiences and recommendations on broad social media platforms, and again, average employees often can’t choose the companies with which their employer does business.

That’s not to say advocacy is not important to B2B companies. An increasing number of B2B organisations, including SAP, use the Net Promotor Score rating, which measures advocacy as a key indicator for customer satisfaction and business health. Aspects of customer satisfaction typically measured include service quality, communication and responsiveness, customer support, the ease of doing business with the company, fit of products and services, and handling of issues. If these aspects aren’t well supported by a positive digital experience, customer satisfaction and the willingness to promote or advocate for the company will be impacted.

The size of a company may also matter when it comes to the the impact of the digital experience on loyalty and advocacy. For smaller B2B organisations, the impact may be greater because their customers are less likely to be locked into long-term contracts and would have more choice of providers, so risk of customer churn is greater.

Consider this: If you have a regular print supplier for your company documents, proposals, posters, and so on, and their online systems for booking, tracking your orders, and exchanging and checking artwork don’t work to your satisfaction, would you stay with them or go to a supplier that provides a better-functioning system? Which of them would you recommend to a friend or colleague who needs print services?

Improved loyalty and advocacy aren’t the only objectives organisations expect from improving customer experiences. More and more I’m asked to share our Digital Customer Experience research findings with our B2B customers and discuss what they can do to improve experiences because enhanced customer engagement is central to organisations’ overall digital transformation strategies. These transformations involve adapting their products and services and creating new channels to sell to and support consumers – all increasingly digital-only.

This is expanding the customer experience conversations outside of the marketing and customer service departments into all business functions and levels. The customer experience – especially the digital customer experience – is relevant and increasingly critical to every part of the business in every brand in the market.

If you’re from a B2B organisation, are you trying to improve your digital customer experience? If so, what are the most critical steps you’re taking? What changes do your customers want to see?

For more information about improving your digital customer experiences, read our 2016 Digital Customer Experience research paper and join us for the discussion at our four-city Art of the Possible roadshow across ANZ starting 7 March.


Jennifer Arnold

About Jennifer Arnold

Jennifer joined SAP in May 2015 as Vice President and Head of Marketing, Australia and New Zealand. She is a member of the APJ Marketing Leadership Team as well as the ANZ Senior Executive Team (SET). She leads the ANZ Marketing team in supporting sales goals across SAP’s portfolio, building SAP’s brand and reputation ANZ, and driving SAP’s integrated marketing execution. Jennifer joined SAP from Unisys where she spent nearly nine years, most recently hold dual roles of Enterprise Services Global Portfolio Marketing Director and Enterprise Services Practice Business Consultant. She was responsible for developing and delivering global integrated demand generation campaigns and sales enablement materials. She also developed and rolled out the company’s global sales personas program. In her consulting role, she worked with clients to design persona-based business and technology strategies and develop enterprise services analytics projects. Prior to her global roles, Jennifer was the Unisys Asia Pacific Marketing Director, managing a team delivering campaigns focused on IT services, security, infrastructure and applications across the region. Prior to Unisys,

Make Sales, Not War: 3 Ways Sales And Marketing Can Increase Revenue And Customer Loyalty

Emily Kelly

When customers own their engagement with your brand – where, when, and how it happens – when engagements are smaller and more personal, and when it takes more to keep hold of a customer’s attention, the lines between sales and marketing begin to blur. Sales would love marketing to deliver qualified leads, and marketing campaigns begin to look a lot more like sales conversations. But the success of your organization depends on these two teams working together.

A recent Aberdeen research report, commissioned by SAP, stresses the importance of the sales and marketing relationship for “best-in-class” companies. Each team needs to understand who’s bringing what to the table, and how best to collaborate to close more sales.

To start the conversations at your own company, here are a few key priorities to get the teams better aligned for success.

1. Ownership of a lead must be shared by both sales and marketing.

It may sound obvious, but in practice it can be difficult to differentiate whether lead generation and nurturing falls to marketing or sales. Parts of the process may fall to either team, and when each team feels like they’re working toward their own goals instead of a shared objective, that can lead to confusion and duplicate or conflicting efforts.

