Sections

Chain Of Tools: Lessons From The Front Lines

Eric Piscini , Gys Hyman and Wendy Henry

Do your customers trust you? And do you trust them? The emerging trust economy depends on each transacting party’s reputation and digital identity—and that’s where blockchain comes in. The technology behind digital contracts transforms reputation into a useful, manageable attribute.

Part 3 of a 5-part series. Read Part 1, Part 2, Part 4, and Part 5.

You can also read the full article or download a copy at Deloitte University Press.

In the greater context of the trust economy, blockchain is not a cure-all for the challenges of establishing and maintaining trust. As a technology, it is still maturing; standards and best practices do not yet exist. The very features that protect blockchain against theft and fraud could also drive overhead if not correctly implemented—a potential obstacle on the path toward individual deployment of the technology. Finally, legal recognition of contracts and digitally transferred assets is currently limited. The good news is that organizations can take steps now to mitigate, if not fully address, these challenges.

Some pundits are likening the emergence of blockchain technology to the early days of the World Wide Web, and for good reason. In 1991, the foundations for distributed, open communication were being laid—network infrastructure, protocols, and a variety of enabling technologies, from javascript to search engines to browsers. There were also new enterprise software suites that made it possible to take advantage of digital marketing, commerce, and linked supply networks, among countless other opportunities. Hyper-investment chased perceived opportunity, even as specific scenarios describing how the technology would change the world had not yet been defined.

Blockchain may lead to even greater disruption by becoming the new protocol for digital assets, exchanges, contracts, and perhaps most importantly, identity and trust. With efforts to create a new stack for all facets of blockchain attracting investment, the time is now for enterprises to explore the underlying technology, and to envision how blockchain may be used for more than just the easy use cases of cost savings and efficiency within their own boundaries. Take a hard look at your core business, surrounding ecosystems, and even the long-established mechanics of the way your industry operates, and then direct your experimentation toward a truly innovative path.

Smart play with smart contracts

Delaware, home to more than 60 percent of Fortune 500 firms, is teaming up with Symbiont, a distributed ledger and smart securities vendor, to launch a blockchain-based smart contracts system. Smart contracts are protocols that allow blockchain technology to record, manage, and update encrypted information in a distributed ledger automatically, without intermediaries.1 The system will enable participants to digitize incorporation procedures such as registering companies, tracking shares, and handling shareholder communications. For companies incorporated in Delaware, this could make registration and follow-up steps in the process faster, less expensive, and more transparent.

At the heart of Symbiont’s solution is an immutable, append-only database, which provides a single, global accounting ledger for system participants. Transaction history is appended and replicated across all network nodes, with access permissions restricted down to the specific organization or even user level. Each company registering with the state of Delaware signs in with a private key that verifies its identity to other participants. Autonomous recordkeeping will trigger notifications when actions are required, such as new filing requirements when thresholds are met or when documents approach expiration.

Project teams are taking a two-pronged approach to deployment. First, they will rebuild the public archives using a distributed ledger for storage and “smart records” to automate the control and encryption of public and private records. This critical step will make it possible for digital documents to be shared in multiple locations and, importantly, be recovered in the event of system failure.  Next, they will place incorporation and other legal documents on a smart contract-enabled blockchain and establish operational procedures for using and maintaining them.

This deployment is part of a larger effort called the Delaware Blockchain Initiative, which will lay the legal and technological groundwork needed to support blockchain-based systems going forward. The governor’s office is currently collaborating with the legislature to build the legal framework required to support blockchain-based incorporation processes and digitally originated securities.2 “We see companies allocate significant financial resources to correct and validate stock authorization and issuance errors that could have been correctly and seamlessly handled from the outset,” says Delaware Gov. Jack Markell. “Distributed ledger [transactions] hold the promise of immediate clearance, immediate settlement, and bring with them dramatic increases in efficiency and speed in sophisticated commercial transactions.”

Swift: From middleman to enabler

Blockchain has the potential to rewire the financial industry and beyond, generating cost savings and new revenue opportunities. Payment rails have been the subject of various blockchain-driven initiatives. Payment transaction firm SWIFT has been testing use cases to demonstrate how its 11,000-plus member financial institutions can optimize the technology’s transparency while maintaining the industry’s privacy requirements in the emerging trust economy.

