How Digital Transformation Is Changing The Future Of E-Commerce

Andre Smith

When e-commerce sites first came into existence, many shoppers were hesitant to use them. The websites presented an entirely new platform for customers to interact with sellers. A place where they could not personally see or touch the merchandise they were buying. A system where they had to pay in advance by going through a long and tedious online payment process.

Today, e-commerce has changed drastically with significantly safer online transactions and super-fast checkouts. Online shopping continues to gain popularity, creating new opportunities for both established online retailers and brand new startups. But e-commerce isn’t finished changing and improving. Let’s take a look at some of the changes that we are likely to see in the future of e-commerce.


An online shopper can now buy products such as shoes, clothes, and even glasses online by selecting the right size, fit, power, etc. This is a level of customization that was thought to be impossible when e-commerce sites were just starting. Customization is going to the next level, and online retailers will soon be able to provide individualized outfits made with a particular customer in mind. Customers will just need to enter the right data while shopping from the comfort of their home, and an outfit that not only fits perfectly, but also caters to their individual style sense, will be delivered directly to their home.

Human assistance

It may sound strange at first, but according to Varsity Tutors CEO Chuck Cohn, having human assistance while shopping online could go a long way towards not only boosting sales, but also in forging long-term relationships with customers. The concierge-style service will allow a real person to recommend products to a shopper based on personalization algorithms. Eventually, shoppers are highly likely to depend on the suggestions of their shopping assistants when trying to make their purchases.

Pinpointed recommendations

Some of the more established retailers are well known for providing great suggestions to shoppers. This is largely a result of the massive data aggregation and shopping algorithms they employ, which suggest the products most likely to appeal to specific customers. This process will reach new heights as the shopping algorithms become more advanced to include even more data from services and products used by each shopper. The results from such an algorithm, which has data from multiple sources, connected to each other only in relation to their relevance to the customer, can be astoundingly accurate.

The bottom line is that e-commerce has grown from an insignificant and limited business opportunity to a full-fledged, ever-growing market. In fact, many brick-and-mortar stores have opened up their own online retail sites in recognition of the growing business opportunities in this field. As digital transformation grows more prominent with each passing day, e-commerce will grow bigger and better as shopping from home becomes easier and friendlier.

Learn more about how to offer personalized suggestions to customers without creeping them out. See Is Personalization Killing Your Relationships With Customers?

About Andre Smith

Andre Smith is an Internet, marketing, and e-commerce specialist with several years of experience in the industry. He has watched as the world of online business has grown and adapted to new technologies, and he has made it his mission to help keep businesses informed and up to date.

How To Best Use Data To Reach Your Customer Anywhere

Derek Klobucher

Declarations of the retail apocalypse for brick-and-mortar stores are more than overblown; they’re downright wrong, according to experts at a recent conference – and they’ve got data to back them up.

About 90% of retail purchases occurred in-store, according to a U.S. Census Bureau study last year. And a savvy use of data can help retailers deliver a personalized customer experience – no matter where people decide to shop.

“We should treat you as an individual, not generally, and we should know and be able to respond with what would appeal to you right off the bat,” recently retired Macy’s chairman and CEO Terry Lundgren said during a video interview with SAP at the Global Retailing Conference 2018 in April. “That’s all done through machine learning and repetition from customers … [with] shopping habits like you.”

Engaging individuals more effectively with machine learning

Machine learning is also helping retailers create more effective platforms that can distinguish between individual shoppers, according to Lundgren. Store websites, for example, could quickly display the most appropriate products for each person within one or two pages.

“There’s tremendous value in using technology and data to improve efficiency,” Lundgren said. “And machine learning is helping us become more intelligent.”

But the rise of omnichannel retailing could spell big trouble for those who focus only on e-commerce.

“There’s tremendous value in using technology and data to improve efficiency … and machine learning is helping us become more intelligent,” Lundgren said.

The e-commerce ceiling

“There’s an absolute ceiling for e-commerce,” MasterCard senior VP for market insights Sarah Quinlan said at GRC 2018. “If you have a separate marketing department for your online versus your in-store, that’s a real mistake.”

E-commerce will continue to grow, but it’s unlikely to overtake in-store shopping because we’re social creatures who crave a person-to-person customer experience (CX), according to Quinlan, whose team at MasterCard routinely analyzes massive volumes of consumer data. This is especially true after the Great Recession, which showed consumers that jobs, companies, and capital can be fleeting – but experiences with loyal family and friends are priceless.