Does this sound familiar? Marketing creates leads to pass to sales, but sales already has leads of their own. Or your marketing team is driven by quantity and delivers leads to sales that don’t seem to be high-quality.

Figure out a way to determine what qualifies as a good lead, and establish from the get-go who’s responsible for it when. Marketing and sales should engage each other regularly for feedback to optimize the entire lead-gen process and work towards a common objective, instead of battling it out internally or blaming each other for a lack of qualified leads.

2. Share data and info to personalize customer experiences.

In order to deliver the amazing customer experiences you imagine, you need to know your customer – to really understand their industry, and dive into the challenges they face. You need to be able to talk to them on their terms, so you need to understand where they’re coming from. Thankfully, in the age of connected tech, we have the data to do that. And it’s handled by the marketing team.

Marketing does the research to get to know the customers and their industries. They have content that is relevant to every stage of the selling process. If sales leverages the expertise of the marketing team, they can guide customers along their journey, eventually leading them to the sale.

Sales can then personalize the entire customer experience, tailoring the conversation and engaging customers on a deeper level. And marketing can act more as the experts and thought leaders, doing the research and gaining a wealth of information on various industries and challenges. The entire experience is elevated.

3. Leverage analytics and insights to drive higher-quality understanding.

Beyond an understanding of a customer’s industry, high-quality analytics can be used to better understand how best to close a sale. With effective data collection tools, marketing has access to a wealth of information about a customer’s engagement with your brand – how and where they’ve engaged with you, the type of information they’ve sought out, how many pieces of content they’ve downloaded, what events they’ve attended – all of which illustrates where their interests and priorities lie.

Sales can use this industry-specific information to nurture leads in a deeply personalized way, knowing where the customer is coming from and where they are on their journey. They can use historical data – past customers in similar situations – to determine what content and information to pass onto the customer, and how to effectively address their needs and make the sale. They can seize opportunities for cross-selling. They can look at a customer’s journey and attempt to replicate it with suggestions and recommendations that serve the customer.

In turn, sales can then report back to marketing with insights as to which leads and opportunities are the most promising, showing the most potential to close, to help drive marketing’s future content-to-conversion research.

No matter what, communication and collaboration are key. The feedback loop must be closed between the teams, with each group providing feedback to the other and adapting for more effective processes. By working closely together internally, you’ll be able to engage customers more personally and more effectively.

Want to dive more into how marketing/sales collaboration is key for success? Read the full Aberdeen white paper: “Marketing/Sales Alignment 2016: Who is Agile Enough to Win?


How To Use The Right Data At The Right Time For Better Customer Relationships

Bernard Chung

According to an eMarketer study, most marketers have only rudimentary data about their customers. In fact, 80% don’t have much customer data beyond basic contact information and product purchases. This greatly limits the ability of organizations to know customers well; to predict purchase patterns, preferences, and potential lifetime value.

It’s not surprising that deeper customer insights bolster customer satisfaction and loyalty. The challenge is how to capture insightful customer data and integrate it into actionable strategies across an organization. Oftentimes, even the data that is captured is often siloed and inaccessible, leaving marketers without a consolidated view of customers.

Think of all the ways customers are “touched” within the typical marketing/sales/service processes. With all of these systems, it’s difficult to gain the complete and consistent insight that would enable organizations to deliver a unified message that reflects an understanding of where customers are on their journey. Innovative marketing technology enables real-time understanding of the latest transactions, messages, and communications and brings everything into one unified view. This allows all customer-facing aspects of an organization to consistently and seamlessly engage with customers across channels, devices, and departments.

Here are three ways to leverage the right data at the right time to enrich customer relationships.

1. Get creative about capturing deeper customer insights

In most cases, customers are very protective about sharing their personal information, unless they perceive a proportionate value in doing so. Finding ways to make the exchange of information worth it for the consumer takes creativity as well as insight into the customer.

The first step to capture deeper insights is to identify your customers at the point of interaction. If you don’t know who are interacting with, you can’t deliver individualized experiences and you won’t be able to properly attribute that interaction to the correct customer. Identifying ways to identify and capture insightful customer information in exchange for value is critical.