The organization’s new R&D arm, SWIFT Innovation Labs, was launched with an eye on eventually providing distributor ledger technology (DLT)-based services that leverage its standards expertise, strong governance, and security track record. DLT, it says, would provide trust in a disseminated system, efficiency in broadcasting information, complete traceability of transactions, simplified reconciliation, and high resiliency.

SWIFT’s team of 10 experts in standards, securities, architecture, and application development built a bond lifecycle application that tracks and manages bonds from issuance to coupon payments to maturity at an ecosystem level rather than by individual company. SWIFT applied its own ISO 20022 methodology to DLT to gauge interoperability with legacy systems in cases where all stakeholders were not on the distributed ledger.

The bond lifecycle proof-of-concept was built using an Eris/Tendermint consensus engine to enable smart contracts written in Solidity, a language for the Ethereum blockchain. Monax’s Eris platform was chosen because it is open-source; it enables a permissioned blockchain that can only be viewed and accessed by the parties involved in the transaction; it supports smart contracts; and its consensus algorithm has better performance than Bitcoin’s blockchain.

SWIFT’s lab team set up five blockchain nodes (in its California office, at an account servicer in Virginia, and at investment banks in Brazil, Germany, and Australia) on a simulated network that implemented the ISO 20022 standard, which covers transaction data for banks, securities depositories, and high-value payments. The standard’s layered architecture consists of coded business concepts independent of any automation, which according to SWIFT “seems a good place to look for content that can be shared and re-used” via a distributed ledger.

“SWIFT has been targeted in the press as a legacy incumbent that will be doomed by DLT,” says Damien Vanderveken, head of R&D at SWIFT Innovation Labs. “But we believe SWIFT can leverage its unique set of capabilities to deliver a distinctive DLT platform offer for the [financial] community.”3 This could translate into cheaper, faster, and more accessible remittance and corporate disbursement services around the globe.

For more insight on blockchain, see In Blockchain We Trust.

Copyright ©2017 Deloitte Development LLC. All rights reserved. Reprinted by permission.

Endnotes:

1 – Ream, Chu, and Schatsky, Upgrading blockchains.

2 – Deloitte Center for Financial Services

3 – Finextra, “SOFE Berlin: Swift unveils blockchain proof-of-concept.”

Comments

Eric Piscini

About Eric Piscini

Eric is a Deloitte Consulting LLP principal serving the technology and banking practices with 20 years of experience defining IT strategies including M&A, technology infrastructure, IT operations, post-merger integrations, echannel strategies, payment, and digital transformations. In addition to serving financial institutions and banking regulators in core aspects of their technology environment, he also leads the Deloitte global cryptocurrency center serving financial institutions and retailers.

Gys Hyman

About Gys Hyman

Gys is a principal in Deloitte Consulting LLP’s Deloitte Digital practice, the world’s first creative digital consultancy. He is currently focused on the banking industry and has helped a number of organizations with large scale digital transformation efforts, ranging from designing, building, and implementing green field’s digital banking capabilities to large scale core banking systems transformation efforts.

Wendy Henry

About Wendy Henry

Wendy is a specialist leader in Deloitte Consulting LLP’s Federal Technology practice and works with clients to distill emerging technologies into simple business value discussions. An ever-curious individual, she thrives on understanding how emerging technologies can drive her clients’ business towards newly created value. She is a hands-on technologist with 30 years of large-scale, complex system integration experience across a wide variety of technologies, including blockchain, cloud, digital innovation, and location-based technologies.

Study: The Most Valuable Technologies In The Workplace Mimic Natural Human Behavior

Susan Galer

Counterintuitive as it may sound, a new study finds the latest whiz-bang technologies are giving leading companies a path to high-growth because their focus is all about people. The top three areas of investment are in Big Data/analytics (94%), followed by IoT (75%). and machine learning (50%). These are among the major findings of The SAP Digital Transformation Executive Study, conducted in collaboration with Oxford Economics, based on feedback from over 3,000 senior executives across 17 countries and regions. The research spotlights the performance of “digital leaders” – organizations that are connecting people, things, and businesses intelligently and effectively to create change faster than the competition.