“That is what drives their spending,” Quinlan said. “We are not going to stop traveling; we are not going to stop dining out together; we are not going to stop that whole social side.”

The best use of your data

“Think about how to collect that as much as possible, but not just for the sake of collecting data – think about how you’re going to utilize it,” Alilbaba Group VP for North America Lee McCabe said at GRC 2018. “Think like a tech company … [that] means you have a test-and-learn mentality.”

Most retailers wouldn’t survive a tech brawl with the likes of Amazon or Facebook, but they can still learn from them – and even partner with them, according to McCabe. Test everything – including what’s been successful for your organization over the past six months because it might not work over the next six months. If you’re experimenting with a new website, AB test everything on it.

“It’s very rare when you see big innovation, especially when comes to e-commerce,” McCabe said. “It’s the thousands of small ones you should be thinking about – how you can improve conversion by 0.001% by just changing one little thing.

“Doing that on a daily basis is how tech companies think.”

Don’t miss out on the consumer

“Artificial intelligence (AI) opens up a big opportunity to predict the purchasing behavior of in-store customers,” The Financial Express stated. “AI, through its sub-technologies such as machine learning and deep learning, can enable offline retailers to derive actionable insights from consumer data … to offer predictive and precise decisions for better customer experience.”

Data can also help retailers keep their focus on what’s really happening, as opposed to the mythical retail apocalypse, according to Macy’s Lundgren.

“So 90% of the transactions still take place in a brick-and-mortar – that’s going to go to 89, it’s going to go to 88,” Lundgren said during his GRC 2018 keynote. “It’s going to change, but if we don’t focus on how consumers are really shopping – if we get bogged down in believing that everybody shops online all of the time – we’re going to miss out on the consumer.”

For more on digital disruption in the retail industry, see The New Retail Reality: Moving Beyond Sales.

This story originally appeared on SAP Innovation Spotlight. Follow Derek on Twitter@DKlobucher

Derek Klobucher

About Derek Klobucher

Derek Klobucher is a Financial Services Writer and Editor for Sybase, an SAP Company. He has covered the exchanges in Chicago, European regulation in Dublin and banking legislation in Washington, D.C. He is a graduate of the University of Michigan in Ann Arbor and Northwestern University in Evanston.

AI Is Enabling An E-Mail Marketing Revolution

Andre Smith

Artificial intelligence (AI) is everywhere. It chooses songs to play that we should like (and writes them, too), answers customer support inquiries, and even helps to make better beer. It’s already clear that there are almost no limits to the applications for the technology or the advances it will enable. At this stage, AI works especially well in automating repetitive tasks and for applications that generate data that may be analyzed by machine learning algorithms. That makes it a natural fit for the marketing industry.

There’s one specific digital marketing channel that is already being boosted by AI, and it’s a decidedly old-school one – e-mail marketing. E-mail has been used as a marketing medium for almost all of its 46-year history. Over that time, the practice has evolved into a specialized and highly targeted endeavor that is part science and part art form.

To improve efficiency and increase conversion rates, AI is being integrated into the leading e-mail marketing software platforms. It is also turning up in some innovative tools for e-mail marketers. Here’s a look at some of the AI innovations that are reshaping e-mail marketing forever.

Standing out from the crowd

One of the biggest hurdles e-mail marketers face is how to overcome the sheer volume of competition they face. There are so many e-mails sent on an average day – over 235 billion – that it is very easy for marketing messages to get lost in the shuffle. Under those conditions, marketing e-mails have an average open rate of just 22%. That means the only part of most marketing messages that recipients ever see is the subject line. To increase open rates, Phrasee uses AI to craft effective subject lines and, by analyzing response rates, learns from each successive round of sent e-mails.

Precision timing

Artificial intelligence systems are excellent at noticing and exploiting patterns in data sets that they work from. When it comes to marketing, AI uses available data for behavioral analysis to fine-tune strategies for maximum effect. For e-mail marketers in particular, AI has improved response rates by finding an especially useful behavior pattern. By analyzing databases, Seventh Sense’s AI can identify precise times of day when individuals are likely to open e-mails. That information allows e-mail marketers to get their message in front of a target exactly when it’s most likely they will engage and take action to learn more.