Asics running shoe company successfully solved the problem of collecting the right customer data by getting around the natural customer tendency to keep personal information and preferences private. They did this by offering a truly value-added Foot ID program. The program measured the customers’ feet and put them on a video treadmill to analyze their running pattern, enabling the company to make personalized shoe recommendations. Asics capitalized on the customer data, gaining insight through point-of-sale and website interactions to learn how, where, when, and how frequently customers made purchases. This enabled proactive communication about new products rather than generic outreach. In other words, Asics gathered invaluable customer information by offering a service.

2. Real-time analysis and response to opportunities

Once you ask the right questions and collect the right data, it’s only useful if it’s accessible and actionable across the organization. In today’s digital world, where people are generating mounds of data with every interaction, organizations need the ability to process large volumes of data very quickly. They also need the advanced analytics to interrogate the series of data to look for opportunities. The window of opportunity to identify and respond to customers is getting shorter; customers are just another click or finger tap away from your competitors.

In the case of the National Hockey League (NHL), bringing together various siloed systems (e-commerce, data, ticketing, Yahoo’s fantasy NHL site, and others) helped streamline data collecting and enabled deeper analytics across the organization. The NHL already had rich customer data (such as favorite team and player and preferred way of interacting with the fantasy league), but initially lacked the technology to turn this information into more sales. Until it brought customer information with the analytics under one system, it wasn’t utilizing the full potential of its customer data.

A new breed of marketing technology changed all that. Once data collection and analysis was coordinated and streamlined, the NHL could mine customer information to identify fan opportunities and react in real-time to create unique and deeply personal customer experiences. For example, a customer might receive an email about an upcoming game with related analysis and ticket offers. If they attended a game where their preferred team won, they could then receive real-time merchandise offers relating to their favorite team or player. Capitalizing on this post-win euphoria allowed the NHL to drive them toward merchandise opportunities (e.g., their favorite player on the winning team) while the fan was still in the sporting venue. The NHL’s ability to consolidate data in real-time gave them the tools they needed to act quickly to take advantage of sales opportunities.

3. Leverage advanced analytics to gain deeper customer insights

By leveraging new marketing technologies that incorporate data-management capabilities, customer behavior insights and preferences management can be utilized to develop customer strategies. But it’s not enough to capture and then consolidate data. You also have to leverage the right analytics tools that enable machine learning, predictive analytics, and visualization capabilities to be more accurate in targeting and delivering enriching customer experiences. Otherwise, all the data in the world will lend zero intelligence to the marketing endeavor.

SAP Hybris offers the leading marketing technology solutions that integrate, streamline, deliver, and analyze data to give your marketing organization a deeper understanding of the customer so that you can finally say goodbye to silos, data reports that go nowhere, and high customer turnover. Are you providing the individually tailored experiences customers are asking for? Try our free Personalization Benchmarking Tool here!


Bernard Chung

About Bernard Chung

Bernard Chung is Head of Audience Marketing for Marketing Line of Business at SAP Hybris.

Heroes in the Race to Save Antibiotics

Dr. David Delaney, Joseph Miles, Walt Ellenberger, Saravana Chandran, and Stephanie Overby

Last August, a woman arrived at a Reno, Nevada, hospital and told the attending doctors that she had recently returned from an extended trip to India, where she had broken her right thighbone two years ago. The woman, who was in her 70s, had subsequently developed an infection in her thigh and hip for which she was hospitalized in India several times. The Reno doctors recognized that the infection was serious—and the visit to India, where antibiotic-resistant bacteria runs rampant, raised red flags.

When none of the 14 antibiotics the physicians used to treat the woman worked, they sent a sample of the bacterium to the U.S. Centers for Disease Control (CDC) for testing. The CDC confirmed the doctors’ worst fears: the woman had a class of microbe called carbapenem-resistant Enterobacteriaceae (CRE). Carbapenems are a powerful class of antibiotics used as last-resort treatment for multidrug-resistant infections. The CDC further found that, in this patient’s case, the pathogen was impervious to all 26 antibiotics approved by the U.S. Food and Drug Administration (FDA).