Using tech to act like small companies

Decision-makers recognize that rethinking processes for talent management will keep them ahead of the competition. Steve Hunt, vice president of customer value at SAP SuccessFactors, sees the real transformation coming from technology that enables us to interact with each other differently. Collaborative platforms help managers easily conduct ongoing and more informed dialogues on performance calibration, while employees can quickly learn new skills from experts.

“Technology that changes how we interact with each other is the most fascinating because it’s so transformational,” said Hunt. “The technology makes it possible for large companies to have the kind of conversations they’d be having if they were a very small company. For example, if there’s an M&A on the horizon, they can quickly look across their entire talent pool to find people with that expertise and then talk about them.”

Indeed, the study findings seem to back this up. Leaders cited increasing investments in digital skills and technology as the most important revenue driver in the next two years compared to the other organizations that said it was speed to market. Seventy-one percent said that digital transformation made it easier to attract and retain talent, compared to 54% of other companies. Sixty-four percent of executives from leading companies said that their employees were more engaged thanks to digital transformation, compared to 20% of the other respondents.

Where technology is most effective

The study also found that two-thirds of leading companies are making their employees’ lives easier by using technology to eliminate process roadblocks. Ninety percent of leaders expected to see value from their efforts in the next two years compared to 56% of other companies.

“Technology is most effective when it does things people aren’t good at or don’t enjoy doing, like automation or blockchain,” said Hunt. “Social learning is so popular because the best way to learn is to talk to other people. It mimics the natural way we learn, allowing people to act like people.”

Tech changes role of HR

The implications aren’t lost on human resource (HR) leaders who are adopting a marketing-oriented mindset.

“We’ve seen huge success in using machine learning, predictive insights, natural language processing, and all kinds of data analysis on the consumer side, and HR is waking up to the opportunities that their counterparts in marketing have benefitted from already,” said Yvette Cameron, ‎senior vice president of strategy at SuccessFactors. “HR is asking how to use those same strategies and tactics to engage with employees. With the advent of better dashboarding and predictive capabilities, suddenly the data is starting to tell us what may happen and point us to the root cause and remediation actions we can take.”

According to Yvonne Baur, head of predictive analytics & machine learning at SAP SuccessFactors, the company is developing software tools that use machine learning in a variety of areas including predicting which employees are likely flight risks and helping recruiters write job postings to attract a larger pool of more diverse candidates. In addition, the SAP Innovation Center Network recently introduced TrueRec, a secure and trusted digital wallet that uses blockchain for storing professional and academic credentials. “We will weave machine learning into everything we do,” said Baur.

For more insight on digital leaders, check out the SAP Center for Business Insight report, conducted in collaboration with Oxford Economics, “SAP Digital Transformation Executive Study: 4 Ways Leaders Set Themselves Apart.”

Comments

Telecommunications And Blockchains: The Correlation Is Coming

Cindy DiMariani

New technology always brings a wave of optimism—words like “disruption” and “unprecedented” start showing up on industry blogs and social media. Sometimes the technology warrants the hype, and other times the chatter subsides by the end of the next news cycle.

Blockchains are currently one of the most-discussed topics in tech circles today, but they are far more than the hype du jour. The technology is here to stay.

What is a blockchain?

According to Investopedia, a blockchain is simply “a public ledger of all bitcoin transactions that have ever been executed.” Key features of blockchains involve the fact that the ledger is available to each person involved in the transaction, time-stamped, secure, and unable to be changed (many writers are using the term “immutable”).

Blockchains were originally conceptualized for use with bitcoin, and the financial industry has understandably been the leading proponent. Fortunately, blockchains present opportunities for many industries, including telecomm.

Office phone system security

VoIP and UCaaS have offered unlimited mobility in business, but mobile twinning and remote conferencing can create unique security threats. Companies experience heightened security issues during the summer months, when employees are more likely to access company data from a remote location.

Blockchains will accomplish two things for business communications in the coming years:

  1. They will encrypt company and private devices with both public and private identifiers
  2. They will eliminate the need for expensive and inadequate third-party protection like Equifax

Blockchain technology can essentially replace SIMs in office phone systems, offering employees the ability to use their mobile devices for work without jeopardizing company security.

Blockchains in enterprise-based IoT

Large companies—or small companies with large-scale manufacturing operations—often use IoT devices to monitor machine status and functionality. Unfortunately, these devices often carry data necessary for the company’s critical operations, and more devices with sensitive information means more opportunity for fraud and security breaches.