The holy grail of marketing is the ability to establish a meaningful relationship with customers. In the past, e-mail marketers didn’t have the tools to communicate with customers on a personalized, individual basis, but AI is changing that, too. It’s creating the digital equivalent of having dedicated account managers for individual consumers, and it’s revolutionary. An excellent example of this approach may be found at Starbucks, which deployed an AI engine to manage its e-mail marketing that is capable of creating and selecting over 400,000 personalized e-mail variants per week. The system can create a specific offer based on individual customer behavior and deliver it when it is most likely to have the desired effect.

The next phase

As e-mail marketing platforms continue to integrate AI into their offerings, their results should continue to improve. Of course, that is good news for marketers as well as the customers they are targeting. It should make sure that end users receive only marketing messages and offers that are relevant and useful. That alone should increase response rates and decrease customer dissatisfaction. This could be the tip of the iceberg. As AI continues to advance, it is possible that one day users will look forward to receiving marketing e-mails instead of feeling annoyed by them, and that would really change e-mail marketing forever.

To learn more about the ways AI is changing industries, read Meet Machine Learning, Your New Favorite Colleague.

About Andre Smith

Andre Smith is an Internet, marketing, and e-commerce specialist with several years of experience in the industry. He has watched as the world of online business has grown and adapted to new technologies, and he has made it his mission to help keep businesses informed and up to date.

The Human Angle

By Jenny Dearborn, David Judge, Tom Raftery, and Neal Ungerleider

In a future teeming with robots and artificial intelligence, humans seem to be on the verge of being crowded out. But in reality the opposite is true.

To be successful, organizations need to become more human than ever.

Organizations that focus only on automation will automate away their competitive edge. The most successful will focus instead on skills that set them apart and that can’t be duplicated by AI or machine learning. Those skills can be summed up in one word: humanness.

You can see it in the numbers. According to David J. Deming of the Harvard Kennedy School, demand for jobs that require social skills has risen nearly 12 percentage points since 1980, while less-social jobs, such as computer coding, have declined by a little over 3 percentage points.

AI is in its infancy, which means that it cannot yet come close to duplicating our most human skills. Stefan van Duin and Naser Bakhshi, consultants at professional services company Deloitte, break down artificial intelligence into two types: narrow and general. Narrow AI is good at specific tasks, such as playing chess or identifying facial expressions. General AI, which can learn and solve complex, multifaceted problems the way a human being does, exists today only in the minds of futurists.

The only thing narrow artificial intelligence can do is automate. It can’t empathize. It can’t collaborate. It can’t innovate. Those abilities, if they ever come, are still a long way off. In the meantime, AI’s biggest value is in augmentation. When human beings work with AI tools, the process results in a sort of augmented intelligence. This augmented intelligence outperforms the work of either human beings or AI software tools on their own.

AI-powered tools will be the partners that free employees and management to tackle higher-level challenges.

Those challenges will, by default, be more human and social in nature because many rote, repetitive tasks will be automated away. Companies will find that developing fundamental human skills, such as critical thinking and problem solving, within the organization will take on a new importance. These skills can’t be automated and they won’t become process steps for algorithms anytime soon.

In a world where technology change is constant and unpredictable, those organizations that make the fullest use of uniquely human skills will win. These skills will be used in collaboration with both other humans and AI-fueled software and hardware tools. The degree of humanness an organization possesses will become a competitive advantage.

This means that today’s companies must think about hiring, training, and leading differently. Most of today’s corporate training programs focus on imparting specific knowledge that will likely become obsolete over time.

Instead of hiring for portfolios of specific subject knowledge, organizations should instead hire—and train—for more foundational skills, whose value can’t erode away as easily.

Recently, educational consulting firm Hanover Research looked at high-growth occupations identified by the U.S. Bureau of Labor Statistics and determined the core skills required in each of them based on a database that it had developed. The most valuable skills were active listening, speaking, and critical thinking—giving lie to the dismissive term soft skills. They’re not soft; they’re human.

This doesn’t mean that STEM skills won’t be important in the future. But organizations will find that their most valuable employees are those with both math and social skills.

That’s because technical skills will become more perishable as AI shifts the pace of technology change from linear to exponential. Employees will require constant retraining over time. For example, roughly half of the subject knowledge acquired during the first year of a four-year technical degree, such as computer science, is already outdated by the time students graduate, according to The Future of Jobs, a report from the World Economic Forum (WEF).