In other words, there was no cure.

This is just the latest alarming development signaling the end of the road for antibiotics as we know them. In September, the woman died from septic shock, in which an infection takes over and shuts down the body’s systems, according to the CDC’s Morbidity and Mortality Weekly Report.

Other antibiotic options, had they been available, might have saved the Nevada woman. But the solution to the larger problem won’t be a new drug. It will have to be an entirely new approach to the diagnosis of infectious disease, to the use of antibiotics, and to the monitoring of antimicrobial resistance (AMR)—all enabled by new technology.

But that new technology is not being implemented fast enough to prevent what former CDC director Tom Frieden has nicknamed nightmare bacteria. And the nightmare is becoming scarier by the year. A 2014 British study calculated that 700,000 people die globally each year because of AMR. By 2050, the global cost of antibiotic resistance could grow to 10 million deaths and US$100 trillion a year, according to a 2014 estimate. And the rate of AMR is growing exponentially, thanks to the speed with which humans serving as hosts for these nasty bugs can move among healthcare facilities—or countries. In the United States, for example, CRE had been seen only in North Carolina in 2000; today it’s nationwide.

Abuse and overuse of antibiotics in healthcare and livestock production have enabled bacteria to both mutate and acquire resistant genes from other organisms, resulting in truly pan-drug resistant organisms. As ever-more powerful superbugs continue to proliferate, we are potentially facing the deadliest and most costly human-made catastrophe in modern times.

“Without urgent, coordinated action by many stakeholders, the world is headed for a post-antibiotic era, in which common infections and minor injuries which have been treatable for decades can once again kill,” said Dr. Keiji Fukuda, assistant director-general for health security for the World Health Organization (WHO).

Even if new antibiotics could solve the problem, there are obstacles to their development. For one thing, antibiotics have complex molecular structures, which slows the discovery process. Further, they aren’t terribly lucrative for pharmaceutical manufacturers: public health concerns call for new antimicrobials to be financially accessible to patients and used conservatively precisely because of the AMR issue, which reduces the financial incentives to create new compounds. The last entirely new class of antibiotic was introduced 30 year ago. Finally, bacteria will develop resistance to new antibiotics as well if we don’t adopt new approaches to using them.

Technology can play the lead role in heading off this disaster. Vast amounts of data from multiple sources are required for better decision making at all points in the process, from tracking or predicting antibiotic-resistant disease outbreaks to speeding the potential discovery of new antibiotic compounds. However, microbes will quickly adapt and resist new medications, too, if we don’t also employ systems that help doctors diagnose and treat infection in a more targeted and judicious way.

Indeed, digital tools can help in all four actions that the CDC recommends for combating AMR: preventing infections and their spread, tracking resistance patterns, improving antibiotic use, and developing new diagnostics and treatment.

Meanwhile, individuals who understand both the complexities of AMR and the value of technologies like machine learning, human-computer interaction (HCI), and mobile applications are working to develop and advocate for solutions that could save millions of lives.

Keeping an Eye Out for Outbreaks

Like others who are leading the fight against AMR, Dr. Steven Solomon has no illusions about the difficulty of the challenge. “It is the single most complex problem in all of medicine and public health—far outpacing the complexity and the difficulty of any other problem that we face,” says Solomon, who is a global health consultant and former director of the CDC’s Office of Antimicrobial Resistance.

Solomon wants to take the battle against AMR beyond the laboratory. In his view, surveillance—tracking and analyzing various data on AMR—is critical, particularly given how quickly and widely it spreads. But surveillance efforts are currently fraught with shortcomings. The available data is fragmented and often not comparable. Hospitals fail to collect the representative samples necessary for surveillance analytics, collecting data only on those patients who experience resistance and not on those who get better. Laboratories use a wide variety of testing methods, and reporting is not always consistent or complete.

