Digital Means To Re-Imagine

Merijn Helle

In a recent article, McKinsey advocates the adoption of a two-speed IT environment to go digital. The authors state that “delivering an enriched customer experience requires a new digital architecture running alongside legacy systems.”

Yes, the article and its recommendations generally hit the mark: agile, scrum, small podular teams, and a modular approach to development in short iterative cycles with a beta-testing, fail-fast mindset. All the buzzwords from Eric Ries’ 2011 book The Lean Startup are represented. It’s a proven method, we know it works. We also know that not all enterprise systems – nor the people in the organization – can run at that clock-speed and some should maintain a slower cycle of change.

However, the fallacy of the statement lies in the use of the term legacy. The Oxford dictionary defines “legacy” in this context as “software or hardware that has been superseded but is difficult to replace because of its wide use.” It leads readers to believe that with a legacy core – say a mainframe patchwork or an ERP that hasn’t been upgraded in seven years – they can adopt a two-speed IT environment and tackle the digital age head on. This could not be further from the truth. That form of two-speed IT represents the fast track to high cost and short-term success coupled with a growing complexity that will increasingly thwart the very objective it portrays to achieve: speed to innovation.

In reality, the core supporting your business should never be considered legacy – it is the foundation upon which an organization operates. The operating model is embedded in it, and while that will change over time, it supports your business. The day you consider it legacy should be the day you start making plans to replace it.

All the focus in digital is on the customer experience, yet the digital economy mandates a broader shift in thinking than just digitizing the customer journey. It is naïve to think that a mobile experience coupled with some digital marketing and social initiatives define the digital enterprise. Digital needs to be woven into the fabric of the organization from sourcing and manufacturing to distribution and channel-agnostic but channel-aware services, looking through organizations and channels at the entire value chain.

Digital means to re-imagine

First, digital means re-imagining the business model – moving from selling products to selling services, from transactions to subscriptions, or shifting from wholesale to direct-to-consumer.

Second, it means re-imagining business processes – for example, taking back control of the promotional calendar pushed on retailers by fast-moving consumer brands (FMCBs) and ensuring offers that are aligned to the category strategy and are valued by the customer.

Third, it means re-imagining the customer experience – focused on presenting a seamless, consistent, authentic view of your brand.

A digital core

To facilitate and enable that, every organization needs a digital core.

Burberry has a digital core and, without it, they would never have been able to take back the licenses for Spain and Japan and restore their brand image. With it, they have been able to merge digital and physical and lead the way in re-imagining the associate and customer experience across all channels. With it, they are expanding into beauty and fragrance and embracing a completely new business model.

Decathlon/Oxylane also has a digital core. With over 850 stores in 27 countries across three continents and 70% of merchandise from its own labels, real-time visibility of the supply chain and inventory from sourcing location to store is crucial. This allows them to optimize allocation of stock from production runs at the source based on local current sell-through rates and the latest forecasts. They have now introduced SKU-level RFID on 80% of items, resulting in extensive benefits in the supply chain and as the foundation for a vastly enriched in-store experience.

Tommy Hilfiger Europe has a digital core. Tommy Hilfiger is launching digital showrooms across Europe in a bid to completely re-imagine the showroom environment where retailers come to buy collections for the upcoming season.

Jeanne Ross at MIT’s Center for Information Systems Research states: “In the 21st century no business can survive without a digital core.”

A true digital core supports the business in any direction it chooses to take, and does so without decelerating the momentum of change. The core also forms the bedrock for the innovation track of two-speed IT, and that is why collaboration between the two modes of IT is crucial to sustained change and innovation.

Perhaps McKinsey should heed Aesop’s Fable of the Tortoise and the Hare and, in a twist to the story, call for an environment of collaboration – it is bound to trump speed alone.

Companies must engage with broad networks and rethink their supply chains in order to remain relevant in today’s business landscape. Gain more insight in Our Digital Planet: The Democracy of Collaborative Networks.

Comments

About Merijn Helle

Merijn Helle is the vice president of Retail and Fashion at SAP. He is responsible for strategy, business development, industry value engineering, and go-to-market for Retail in North America.