The WEF’s report further notes that “65% of children entering primary school today will ultimately end up working in jobs that don’t yet exist.” By contrast, human skills such as interpersonal communication and project management will remain consistent over the years.

For example, organizations already report that they are having difficulty finding people equipped for the Big Data era’s hot job: data scientist. That’s because data scientists need a combination of hard and soft skills. Data scientists can’t just be good programmers and statisticians; they also need to be intuitive and inquisitive and have good communication skills. We don’t expect all these qualities from our engineering graduates, nor from most of our employees.

But we need to start.

From Self-Help to Self-Skills

Even if most schools and employers have yet to see it, employees are starting to understand that their future viability depends on improving their innately human qualities. One of the most popular courses on Coursera, an online learning platform, is called Learning How to Learn. Created by the University of California, San Diego, the course is essentially a master class in human skills: students learn everything from memory techniques to dealing with procrastination and communicating complicated ideas, according to an article in The New York Times.

Attempting to teach employees how to make behavioral changes has always seemed off-limits to organizations—the province of private therapists, not corporate trainers. But that outlook is changing.

Although there is a longstanding assumption that social skills are innate, nothing is further from the truth. As the popularity of Learning How to Learn attests, human skills—everything from learning skills to communication skills to empathy—can, and indeed must, be taught.

These human skills are integral for training workers for a workplace where artificial intelligence and automation are part of the daily routine. According to the WEF’s New Vision for Education report, the skills that employees will need in the future fall into three primary categories:

  • Foundational literacies: These core skills needed for the coming age of robotics and AI include understanding the basics of math, science, computing, finance, civics, and culture. While mastery of every topic isn’t required, workers who have a basic comprehension of many different areas will be richly rewarded in the coming economy.
  • Competencies: Developing competencies requires mastering very human skills, such as active listening, critical thinking, problem solving, creativity, communication, and collaboration.
  • Character qualities: Over the next decade, employees will need to master the skills that will help them grasp changing job duties and responsibilities. This means learning the skills that help employees acquire curiosity, initiative, persistence, grit, adaptability, leadership, and social and cultural awareness.

The good news is that learning human skills is not completely divorced from how work is structured today. Yonatan Zunger, a Google engineer with a background working with AI, argues that there is a considerable need for human skills in the workplace already—especially in the tech world. Many employees are simply unaware that when they are working on complicated software or hardware projects, they are using empathy, strategic problem solving, intuition, and interpersonal communication.

The unconscious deployment of human skills takes place even more frequently when employees climb the corporate ladder into management. “This is closely tied to the deeper difference between junior and senior roles: a junior person’s job is to find answers to questions; a senior person’s job is to find the right questions to ask,” says Zunger.

Human skills will be crucial to navigating the AI-infused workplace. There will be no shortage of need for the right questions to ask.

One of the biggest changes narrow AI tools will bring to the workplace is an evolution in how work is performed. AI-based tools will automate repetitive tasks across a wide swath of industries, which means that the day-to-day work for many white-collar workers will become far more focused on tasks requiring problem solving and critical thinking. These tasks will present challenges centered on interpersonal collaboration, clear communication, and autonomous decision-making—all human skills.

Being More Human Is Hard

However, the human skills that are essential for tomorrow’s AI-ified workplace, such as interpersonal communication, project planning, and conflict management, require a different approach from traditional learning. Often, these skills don’t just require people to learn new facts and techniques; they also call for basic changes in the ways individuals behave on—and off—the job.

Attempting to teach employees how to make behavioral changes has always seemed off-limits to organizations—the province of private therapists, not corporate trainers. But that outlook is changing. As science gains a better understanding of how the human brain works, many behaviors that affect employees on the job are understood to be universal and natural rather than individual (see “Human Skills 101”).

Human Skills 101

As neuroscience has improved our understanding of the brain, human skills have become increasingly quantifiable—and teachable.

Though the term soft skills has managed to hang on in the popular lexicon, our understanding of these human skills has increased to the point where they aren’t soft at all: they are a clearly definable set of skills that are crucial for organizations in the AI era.