Companies using legacy hardware (cloud migration can take years for enterprises) may also monitor the lifespan of their hardware with IoT—in this case, the same security hazards apply. Blockchains can secure these IoT networks by adding a block to each transaction made over the network. Not only will fraud be less common, but administrators can see a linear, timestamped log of activity on these devices.

Conclusion

Implementation may be a few years off, but CIOs and CTOs are getting ready to work this new technology into their framework. For now, blockchains are an interesting topic of conversation at conferences and water coolers. Five years from now, they may eliminate the need for third-party security software.

For more on how blockchain will impact future technology, see Flash Briefing: The Next Move For Blockchain.

Comments

Cindy DiMariani

About Cindy DiMariani

The mission of Broadview’s blog is to share tangible advice on how businesses can leverage technology to gain competitive advantages, control costs, provide superior service, and ultimately improve their bottom line.

Primed: Prompting Customers to Buy

Volker Hildebrand, Sam Yen, and Fawn Fitter

When it comes to buying things—even big-ticket items—the way we make decisions makes no sense. One person makes an impulsive offer on a house because of the way the light comes in through the kitchen windows. Another gleefully drives a high-end sports car off the lot even though it will probably never approach the limits it was designed to push.

We can (and usually do) rationalize these decisions after the fact by talking about needing more closet space or wanting to out-accelerate an 18-wheeler as we merge onto the highway, but years of study have arrived at a clear conclusion:

When it comes to the customer experience, human beings are fundamentally irrational.

In the brick-and-mortar past, companies could leverage that irrationality in time-tested ways. They relied heavily on physical context, such as an inviting retail space, to make products and services as psychologically appealing as possible. They used well-trained salespeople and employees to maximize positive interactions and rescue negative ones. They carefully sequenced customer experiences, such as having a captain’s dinner on the final night of a cruise, to play on our hard-wired craving to end experiences on a high note.

Today, though, customer interactions are increasingly moving online. Fortune reports that on 2016’s Black Friday, the day after Thanksgiving that is so crucial to holiday retail results, 108.5 million Americans shopped online, while only 99.1 million visited brick-and-mortar stores. The 9.4% gap between the two was a dramatic change from just one year prior, when on- and offline Black Friday shopping were more or less equal.

When people browse in a store for a few minutes, an astute salesperson can read the telltale signs that they’re losing interest and heading for the exit. The salesperson can then intervene, answering questions and closing the sale.

Replicating that in a digital environment isn’t as easy, however. Despite all the investments companies have made to counteract e-shopping cart abandonment, they lack the data that would let them anticipate when a shopper is on the verge of opting out of a transaction, and the actions they take to lure someone back afterwards can easily come across as less helpful than intrusive.

In a digital environment, companies need to figure out how to use Big Data analysis and digital design to compensate for the absence of persuasive human communication and physical sights, sounds, and sensations. What’s more, a 2014 Gartner survey found that 89% of marketers expected customer experience to be their primary differentiator by 2016, and we’re already well into 2017.

As transactions continue to shift toward the digital and omnichannel, companies need to figure out new ways to gently push customers along the customer journey—and to do so without frustrating, offending, or otherwise alienating them.

The quest to understand online customers better in order to influence them more effectively is built on a decades-old foundation: behavioral psychology, the study of the connections between what people believe and what they actually do. All of marketing and advertising is based on changing people’s thoughts in order to influence their actions. However, it wasn’t until 2001 that a now-famous article in the Harvard Business Review formally introduced the idea of applying behavioral psychology to customer service in particular.

The article’s authors, Richard B. Chase and Sriram Dasu, respectively a professor and assistant professor at the University of Southern California’s Marshall School of Business, describe how companies could apply fundamental tenets of behavioral psychology research to “optimize those extraordinarily important moments when the company touches its customers—for better and for worse.” Their five main points were simple but have proven effective across multiple industries:

  1. Finish strong. People evaluate experiences after the fact based on their high points and their endings, so the way a transaction ends is more important than how it begins.
  2. Front-load the negatives. To ensure a strong positive finish, get bad experiences out of the way early.
  3. Spread out the positives. Break up the pleasurable experiences into segments so they seem to last longer.
  4. Provide choices. People don’t like to be shoved toward an outcome; they prefer to feel in control. Giving them options within the boundaries of your ability to deliver builds their commitment.
  5. Be consistent. People like routine and predictability.