Digitalist Flash Briefing: The Future Of Machine Learning-Enabled Analytics

Bonnie D. Graham

Today’s briefing looks at how algorithms are taking over the field of predictive technology and how predictive analytics, artificial intelligence, and machine learning will totally transform how companies do business.

  • Amazon Echo or Dot: Enable the “Digitalist” flash briefing skill, and ask Alexa to “play my flash briefings” on every business day.
  • Alexa on a mobile device:
    • Download the Amazon Alexa app: Select Skills, and search “Digitalist”. Then, select Digitalist, and click on the Enable button.
    • Download the Amazon app: Click on the microphone icon and say “Play my flash briefing.”

Find and listen to previous Flash Briefings on Digitalistmag.com.

Read more on today’s topic

Comments

About Bonnie D. Graham

Bonnie D. Graham is the creator, producer and host/moderator of 29 Game-Changers Radio series presented by SAP, bringing technology and business strategy thought leadership panel discussions to a global audience via the Business Channel on World Talk Radio. A broadcast journalist with nearly 20 years in media production and hosting, Bonnie has held marketing communications management roles in the business software, financial services, and real estate industries. She calls SAP Radio her "dream job". Listen to Coffee Break with Game-Changers.

Why The “U” In Human Will Matter Even More In An AI-Infused World

Vivek Bapat

There has been much debate recently on whether artificial intelligence (AI) is going to take over the world. The utopian view – articulated by Bill Gates and others – is that it will become the ultimate form of enhancing human potential. The dystopian view – upheld by Elon Musk – is that it will the ultimate form of human destruction. But what about the impact of AI on the future of leadership?

Strong and effective leadership requires three timeless traits: IQ, EQ, and CQ.

  • Intelligence quotient (IQ) has historically been the central trait effective leaders were measured upon. The term “IQ” was coined more than a century ago by German psychologist William Stern as a way to quantify and compare the results of multiple standardized tests that focused on mathematical, logical, and analytical reasoning. In many cases, high IQs are still attributed as essential ingredients to professional success.
  • Emotional quotient (EQ) was introduced as a leadership trait by Rutgers Psychologist, Daniel Goleman. In his piece, “What makes a leader,” he suggested that while IQ was essential, it was simply becoming table-stakes for leadership. In the new world where employee engagement matters more than ever, leaders need to have a high EQ to relate to others on an empathic level. EQ is different than IQ, as it’s a rare combination of self-awareness, self-regulation, and motivation that spans beyond money or status. To obtain a high EQ, it’s crucial to have strong empathetic and social skills.
  • Cultural quotient (CQ) is defined as the natural ability to interpret someone’s unfamiliar and ambiguous gestures. As businesses become more global, operating across many countries with countless languages, this specific form of social skills is becoming more desirable as a leadership trait. Tsedal Neely describes it as a global work orientation, which consists of five attitudes and behaviors that drive success.

Today, a leader’s smarts are often a combination of all three – quantitative reasoning and logic, emotional understanding and empathy and cultural context, applied uniquely to each leadership situation. Yet with AI on the rise, IQ can be potentially democratized. Advancements in technology allow for computers to pull facts, figures, and information of all sorts in mere seconds. This real-time ability to generate data, coupled with algorithms and deep learning, makes this aspect of human intelligence mainstream, affordable, and potentially available to anyone with the touch of a button.

However, emotional and cultural intelligence are fundamental parts of what makes us human. At a high level, these are the values that define us as individuals. It defines the “U” in “human.” But can you teach human values like empathy and cultural intelligence to a robot?

Cultural intelligence is much more than simply knowing multiple languages and being well traveled. Emotional intelligence is much more than recognizing human emotion and relating to others easily. While AI is beginning to push into the realms of both, there is enormous potential in the way it develops. For example, new businesses are being created around interpreting human reaction. One significant facial recognition company offers “emotion as a service,” identifying anger, sadness, disgust, joy, surprise, fear, and contempt simply by using data.