Active listening: Paying close attention when receiving information and drawing out more information than received in normal discourse

Critical thinking: Gathering, analyzing, and evaluating issues and information to come to an unbiased conclusion

Problem solving: Finding solutions to problems and understanding the steps used to solve the problem

Decision-making: Weighing the evidence and options at hand to determine a specific course of action

Monitoring: Paying close attention to an issue, topic, or interaction in order to retain information for the future

Coordination: Working with individuals and other groups to achieve common goals

Social perceptiveness: Inferring what others are thinking by observing them

Time management: Budgeting and allocating time for projects and goals and structuring schedules to minimize conflicts and maximize productivity

Creativity: Generating ideas, concepts, or inferences that can be used to create new things

Curiosity: Desiring to learn and understand new or unfamiliar concepts

Imagination: Conceiving and thinking about new ideas, concepts, or images

Storytelling: Building narratives and concepts out of both new and existing ideas

Experimentation: Trying out new ideas, theories, and activities

Ethics: Practicing rules and standards that guide conduct and guarantee rights and fairness

Empathy: Identifying and understanding the emotional states of others

Collaboration: Working with others, coordinating efforts, and sharing resources to accomplish a common project

Resiliency: Withstanding setbacks, avoiding discouragement, and persisting toward a larger goal

Resistance to change, for example, is now known to result from an involuntary chemical reaction in the brain known as the fight-or-flight response, not from a weakness of character. Scientists and psychologists have developed objective ways of identifying these kinds of behaviors and have come up with universally applicable ways for employees to learn how to deal with them.

Organizations that emphasize such individual behavioral traits as active listening, social perceptiveness, and experimentation will have both an easier transition to a workplace that uses AI tools and more success operating in it.

Framing behavioral training in ways that emphasize its practical application at work and in advancing career goals helps employees feel more comfortable confronting behavioral roadblocks without feeling bad about themselves or stigmatized by others. It also helps organizations see the potential ROI of investing in what has traditionally been dismissed as touchy-feely stuff.

In fact, offering objective means for examining inner behaviors and tools for modifying them is more beneficial than just leaving the job to employees. For example, according to research by psychologist Tasha Eurich, introspection, which is how most of us try to understand our behaviors, can actually be counterproductive.

Human beings are complex creatures. There is generally way too much going on inside our minds to be able to pinpoint the conscious and unconscious behaviors that drive us to act the way we do. We wind up inventing explanations—usually negative—for our behaviors, which can lead to anxiety and depression, according to Eurich’s research.

Structured, objective training can help employees improve their human skills without the negative side effects. At SAP, for example, we offer employees a course on conflict resolution that uses objective research techniques for determining what happens when people get into conflicts. Employees learn about the different conflict styles that researchers have identified and take an assessment to determine their own style of dealing with conflict. Then employees work in teams to discuss their different styles and work together to resolve a specific conflict that one of the group members is currently experiencing.

How Knowing One’s Self Helps the Organization

Courses like this are helpful not just for reducing conflicts between individuals and among teams (and improving organizational productivity); they also contribute to greater self-awareness, which is the basis for enabling people to take fullest advantage of their human skills.

Self-awareness is a powerful tool for improving performance at both the individual and organizational levels. Self-aware people are more confident and creative, make better decisions, build stronger relationships, and communicate more effectively. They are also less likely to lie, cheat, and steal, according to Eurich.

It naturally follows that such people make better employees and are more likely to be promoted. They also make more effective leaders with happier employees, which makes the organization more profitable, according to research by Atuma Okpara and Agwu M. Edwin.

There are two types of self-awareness, writes Eurich. One is having a clear view inside of one’s self: one’s own thoughts, feelings, behaviors, strengths, and weaknesses. The second type is understanding how others view us in terms of these same categories.

Interestingly, while we often assume that those who possess one type of awareness also possess the other, there is no direct correlation between the two. In fact, just 10% to 15% of people have both, according to a survey by Eurich. That means that the vast majority of us must learn one or the other—or both.

Gaining self-awareness is a process that can take many years. But training that gives employees the opportunity to examine their own behaviors against objective standards and gain feedback from expert instructors and peers can help speed up the journey. Just like the conflict management course, there are many ways to do this in a practical context that benefits employees and the organization alike.

For example, SAP also offers courses on building self-confidence, increasing trust with peers, creating connections with others, solving complex problems, and increasing resiliency in the face of difficult situations—all of which increase self-awareness in constructive ways. These human-skills courses are as popular with our employees as the hard-skill courses in new technologies or new programming techniques.