For example, McKinsey cites a major health insurance company that experimented with this framework in 2009 as part of its health management program. A test group of patients received regular coaching phone calls from nurses to help them meet health goals.

The front-loaded negative was inherent: the patients knew they had health problems that needed ongoing intervention, such as weight control or consistent use of medication. Nurses called each patient on a frequent, regular schedule to check their progress (consistency and spread-out positives), suggested next steps to keep them on track (choices), and cheered on their improvements (a strong finish).

McKinsey reports the patients in the test group were more satisfied with the health management program by seven percentage points, more satisfied with the insurance company by eight percentage points, and more likely to say the program motivated them to change their behavior by five percentage points.

The nurses who worked with the test group also reported increased job satisfaction. And these improvements all appeared in the first two weeks of the pilot program, without significantly affecting the company’s costs or tweaking key metrics, like the number and length of the calls.

Indeed, an ongoing body of research shows that positive reinforcements and indirect suggestions influence our decisions better and more subtly than blatant demands. This concept hit popular culture in 2008 with the bestselling book Nudge.

Written by University of Chicago economics professor Richard H. Thaler and Harvard Law School professor Cass R. Sunstein, Nudge first explains this principle, then explores it as a way to help people make decisions in their best interests, such as encouraging people to eat healthier by displaying fruits and vegetables at eye level or combatting credit card debt by placing a prominent notice on every credit card statement informing cardholders how much more they’ll spend over a year if they make only the minimum payment.

Whether they’re altruistic or commercial, nudges work because our decision-making is irrational in a predictable way. The question is how to apply that awareness to the digital economy.

In its early days, digital marketing assumed that online shopping would be purely rational, a tool that customers would use to help them zero in on the best product at the best price. The assumption was logical, but customer behavior remained irrational.

Our society is overloaded with information and short on time, says Brad Berens, Senior Fellow at the Center for the Digital Future at the University of Southern California, Annenberg, so it’s no surprise that the speed of the digital economy exacerbates our desire to make a fast decision rather than a perfect one, as well as increasing our tendency to make choices based on impulse rather than logic.

Buyers want what they want, but they don’t necessarily understand or care why they want it. They just want to get it and move on, with minimal friction, to the next thing. “Most of our decisions aren’t very important, and we only have so much time to interrogate and analyze them,” Berens points out.

But limited time and mental capacity for decision-making is only half the issue. The other half is that while our brains are both logical and emotional, the emotional side—also known as the limbic system or, more casually, the primitive lizard brain—is far older and more developed. It’s strong enough to override logic and drive our decisions, leaving rational thought to, well, rationalize our choices after the fact.

This is as true in the B2B realm as it is for consumers. The business purchasing process, governed as it is by requests for proposals, structured procurement processes, and permission gating, is designed to ensure that the people with spending authority make the most sensible deals possible. However, research shows that even in this supposedly rational process, the relationship with the seller is still more influential than product quality in driving customer commitment and loyalty.

Baba Shiv, a professor of marketing at Stanford University’s Graduate School of Business, studies how the emotional brain shapes decisions and experiences. In a popular TED Talk, he says that people in the process of making decisions fall into one of two mindsets: Type 1, which is stressed and wants to feel comforted and safe, and Type 2, which is bored or eager and wants to explore and take action.

People can move between these two mindsets, he says, but in both cases, the emotional brain is in control. Influencing it means first delivering a message that soothes or motivates, depending on the mindset the person happens to be in at the moment and only then presenting the logical argument to help rationalize the action.

In the digital economy, working with those tendencies means designing digital experiences with the full awareness that people will not evaluate them objectively, says Ravi Dhar, director of the Center for Customer Insights at the Yale School of Management. Since any experience’s greatest subjective impact in retrospect depends on what happens at the beginning, the end, and the peaks in between, companies need to design digital experiences to optimize those moments—to rationally design experiences for limited rationality.

This often involves making multiple small changes in the way options are presented well before the final nudge into making a purchase. A paper that Dhar co-authored for McKinsey offers the example of a media company that puts most of its content behind a paywall but offers free access to a limited number of articles a month as an incentive to drive subscriptions.