It’s become vital in today’s global landscape to interact with other people successfully despite fundamental differences in language, background, and location. The people we work with on a daily basis embody cultural roots of every kind: societal, religious, and generational, to name a few. Often our misunderstandings generally have less to do with logic than with creating and interpreting different frames of reference.

I recently completed a project across a team of diverse colleagues from Germany, United Arab Emirates, South Africa, Brazil, Sri Lanka, and the U.S. I found that cultural and emotional context mattered more than I imagined. As the team worked towards creating an action plan, the choice of words, tonality, delivery, and facial expressions were all interpreted differently by every person in the room. What one person felt was rational and objective, another felt was condescending. People experience hundreds, if not thousands, of these interactions every day. In every interaction, a new set of context must be considered.

Advancements in AI have already provided us with an unprecedented set of advanced intelligence and tools, but ultimately it will be up to humans to interpret and act on that context. Applying cultural intelligence to an interaction might be incredibly subtle – so instantaneous and complex that even the best machine-based pattern recognition is not going to be able to handle the challenge.

Let’s face it, it’s not up to Siri to tell us what someone else is thinking and how likely they are to behave a certain way in the next moment. Our need for cultural awareness and adaptation will only grow in importance as our pocket assistants and technologies become increasingly capable of knowledge and analysis. Of all the unique human dimensions and abilities, it may be our EQ and CQ that make AI an art, not just a science.

For more on the impact of emerging technology on decision making and more, see Why Digital Ethics Matter.

This article originally appeared on Common Sense Unplugged.

Comments

About Vivek Bapat

Vivek Bapat is the Senior Vice President, Global Head of Marketing Strategy and Thought Leadership, at SAP. He leads SAP's Global Marketing Strategy, Messaging, Positioning and related Thought Leadership initiatives.

More Than Noise: Digital Trends That Are Bigger Than You Think

By Maurizio Cattaneo, David Delaney, Volker Hildebrand, and Neal Ungerleider

In the tech world in 2017, several trends emerged as signals amid the noise, signifying much larger changes to come.

As we noted in last year’s More Than Noise list, things are changing—and the changes are occurring in ways that don’t necessarily fit into the prevailing narrative.

While many of 2017’s signals have a dark tint to them, perhaps reflecting the times we live in, we have sought out some rays of light to illuminate the way forward. The following signals differ considerably, but understanding them can help guide businesses in the right direction for 2018 and beyond.

When a team of psychologists, linguists, and software engineers created Woebot, an AI chatbot that helps people learn cognitive behavioral therapy techniques for managing mental health issues like anxiety and depression, they did something unusual, at least when it comes to chatbots: they submitted it for peer review.

Stanford University researchers recruited a sample group of 70 college-age participants on social media to take part in a randomized control study of Woebot. The researchers found that their creation was useful for improving anxiety and depression symptoms. A study of the user interaction with the bot was submitted for peer review and published in the Journal of Medical Internet Research Mental Health in June 2017.

While Woebot may not revolutionize the field of psychology, it could change the way we view AI development. Well-known figures such as Elon Musk and Bill Gates have expressed concerns that artificial intelligence is essentially ungovernable. Peer review, such as with the Stanford study, is one way to approach this challenge and figure out how to properly evaluate and find a place for these software programs.

The healthcare community could be onto something. We’ve already seen instances where AI chatbots have spun out of control, such as when internet trolls trained Microsoft’s Tay to become a hate-spewing misanthrope. Bots are only as good as their design; making sure they stay on message and don’t act in unexpected ways is crucial.

This is especially true in healthcare. When chatbots are offering therapeutic services, they must be properly designed, vetted, and tested to maintain patient safety.

It may be prudent to apply the same level of caution to a business setting. By treating chatbots as if they’re akin to medicine or drugs, we have a model for thorough vetting that, while not perfect, is generally effective and time tested.

It may seem like overkill to think of chatbots that manage pizza orders or help resolve parking tickets as potential health threats. But it’s already clear that AI can have unintended side effects that could extend far beyond Tay’s loathsome behavior.