Depending on an organization’s size, budget, and goals, learning programs like these can include small group training, large lectures, online courses, licensing of third-party online content, reimbursement for students to attain certification, and many other models.

Human Skills Are the Constant

Automation and artificial intelligence will change the workplace in unpredictable ways. One thing we can predict, however, is that human skills will be needed more than ever.

The connection between conflict resolution skills, critical thinking courses, and the rise of AI-aided technology might not be immediately obvious. But these new AI tools are leading us down the path to a much more human workplace.

Employees will interact with their computers through voice conversations and image recognition. Machine learning will find unexpected correlations in massive amounts of data but empathy and creativity will be required for data scientists to figure out the right questions to ask. Interpersonal communication will become even more important as teams coordinate between offices, remote workplaces, and AI aides.

While the future might be filled with artificial intelligence, deep learning, and untold amounts of data, uniquely human capabilities will be the ones that matter. Machines can’t write a symphony, design a building, teach a college course, or manage a department. The future belongs to humans working with machines, and for that, you need human skills. D!

About the Authors

Jenny Dearborn is Chief Learning Officer at SAP.

David Judge is Vice President, SAP Leonardo, at SAP.

Tom Raftery is Global Vice President and Internet of Things Evangelist at SAP.

Neal Ungerleider is a Los Angeles-based technology journalist and consultant.

Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.


HR In The Age Of Digital Transformation

Neha Makkar Patnaik

HR has come a long way from the days of being called Personnel Management. It’s now known as People & Culture, Employee Experience, or simply People, and the changes in the last few years have been especially far-reaching, to say the least; seismic even.

While focused until recently on topics like efficiency and direct access to HR data and services for individual employees, a new and expanded HR transformation is underway, led by employee experience, cloud capabilities including mobile and continuous upgrades, a renewed focus on talent, as well as the availability of new digital technologies like machine learning and artificial intelligence. These capabilities are enabling HR re-imagine new ways of delivering HR services and strategies throughout the organization. For example:

  • Use advanced prediction and optimization technologies to shift focus from time-consuming candidate-screening processes to innovative HR strategies and business models that support growth
  • Help employees with tailored career paths, push personalized learning recommendations, suggest mentors and mentees based on skills and competencies
  • Predict flight risk of employees and prescribe mitigation strategies for at-risk talent
  • Leverage intelligent management of high-volume, rules-based events with predictions and recommendations

Whereas the traditional view of HR transformation was all about doing existing things better, the next generation of HR transformation is focused on doing completely new things.

These new digital aspects of HR transformation do not replace the existing focus on automation and efficiency. They work hand in hand and, in many cases, digital technologies can further augment automation. Digital approaches are becoming increasingly important, and a digital HR strategy must be a key component of HR’s overall strategy and, therefore, the business strategy.

For years, HR had been working behind a wall, finally got a seat at the table, and now it’s imperative for CHROs to be a strategic partner in the organization’s digital journey. This is what McKinsey calls “Leading with the G-3” in An Agenda for the Talent-First CEO, in which the CEO, CFO, and CHRO (i.e., the “G-3”) ensure HR and finance work in tandem, with the CEO being the linchpin and the person who ensures the talent agenda is threaded into business decisions and not a passive response or afterthought.

However, technology and executive alignment aren’t enough to drive a company’s digital transformation. At the heart of every organization are its people – its most expensive and valuable asset. Keeping them engaged and motivated fosters an innovation culture that is essential for success. This Gallup study reveals that a whopping 85% of employees worldwide are performing below their potential due to engagement issues.

HR experiences that are based on consumer-grade digital experiences along with a focus on the employee’s personal and professional well-being will help engage every worker, inspiring them to do their best and helping them turn every organization’s purpose into performance. Because, we believe, purpose drives people and people drive business results.

Embark on your HR transformation journey

Has your HR organization created a roadmap to support the transformation agenda? Start a discussion with your team about the current and desired state of HR processes using the framework with this white paper.

Also, read SAP’s HR transformation story within the broader context of SAP’s own transformation.

About Neha Makkar Patnaik

Neha Makkar Patnaik is a principal consultant at SAP Labs India. As part of the Digital Transformation Office, Neha is responsible for articulating the value proposition for digitizing the office of the CHRO in alignment with the overall strategic priorities of the organization. She also focuses on thought leadership and value-based selling programs for retail and consumer products industries.