Many nonsubscribers reached their limit of free articles in the morning, but they were least likely to respond to a subscription offer generated by the paywall at that hour, because they were reading just before rushing out the door for the day. When the company delayed offers until later in the day, when readers were less distracted, successful subscription conversions increased.

Pre-selecting default options for necessary choices is another way companies can design digital experiences to follow customers’ preference for the path of least resistance. “We know from a decade of research that…defaults are a de facto nudge,” Dhar says.

For example, many online retailers set a default shipping option because customers have to choose a way to receive their packages and are more likely to passively allow the default option than actively choose another one. Similarly, he says, customers are more likely to enroll in a program when the default choice is set to accept it rather than to opt out.

Another intriguing possibility lies in the way customers react differently to on-screen information based on how that information is presented. Even minor tweaks can have a disproportionate impact on the choices people make, as explained in depth by University of California, Los Angeles, behavioral economist Shlomo Benartzi in his 2015 book, The Smarter Screen.

A few of the conclusions Benartzi reached: items at the center of a laptop screen draw more attention than those at the edges. Those on the upper left of a screen split into quadrants attract more attention than those on the lower left. And intriguingly, demographics are important variables.

Benartzi cites research showing that people over 40 prefer more visually complicated, text-heavy screens than younger people, who are drawn to saturated colors and large images. Women like screens that use a lot of different colors, including pastels, while men prefer primary colors on a grey or white background. People in Malaysia like lots of color; people in Germany don’t.

This suggests companies need to design their online experiences very differently for middle-aged women than they do for teenage boys. And, as Benartzi writes, “it’s easy to imagine a future in which each Internet user has his or her own ‘aesthetic algorithm,’ customizing the appearance of every site they see.”

Applying behavioral psychology to the digital experience in more sophisticated ways will require additional formal research into recommendation algorithms, predictions, and other applications of customer data science, says Jim Guszcza, PhD, chief U.S. data scientist for Deloitte Consulting.

In fact, given customers’ tendency to make the fastest decisions, Guszcza believes that in some cases, companies may want to consider making choice environments more difficult to navigate— a process he calls “disfluencing”—in high-stakes situations, like making an important medical decision or an irreversible big-ticket purchase. Choosing a harder-to-read font and a layout that requires more time to navigate forces customers to work harder to process the information, sending a subtle signal that it deserves their close attention.

That said, a company can’t apply behavioral psychology to deliver a digital experience if customers don’t engage with its site or mobile app in the first place. Addressing this often means making the process as convenient as possible, itself a behavioral nudge.

A digital solution that’s easy to use and search, offers a variety of choices pre-screened for relevance, and provides a friction-free transaction process is the equivalent of putting a product at eye level—and that applies far beyond retail. Consider the Global Entry program, which streamlines border crossings into the U.S. for pre-approved international travelers. Members can skip long passport control lines in favor of scanning their passports and answering a few questions at a touchscreen kiosk. To date, 1.8 million people have decided this convenience far outweighs the slow pace of approvals.

The basics of influencing irrational customers are essentially the same whether they’re taking place in a store or on a screen. A business still needs to know who its customers are, understand their needs and motivations, and give them a reason to buy.

And despite the accelerating shift to digital commerce, we still live in a physical world. “There’s no divide between old-style analog retail and new-style digital retail,” Berens says. “Increasingly, the two are overlapping. One of the things we’ve seen for years is that people go into a store with their phones, shop for a better price, and buy online. Or vice versa: they shop online and then go to a store to negotiate for a better deal.”

Still, digital increases the number of touchpoints from which the business can gather, cluster, and filter more types of data to make great suggestions that delight and surprise customers. That’s why the hottest word in marketing today is omnichannel. Bringing behavioral psychology to bear on the right person in the right place in the right way at the right time requires companies to design customer experiences that bridge multiple channels, on- and offline.

Amazon, for example, is known for its friction-free online purchasing. The company’s pilot store in Seattle has no lines or checkout counters, extending the brand experience into the physical world in a way that aligns with what customers already expect of it, Dhar says.

Omnichannel helps counter some people’s tendency to believe their purchasing decision isn’t truly well informed unless they can see, touch, hear, and in some cases taste and smell a product. Until we have ubiquitous access to virtual reality systems with full haptic feedback, the best way to address these concerns is by providing personalized, timely, relevant information and feedback in the moment through whatever channel is appropriate. That could be an automated call center that answers frequently asked questions, a video that shows a product from every angle, or a demonstration wizard built into the product. Any of these channels could also suggest the customer visit the nearest store to receive help from a human.