For example, in July, Facebook shut down an experiment where it challenged two AIs to negotiate with each other over a trade. When the experiment began, the two chatbots quickly went rogue, developing linguistic shortcuts to reduce negotiating time and leaving their creators unable to understand what they were saying.

Do we want AIs interacting in a secret language because designers didn’t fully understand what they were designing?

The implications are chilling. Do we want AIs interacting in a secret language because designers didn’t fully understand what they were designing?

In this context, the healthcare community’s conservative approach doesn’t seem so farfetched. Woebot could ultimately become an example of the kind of oversight that’s needed for all AIs.

Meanwhile, it’s clear that chatbots have great potential in healthcare—not just for treating mental health issues but for helping patients understand symptoms, build treatment regimens, and more. They could also help unclog barriers to healthcare, which is plagued worldwide by high prices, long wait times, and other challenges. While they are not a substitute for actual humans, chatbots can be used by anyone with a computer or smartphone, 24 hours a day, seven days a week, regardless of financial status.

Finding the right governance for AI development won’t happen overnight. But peer review, extensive internal quality analysis, and other processes will go a long way to ensuring bots function as expected. Otherwise, companies and their customers could pay a big price.

Elon Musk is an expert at dominating the news cycle with his sci-fi premonitions about space travel and high-speed hyperloops. However, he captured media attention in Australia in April 2017 for something much more down to earth: how to deal with blackouts and power outages.

In 2016, a massive blackout hit the state of South Australia following a storm. Although power was restored quickly in Adelaide, the capital, people in the wide stretches of arid desert that surround it spent days waiting for the power to return. That hit South Australia’s wine and livestock industries especially hard.

South Australia’s electrical grid currently gets more than half of its energy from wind and solar, with coal and gas plants acting as backups for when the sun hides or the wind doesn’t blow, according to ABC News Australia. But this network is vulnerable to sudden loss of generation—which is exactly what happened in the storm that caused the 2016 blackout, when tornadoes ripped through some key transmission lines. Getting the system back on stable footing has been an issue ever since.

Displaying his usual talent for showmanship, Musk stepped in and promised to build the world’s largest battery to store backup energy for the network—and he pledged to complete it within 100 days of signing the contract or the battery would be free. Pen met paper with South Australia and French utility Neoen in September. As of press time in November, construction was underway.

For South Australia, the Tesla deal offers an easy and secure way to store renewable energy. Tesla’s 129 MWh battery will be the most powerful battery system in the world by 60% once completed, according to Gizmodo. The battery, which is stationed at a wind farm, will cover temporary drops in wind power and kick in to help conventional gas and coal plants balance generation with demand across the network. South Australian citizens and politicians largely support the project, which Tesla claims will be able to power 30,000 homes.

Until Musk made his bold promise, batteries did not figure much in renewable energy networks, mostly because they just aren’t that good. They have limited charges, are difficult to build, and are difficult to manage. Utilities also worry about relying on the same lithium-ion battery technology as cellphone makers like Samsung, whose Galaxy Note 7 had to be recalled in 2016 after some defective batteries burst into flames, according to CNET.

However, when made right, the batteries are safe. It’s just that they’ve traditionally been too expensive for large-scale uses such as renewable power storage. But battery innovations such as Tesla’s could radically change how we power the economy. According to a study that appeared this year in Nature, the continued drop in the cost of battery storage has made renewable energy price-competitive with traditional fossil fuels.

This is a massive shift. Or, as David Roberts of news site Vox puts it, “Batteries are soon going to disrupt power markets at all scales.” Furthermore, if the cost of batteries continues to drop, supply chains could experience radical energy cost savings. This could disrupt energy utilities, manufacturing, transportation, and construction, to name just a few, and create many opportunities while changing established business models. (For more on how renewable energy will affect business, read the feature “Tick Tock” in this issue.)

Battery research and development has become big business. Thanks to electric cars and powerful smartphones, there has been incredible pressure to make more powerful batteries that last longer between charges.