Surveillance can serve as an early warning system. But weaknesses in these systems have caused public health officials to consistently underestimate the impact of AMR in loss of lives and financial costs. That’s why improving surveillance must be a top priority, says Solomon, who previously served as chair of the U.S. Federal Interagency Task Force on AMR and has been tracking the advance of AMR since he joined the U.S. Public Health Service in 1981.

A Collaborative Diagnosis

Ineffective surveillance has also contributed to huge growth in the use of antibiotics when they aren’t warranted. Strong patient demand and financial incentives for prescribing physicians are blamed for antibiotics abuse in China. India has become the largest consumer of antibiotics on the planet, in part because they are prescribed or sold for diarrheal diseases and upper respiratory infections for which they have limited value. And many countries allow individuals to purchase antibiotics over the counter, exacerbating misuse and overuse.

In the United States, antibiotics are improperly prescribed 50% of the time, according to CDC estimates. One study of adult patients visiting U.S. doctors to treat respiratory problems found that more than two-thirds of antibiotics were prescribed for conditions that were not infections at all or for infections caused by viruses—for which an antibiotic would do nothing. That’s 27 million courses of antibiotics wasted a year—just for respiratory problems—in the United States alone.

And even in countries where there are national guidelines for prescribing antibiotics, those guidelines aren’t always followed. A study published in medical journal Family Practice showed that Swedish doctors, both those trained in Sweden and those trained abroad, inconsistently followed rules for prescribing antibiotics.

Solomon strongly believes that, worldwide, doctors need to expand their use of technology in their offices or at the bedside to guide them through a more rational approach to antibiotic use. Doctors have traditionally been reluctant to adopt digital technologies, but Solomon thinks that the AMR crisis could change that. New digital tools could help doctors and hospitals integrate guidelines for optimal antibiotic prescribing into their everyday treatment routines.

“Human-computer interactions are critical, as the amount of information available on antibiotic resistance far exceeds the ability of humans to process it,” says Solomon. “It offers the possibility of greatly enhancing the utility of computer-assisted physician order entry (CPOE), combined with clinical decision support.” Healthcare facilities could embed relevant information and protocols at the point of care, guiding the physician through diagnosis and prescription and, as a byproduct, facilitating the collection and reporting of antibiotic use.

Cincinnati Children’s Hospital’s antibiotic stewardship division has deployed a software program that gathers information from electronic medical records, order entries, computerized laboratory and pathology reports, and more. The system measures baseline antimicrobial use, dosing, duration, costs, and use patterns. It also analyzes bacteria and trends in their susceptibilities and helps with clinical decision making and prescription choices. The goal, says Dr. David Haslam, who heads the program, is to decrease the use of “big gun” super antibiotics in favor of more targeted treatment.

While this approach is not yet widespread, there is consensus that incorporating such clinical-decision support into electronic health records will help improve quality of care, contain costs, and reduce overtreatment in healthcare overall—not just in AMR. A 2013 randomized clinical trial finds that doctors who used decision-support tools were significantly less likely to order antibiotics than those in the control group and prescribed 50% fewer broad-spectrum antibiotics.

Putting mobile devices into doctors’ hands could also help them accept decision support, believes Solomon. Last summer, Scotland’s National Health Service developed an antimicrobial companion app to give practitioners nationwide mobile access to clinical guidance, as well as an audit tool to support boards in gathering data for local and national use.

“The immediacy and the consistency of the input to physicians at the time of ordering antibiotics may significantly help address the problem of overprescribing in ways that less-immediate interventions have failed to do,” Solomon says. In addition, handheld devices with so-called lab-on-a-chip  technology could be used to test clinical specimens at the bedside and transmit the data across cellular or satellite networks in areas where infrastructure is more limited.

Artificial intelligence (AI) and machine learning can also become invaluable technology collaborators to help doctors more precisely diagnose and treat infection. In such a system, “the physician and the AI program are really ‘co-prescribing,’” says Solomon. “The AI can handle so much more information than the physician and make recommendations that can incorporate more input on the type of infection, the patient’s physiologic status and history, and resistance patterns of recent isolates in that ward, in that hospital, and in the community.”