The omnichannel approach gives businesses plenty of opportunities to apply subtle nudges across physical and digital channels. For example, a supermarket chain could use store-club card data to push personalized offers to customers’ smartphones while they shop. “If the data tells them that your goal is to feed a family while balancing nutrition and cost, they could send you an e-coupon offering a discount on a brand of breakfast cereal that tastes like what you usually buy but contains half the sugar,” Guszcza says.

Similarly, a car insurance company could provide periodic feedback to policyholders through an app or even the digital screens in their cars, he suggests. “Getting a warning that you’re more aggressive than 90% of comparable drivers and three tips to avoid risk and lower your rates would not only incentivize the driver to be more careful for financial reasons but reduce claims and make the road safer for everyone.”

Digital channels can also show shoppers what similar people or organizations are buying, let them solicit feedback from colleagues or friends, and read reviews from other people who have made the same purchases. This leverages one of the most familiar forms of behavioral psychology—reinforcement from peers—and reassures buyers with Shiv’s Type 1 mindset that they’re making a choice that meets their needs or encourages those with the Type 2 mindset to move forward with the purchase. The rational mind only has to ask at the end of the process “Am I getting the best deal?” And as Guszcza points out, “If you can create solutions that use behavioral design and digital technology to turn my personal data into insight to reach my goals, you’ve increased the value of your engagement with me so much that I might even be willing to pay you more.”

Many transactions take place through corporate procurement systems that allow a company to leverage not just its own purchasing patterns but all the data in a marketplace specifically designed to facilitate enterprise purchasing. Machine learning can leverage this vast database of information to provide the necessary nudge to optimize purchasing patterns, when to buy, how best to negotiate, and more. To some extent, this is an attempt to eliminate psychology and make choices more rational.

B2B spending is tied into financial systems and processes, logistics systems, transportation systems, and other operational requirements in a way no consumer spending can be. A B2B decision is less about making a purchase that satisfies a desire than it is about making a purchase that keeps the company functioning.

That said, the decision still isn’t entirely rational, Berens says. When organizations have to choose among vendors offering relatively similar products and services, they generally opt for the vendor whose salespeople they like the best.

This means B2B companies have to make sure they meet or exceed parity with competitors on product quality, pricing, and time to delivery to satisfy all the rational requirements of the decision process. Only then can they bring behavioral psychology to bear by delivering consistently superior customer service, starting as soon as the customer hits their app or website and spreading out positive interactions all the way through post-purchase support. Finishing strong with a satisfied customer reinforces the relationship with a business customer just as much as it does with a consumer.

The best nudges make the customer relationship easy and enjoyable by providing experiences that are effortless and fun to choose, on- or offline, Dhar says. What sets the digital nudge apart in accommodating irrational customers is its ability to turn data about them and their journey into more effective, personalized persuasion even in the absence of the human touch.

Yet the subtle art of influencing customers isn’t just about making a sale, and it certainly shouldn’t be about persuading people to act against their own best interests, as Nudge co-author Thaler reminds audiences by exhorting them to “nudge for good.”

Guszcza, who talks about influencing people to make the choices they would make if only they had unlimited rationality, says companies that leverage behavioral psychology in their digital experiences should do so with an eye to creating positive impact for the customer, the company, and, where appropriate, the society.

In keeping with that ethos, any customer experience designed along behavioral lines has to include the option of letting the customer make a different choice, such as presenting a confirmation screen at the end of the purchase process with the cold, hard numbers and letting them opt out of the transaction altogether.

“A nudge is directing people in a certain direction,” Dhar says. “But for an ethical vendor, the only right direction to nudge is the right direction as judged by the customers themselves.” D!

Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.


About the Authors:

Volker Hildebrand is Global Vice President for SAP Hybris solutions.

Sam Yen is Chief Design Officer and Managing Director at SAP.

Fawn Fitter is a freelance writer specializing in business and technology.