The proof of this is in the R&D funding pudding. A Brookings Institution report notes that both the Chinese and U.S. governments offer generous subsidies for lithium-ion battery advancement. Automakers such as Daimler and BMW have established divisions marketing residential and commercial energy storage products. Boeing, Airbus, Rolls-Royce, and General Electric are all experimenting with various electric propulsion systems for aircraft—which means that hybrid airplanes are also a possibility.

Meanwhile, governments around the world are accelerating battery research investment by banning internal combustion vehicles. Britain, France, India, and Norway are seeking to go all electric as early as 2025 and by 2040 at the latest.

In the meantime, expect huge investment and new battery innovation from interested parties across industries that all share a stake in the outcome. This past September, for example, Volkswagen announced a €50 billion research investment in batteries to help bring 300 electric vehicle models to market by 2030.

At first, it sounds like a narrative device from a science fiction novel or a particularly bad urban legend.

Powerful cameras in several Chinese cities capture photographs of jaywalkers as they cross the street and, several minutes later, display their photograph, name, and home address on a large screen posted at the intersection. Several days later, a summons appears in the offender’s mailbox demanding payment of a fine or fulfillment of community service.

As Orwellian as it seems, this technology is very real for residents of Jinan and several other Chinese cities. According to a Xinhua interview with Li Yong of the Jinan traffic police, “Since the new technology has been adopted, the cases of jaywalking have been reduced from 200 to 20 each day at the major intersection of Jingshi and Shungeng roads.”

The sophisticated cameras and facial recognition systems already used in China—and their near–real-time public shaming—are an example of how machine learning, mobile phone surveillance, and internet activity tracking are being used to censor and control populations. Most worryingly, the prospect of real-time surveillance makes running surveillance states such as the former East Germany and current North Korea much more financially efficient.

According to a 2015 discussion paper by the Institute for the Study of Labor, a German research center, by the 1980s almost 0.5% of the East German population was directly employed by the Stasi, the country’s state security service and secret police—1 for every 166 citizens. An additional 1.1% of the population (1 for every 66 citizens) were working as unofficial informers, which represented a massive economic drain. Automated, real-time, algorithm-driven monitoring could potentially drive the cost of controlling the population down substantially in police states—and elsewhere.

We could see a radical new era of censorship that is much more manipulative than anything that has come before. Previously, dissidents were identified when investigators manually combed through photos, read writings, or listened in on phone calls. Real-time algorithmic monitoring means that acts of perceived defiance can be identified and deleted in the moment and their perpetrators marked for swift judgment before they can make an impression on others.

Businesses need to be aware of the wider trend toward real-time, automated censorship and how it might be used in both commercial and governmental settings. These tools can easily be used in countries with unstable political dynamics and could become a real concern for businesses that operate across borders. Businesses must learn to educate and protect employees when technology can censor and punish in real time.

Indeed, the technologies used for this kind of repression could be easily adapted from those that have already been developed for businesses. For instance, both Facebook and Google use near–real-time facial identification algorithms that automatically identify people in images uploaded by users—which helps the companies build out their social graphs and target users with profitable advertisements. Automated algorithms also flag Facebook posts that potentially violate the company’s terms of service.

China is already using these technologies to control its own people in ways that are largely hidden to outsiders.

According to a report by the University of Toronto’s Citizen Lab, the popular Chinese social network WeChat operates under a policy its authors call “One App, Two Systems.” Users with Chinese phone numbers are subjected to dynamic keyword censorship that changes depending on current events and whether a user is in a private chat or in a group. Depending on the political winds, users are blocked from accessing a range of websites that report critically on China through WeChat’s internal browser. Non-Chinese users, however, are not subject to any of these restrictions.

The censorship is also designed to be invisible. Messages are blocked without any user notification, and China has intermittently blocked WhatsApp and other foreign social networks. As a result, Chinese users are steered toward national social networks, which are more compliant with government pressure.