Speed Is Everything

Growing bacteria in a dish has never appealed to Dr. James Davis, a computational biologist with joint appointments at Argonne National Laboratory and the University of Chicago Computation Institute. The first of a growing breed of computational biologists, Davis chose a PhD advisor in 2004 who was steeped in bioinformatics technology “because you could see that things were starting to change,” he says. He was one of the first in his microbiology department to submit a completely “dry” dissertation—that is, one that was all digital with nothing grown in a lab.

Upon graduation, Davis wanted to see if it was possible to predict whether an organism would be susceptible or resistant to a given antibiotic, leading him to explore the potential of machine learning to predict AMR.

As the availability of cheap computing power has gone up and the cost of genome sequencing has gone down, it has become possible to sequence a pathogen sample in order to detect its AMR resistance mechanisms. This could allow doctors to identify the nature of an infection in minutes instead of hours or days, says Davis.

Davis is part of a team creating a giant database of bacterial genomes with AMR metadata for the Pathosystems Resource Integration Center (PATRIC), funded by the U.S. National Institute of Allergy and Infectious Diseases to collect data on priority pathogens, such as tuberculosis and gonorrhea.

Because the current inability to identify microbes quickly is one of the biggest roadblocks to making an accurate diagnosis, the team’s work is critically important. The standard method for identifying drug resistance is to take a sample from a wound, blood, or urine and expose the resident bacteria to various antibiotics. If the bacterial colony continues to divide and thrive despite the presence of a normally effective drug, it indicates resistance. The process typically takes between 16 and 20 hours, itself an inordinate amount of time in matters of life and death. For certain strains of antibiotic-resistant tuberculosis, though, such testing can take a week. While physicians are waiting for test results, they often prescribe broad-spectrum antibiotics or make a best guess about what drug will work based on their knowledge of what’s happening in their hospital, “and in the meantime, you either get better,” says Davis, “or you don’t.”

At PATRIC, researchers are using machine-learning classifiers to identify regions of the genome involved in antibiotic resistance that could form the foundation for a “laboratory free” process for predicting resistance. Being able to identify the genetic mechanisms of AMR and predict the behavior of bacterial pathogens without petri dishes could inform clinical decision making and improve reaction time. Thus far, the researchers have developed machine-learning classifiers for identifying antibiotic resistance in Acinetobacter baumannii (a big player in hospital-acquired infection), methicillin-resistant Staphylococcus aureus (a.k.a. MRSA, a worldwide problem), and Streptococcus pneumoniae (a leading cause of bacterial meningitis), with accuracies ranging from 88% to 99%.

Houston Methodist Hospital, which uses the PATRIC database, is researching multidrug-resistant bacteria, specifically MRSA. Not only does resistance increase the cost of care, but people with MRSA are 64% more likely to die than people with a nonresistant form of the infection, according to WHO. Houston Methodist is investigating the molecular genetic causes of drug resistance in MRSA in order to identify new treatment approaches and help develop novel antimicrobial agents.

The Hunt for a New Class of Antibiotics

There are antibiotic-resistant bacteria, and then there’s Clostridium difficile—a.k.a. C. difficile—a bacterium that attacks the intestines even in young and healthy patients in hospitals after the use of antibiotics.

It is because of C. difficile that Dr. L. Clifford McDonald jumped into the AMR fight. The epidemiologist was finishing his work analyzing the spread of SARS in Toronto hospitals in 2004 when he turned his attention to C. difficile, convinced that the bacteria would become more common and more deadly. He was right, and today he’s at the forefront of treating the infection and preventing the spread of AMR as senior advisor for science and integrity in the CDC’s Division of Healthcare Quality Promotion. “[AMR] is an area that we’re funding heavily…insofar as the CDC budget can fund anything heavily,” says McDonald, whose group has awarded $14 million in contracts for innovative anti-AMR approaches.