China’s policies play into a larger global trend: the nationalization of the internet. China, Russia, the European Union, and the United States have all adopted different approaches to censorship, user privacy, and surveillance. Although there are social networks such as WeChat or Russia’s VKontakte that are popular in primarily one country, nationalizing the internet challenges users of multinational services such as Facebook and YouTube. These different approaches, which impact everything from data safe harbor laws to legal consequences for posting inflammatory material, have implications for businesses working in multiple countries, as well.

For instance, Twitter is legally obligated to hide Nazi and neo-fascist imagery and some tweets in Germany and France—but not elsewhere. YouTube was officially banned in Turkey for two years because of videos a Turkish court deemed “insulting to the memory of Mustafa Kemal Atatürk,” father of modern Turkey. In Russia, Google must keep Russian users’ personal data on servers located inside Russia to comply with government policy.

While China is a pioneer in the field of instant censorship, tech companies in the United States are matching China’s progress, which could potentially have a chilling effect on democracy. In 2016, Apple applied for a patent on technology that censors audio streams in real time—automating the previously manual process of censoring curse words in streaming audio.

In March, after U.S. President Donald Trump told Fox News, “I think maybe I wouldn’t be [president] if it wasn’t for Twitter,” Twitter founder Evan “Ev” Williams did something highly unusual for the creator of a massive social network.

He apologized.

Speaking with David Streitfeld of The New York Times, Williams said, “It’s a very bad thing, Twitter’s role in that. If it’s true that he wouldn’t be president if it weren’t for Twitter, then yeah, I’m sorry.”

Entrepreneurs tend to be very proud of their innovations. Williams, however, offers a far more ambivalent response to his creation’s success. Much of the 2016 presidential election’s rancor was fueled by Twitter, and the instant gratification of Twitter attracts trolls, bullies, and bigots just as easily as it attracts politicians, celebrities, comedians, and sports fans.

Services such as Twitter, Facebook, YouTube, and Instagram are designed through a mix of look and feel, algorithmic wizardry, and psychological techniques to hang on to users for as long as possible—which helps the services sell more advertisements and make more money. Toxic political discourse and online harassment are unintended side effects of the economic-driven urge to keep users engaged no matter what.

Keeping users’ eyeballs on their screens requires endless hours of multivariate testing, user research, and algorithm refinement. For instance, Casey Newton of tech publication The Verge notes that Google Brain, Google’s AI division, plays a key part in generating YouTube’s video recommendations.

According to Jim McFadden, the technical lead for YouTube recommendations, “Before, if I watch this video from a comedian, our recommendations were pretty good at saying, here’s another one just like it,” he told Newton. “But the Google Brain model figures out other comedians who are similar but not exactly the same—even more adjacent relationships. It’s able to see patterns that are less obvious.”

A never-ending flow of content that is interesting without being repetitive is harder to resist. With users glued to online services, addiction and other behavioral problems occur to an unhealthy degree. According to a 2016 poll by nonprofit research company Common Sense Media, 50% of American teenagers believe they are addicted to their smartphones.

This pattern is extending into the workplace. Seventy-five percent of companies told research company Harris Poll in 2016 that two or more hours a day are lost in productivity because employees are distracted. The number one reason? Cellphones and texting, according to 55% of those companies surveyed. Another 41% pointed to the internet.

Tristan Harris, a former design ethicist at Google, argues that many product designers for online services try to exploit psychological vulnerabilities in a bid to keep users engaged for longer periods. Harris refers to an iPhone as “a slot machine in my pocket” and argues that user interface (UI) and user experience (UX) designers need to adopt something akin to a Hippocratic Oath to stop exploiting users’ psychological vulnerabilities.

In fact, there is an entire school of study devoted to “dark UX”—small design tweaks to increase profits. These can be as innocuous as a “Buy Now” button in a visually pleasing color or as controversial as when Facebook tweaked its algorithm in 2012 to show a randomly selected group of almost 700,000 users (who had not given their permission) newsfeeds that skewed more positive to some users and more negative to others to gauge the impact on their respective emotional states, according to an article in Wired.

As computers, smartphones, and televisions come ever closer to convergence, these issues matter increasingly to businesses. Some of the universal side effects of addiction are lost productivity at work and poor health. Businesses should offer training and help for employees who can’t stop checking their smartphones.