Developing new antibiotics is a major part of the AMR battle. The majority of new antibiotics developed in recent years have been variations of existing drug classes. It’s been three decades since the last new class of antibiotics was introduced. Less than 5% of venture capital in pharmaceutical R&D is focused on antimicrobial development. A 2008 study found that less than 10% of the 167 antibiotics in development at the time had a new “mechanism of action” to deal with multidrug resistance. “The low-hanging fruit [of antibiotic development] has been picked,” noted a WHO report.

Researchers will have to dig much deeper to develop novel medicines. Machine learning could help drug developers sort through much larger data sets and go about the capital-intensive drug development process in a more prescriptive fashion, synthesizing those molecules most likely to have an impact.

McDonald believes that it will become easier to find new antibiotics if we gain a better understanding of the communities of bacteria living in each of us—as many as 1,000 different types of microbes live in our intestines, for example. Disruption to those microbial communities—our “microbiome”—can herald AMR. McDonald says that Big Data and machine learning will be needed to unlock our microbiomes, and that’s where much of the medical community’s investment is going.

He predicts that within five years, hospitals will take fecal samples or skin swabs and sequence the microorganisms in them as a kind of pulse check on antibiotic resistance. “Just doing the bioinformatics to sort out what’s there and the types of antibiotic resistance that might be in that microbiome is a Big Data challenge,” McDonald says. “The only way to make sense of it, going forward, will be advanced analytic techniques, which will no doubt include machine learning.”

Reducing Resistance on the Farm

Bringing information closer to where it’s needed could also help reduce agriculture’s contribution to the antibiotic resistance problem. Antibiotics are widely given to livestock to promote growth or prevent disease. In the United States, more kilograms of antibiotics are administered to animals than to people, according to data from the FDA.

One company has developed a rapid, on-farm diagnostics tool to provide livestock producers with more accurate disease detection to make more informed management and treatment decisions, which it says has demonstrated a 47% to 59% reduction in antibiotic usage. Such systems, combined with pressure or regulations to reduce antibiotic use in meat production, could also help turn the AMR tide.

Breaking Down Data Silos Is the First Step

Adding to the complexity of the fight against AMR is the structure and culture of the global healthcare system itself. Historically, healthcare has been a siloed industry, notorious for its scattered approach focused on transactions rather than healthy outcomes or the true value of treatment. There’s no definitive data on the impact of AMR worldwide; the best we can do is infer estimates from the information that does exist.

The biggest issue is the availability of good data to share through mobile solutions, to drive HCI clinical-decision support tools, and to feed supercomputers and machine-learning platforms. “We have a fragmented healthcare delivery system and therefore we have fragmented information. Getting these sources of data all into one place and then enabling them all to talk to each other has been problematic,” McDonald says.

Collecting, integrating, and sharing AMR-related data on a national and ultimately global scale will be necessary to better understand the issue. HCI and mobile tools can help doctors, hospitals, and public health authorities collect more information while advanced analytics, machine learning, and in-memory computing can enable them to analyze that data in close to real time. As a result, we’ll better understand patterns of resistance from the bedside to the community and up to national and international levels, says Solomon. The good news is that new technology capabilities like AI and new potential streams of data are coming online as an era of data sharing in healthcare is beginning to dawn, adds McDonald.

The ideal goal is a digitally enabled virtuous cycle of information and treatment that could save millions of dollars, lives, and perhaps even civilization if we can get there. D!

Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.

About the Authors:

Dr. David Delaney is Chief Medical Officer for SAP.

Joseph Miles is Global Vice President, Life Sciences, for SAP.

Walt Ellenberger is Senior Director Business Development, Healthcare Transformation and Innovation, for SAP.

Saravana Chandran is Senior Director, Advanced Analytics, for SAP.

Stephanie Overby is an independent writer and editor focused on the intersection of business and technology.



Small And Midsize Businesses Have The Capacity To Drive Europe’s Future As A Digital Superpower

Katja Mehl

Part 10 of the “Road to Digital Transformation” series

Representing 99.8% of all companies throughout Europe, small and midsize businesses have tremendous power when it comes to impacting the region’s economy. One innovation at a time, they’re transforming entire industries, propelling emerging industries forward with adjacent offerings, and even supersizing a favorite childhood toy to make living conditions better for the poor and homeless. But perhaps the greatest evolution is found in the growing adoption of technology among firms.