Mindfulness-centered mobile apps such as Headspace, Calm, and Forest offer one way to break the habit. Users can also choose to break internet addiction by going for a walk, turning their computers off, or using tools like StayFocusd or Freedom to block addictive websites or apps.

Most importantly, companies in the business of creating tech products need to design software and hardware that discourages addictive behavior. This means avoiding bad designs that emphasize engagement metrics over human health. A world of advertising preroll showing up on smart refrigerator touchscreens at 2 a.m. benefits no one.

According to a 2014 study in Cyberpsychology, Behavior and Social Networking, approximately 6% of the world’s population suffers from internet addiction to one degree or another. As more users in emerging economies gain access to cheap data, smartphones, and laptops, that percentage will only increase. For businesses, getting a head start on stopping internet addiction will make employees happier and more productive. D!


About the Authors

Maurizio Cattaneo is Director, Delivery Execution, Energy, and Natural Resources, at SAP.

David Delaney is Global Vice President and Chief Medical Officer, SAP Health.

Volker Hildebrand is Global Vice President for SAP Hybris solutions.

Neal Ungerleider is a Los Angeles-based technology journalist and consultant.


Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.

Comments

Tags:

The “Purpose” Of Data

Timo Elliott

I’ve always been passionate about the ability of data and analytics to transform the world.

It has always seemed to me to be the closest thing we have to modern-day magic, with its ability to conjure up benefits from thin air. Over the last quarter century, I’ve had the honor of working with thousands of “wizards” in organizations around the world, turning information into value in every aspect of our daily lives.

The projects have been as simple as Disney using real-time analytics to move staff from one store to another to keep lines to a minimum: shorter lines led to bigger profits (you’re more likely to buy that Winnie-the-Pooh bear if there’s only one person ahead of you), but also higher customer satisfaction and happier children.

Or they’ve been as complex as the Port of Hamburg: constrained by its urban location, it couldn’t expand to meet the growing volume of traffic. But better use of information meant it was able to dramatically increase throughput – while improving the life of city residents with reduced pollution (less truck idling) and fewer traffic jams (smart lighting that automatically adapts to bridge closures).

I’ve seen analytics used to figure out why cheese was curdling in Wisconsin; count the number of bubbles in Champagne; keep track of excessive fouls in Swiss soccer, track bear sightings in Canada; avoid flooding in Argentina; detect chewing-gum-blocked metro machines in Brussels; uncover networks of tax fraud in Australia; stop trains from being stranded in the middle of the Tuscan countryside; find air travelers exposed to radioactive substances; help abused pets find new homes; find the best people to respond to hurricanes and other disasters; and much, much more.

The reality is that there’s a lot of inefficiency in the world. Most of the time it’s invisible, or we take it for granted. But analytics can help us shine a light on what’s going on, expose the problems, and show us what we can do better – in almost every area of human endeavor.

Data is a powerful weapon. Analytics isn’t just an opportunity to reduce costs and increase profits – it’s an opportunity to make the world a better place.

So to paraphrase a famous world leader, next time you embark on a new project:

“Ask not what you can do with your data, ask what your data can do for the world.”

What are your favorite “magical” examples, where analytics helped create win/win/win situations?

Download our free eBook for more insight on How the Port of Hamburg Doubled Capacity with Digitization.

This article originally appeared on Digital Business & Business Analytics.

Comments

Timo Elliott

About Timo Elliott

Timo Elliott is an Innovation Evangelist for SAP and a passionate advocate of innovation, digital business, analytics, and artificial intelligence. He was the eighth employee of BusinessObjects and for the last 25 years he has worked closely with SAP customers around the world on new technology directions and their impact on real-world organizations. His articles have appeared in publications such as Harvard Business Review, Forbes, ZDNet, The Guardian, and Digitalist Magazine. He has worked in the UK, Hong Kong, New Zealand, and Silicon Valley, and currently lives in Paris, France. He has a degree in Econometrics and a patent in mobile analytics.