According to the IDC InfoBrief “The Next Steps in Digital Transformation: How Small and Midsize Companies Are Applying Technology to Meet Key Business Goals with Insights for Europe,” sponsored by SAP, 35.4% of all European firms feel that their adoption of digital technology is either advanced or well underway. Germany and France are great examples of countries that are embracing advanced business networks and automation technology – such as the Internet of Things – to boost productivity and computerize or consolidate roles left empty due to long-term labor shortages.

Despite the progress made in some countries, I am also aware of others that are still resistant to digitizing their economy and automating operations. What’s the difference between firms that are digital leaders and those that are slow to mature? From my perspective in working with a variety of businesses throughout Europe, it’s a combination of diversity and technology availability.

digital transformation self-assessment

Source: “The Next Steps in Digital Transformation: How Small and Midsize Companies Are Applying Technology to Meet Key Business Goals with Insights for Europe,” IDC InfoBrief, sponsored by SAP, 2017. 

Opportunities abound with digital transformation

European companies are hardly homogenous. Comprising 47 countries across the continent, they serve communities that speak any of 225 spoken languages. Each one is experiencing various stages of digital development, economic stability, and workforce needs.

Nevertheless, as a whole, European firms do prioritize customer acquisition as well as improving efficiency and reducing costs. Over one-third of small and midsize companies are investing in collaboration software, customer relationship management solutions, e-commerce platforms, analytics, and talent management applications. Steadily, business leaders are finding better ways to go beyond data collection by applying predictive analytics to gain real-time insight from predictive analytics and machine learning to automate processes where possible.

Small and midsize businesses have a distinct advantage in this area over their larger rivals because they can, by nature, adopt new technology and practices quickly and act on decisions with greater agility. Nearly two-thirds (64%) of European firms are embracing the early stages of digitalization and planning to mature over time. Yet, the level of adoption depends solely on the leadership team’s commitment.

For many small and midsize companies across this region, the path to digital maturity resides in the cloud, more so than on-premise software deployment. For example, the flexibility associated with cloud deployment is viewed as a top attribute, especially among U.K. firms. This brings us back to the diversity of our region. Some countries prioritize personal data security while others may be more concerned with the ability to access the information they need in even the most remote of areas.

Technology alone does not deliver digital transformation

Digital transformation is certainly worth the effort for European firms. Between 60%–90% of small and midsize European businesses say their technology investments have met or exceeded their expectations – indicative of the steady, powerhouse transitions enabled by cloud computing. Companies are now getting the same access to the latest technology, data storage, and IT resources.

However, it is also important to note that a cloud platform is only as effective as the long-term digital strategy that it enables. To invigorate transformative changes, leadership needs to go beyond technology and adopt a mindset that embraces new ideas, tests the fitness of business models and processes continuously, and allows the flexibility to evolve the company as quickly as market dynamics change. By taking a step back and integrating digital objectives throughout the business strategy, leadership can pull together the elements needed to turn technology investments into differentiating, sustainable change. For example, the best talent with the right skills is hired. Plus, partners and suppliers with a complementary or shared digital vision and capability are onboarded.

The IDC Infobrief confirms what I have known all along: Small and midsize businesses are beginning to digitally mature and maintain a strategy that is relevant to their end-to-end processes. And furthering their digital transformation go hand in hand with the firms’ ability to ignite a transformational force that will likely progress Europe’s culture, social structure, and economy. 

To learn how small and midsize businesses across Europe are digitally transforming themselves to advance their future success, check out the IDC InfoBrief “The Next Steps in Digital Transformation: How Small and Midsize Companies Are Applying Technology to Meet Key Business Goals with Insights for Europe,” sponsored by SAP. For more region-specific perspectives on digital transformation, be sure to check every Tuesday for new installments to our blog series “The Road to Digital Transformation.”



Katja Mehl

About Katja Mehl

Katja Mehl is Head of Marketing for Europe, Middle East, and Africa at SAP.