Comments

Tags:

Artificial Intelligence: The Future Of Oil And Gas

Anoop Srivastava

Oil prices have fallen dramatically over last few years, forcing some major oil companies to take drastic actions such as layoffs, cutting investments and budgets, and more. Shell, for example, shelved its plan to invest in Qatar, Aramco put on hold its deep-water exploration in the Red Sea, Schlumberger fired a few thousand employees, and the list goes on…

In view of falling oil prices and the resulting squeeze on cash flows, the oil and gas industry has been challenged to adapt and optimize its performance to remain profitable while maintaining a long-term investment and operating outlook. Currently, oil and gas companies find it difficult to maintain the same level of investment in exploration and production as when crude prices were at their peak. Operations in the oil and gas industry today means balancing a dizzying array of trade-offs in the drive for competitive advantage while maximizing return on investment.

The result is a dire need to optimize performance and optimize the cost of production per barrel. Companies have many optimization opportunities once they start using the massive data being generated by oil fields. Oil and gas companies can turn this crisis into an opportunity by leveraging technological innovations like artificial intelligence to build a foundation for long-term success. If volatility in oil prices is the new norm, the push for “value over volume” is the key to success going forward.

Using AI tools, upstream oil and gas companies can shift their approach from production at all costs to producing in context. They will need to do profit and loss management at the well level to optimize the production cost per barrel. To do this, they must integrate all aspects of production management, collect the data for analysis and forecasting, and leverage artificial intelligence to optimize operations.

When remote sensors are connected to wireless networks, data can be collected and centrally analyzed from any location. According to the consulting firm McKinsey, the oil and gas supply chain stands to gain $50 billion in savings and increased profit by adopting AI. As an example, using AI algorithms to more accurately sift through signals and noise in seismic data can decrease dry wellhead development by 10 percent.

How oil and gas can leverage artificial intelligence

1. Planning and forecasting

On a macro scale, deep machine learning can help increase awareness of macroeconomic trends to drive investment decisions in exploration and production. Economic conditions and even weather patterns can be considered to determine where investments should take place as well as intensity of production.

2. Eliminate costly risks in drilling

Drilling is an expensive and risky investment, and applying AI in the operational planning and execution stages can significantly improve well planning, real-time drilling optimization, frictional drag estimation, and well cleaning predictions. Additionally, geoscientists can better assess variables such as the rate of penetration (ROP) improvement, well integrity, operational troubleshooting, drilling equipment condition recognition, real-time drilling risk recognition, and operational decision-making.

When drilling, machine-learning software takes into consideration a plethora of factors, such as seismic vibrations, thermal gradients, and strata permeability, along with more traditional data such as pressure differentials. AI can help optimize drilling operations by driving decisions such as direction and speed in real time, and it can predict failure of equipment such as semi-submersible pumps (ESPs) to reduce unplanned downtime and equipment costs.

3. Well reservoir facility management

Wells, reservoirs, and facility management includes integration of multiple disciplines: reservoir engineering, geology, production technology, petro physics, operations, and seismic interpretation. AI can help to create tools that allow asset teams to build professional understanding and identify opportunities to improve operational performance.

AI techniques can also be applied in other activities such as reservoir characterization, modeling and     field surveillance. Fuzzy logic, artificial neural networks and expert systems are used extensively across the industry to accurately characterize reservoirs in order to attain optimum production level.

Today, AI systems form the backbone of digital oil field (DOF) concepts and implementations. However, there is still great potential for new ways to optimize field development and production costs, prolong field life, and increase the recovery factor.

4. Predictive maintenance

Today, artificial intelligence is taking the industry by storm. AI-powered software and sensor hardware enables us to use very large amounts of data to gain real-time responses on the best future course of action. With predictive analytics and cognitive security, for example, oil and gas companies can operate equipment safely and securely while receiving recommendations on how to avoid future equipment failure or mediate potential security breaches.

5. Oil and gas well surveying and inspections

Drones have been part of the oil and gas industry since 2013, when ConocoPhillips used the Boeing ScanEagle drone in trials in the Chukchi Sea.  In June 2014, the Federal Aviation Administration (FAA) issued the first commercial permit for drone use over United States soil to BP, allowing the company to survey pipelines, roads, and equipment in Prudhoe Bay, Alaska. In January, Sky-Futures completed the first drone inspection in the Gulf of Mexico.

While drones are primarily used in the midstream sector, they can be applied to almost every aspect of the industry, including land surveying and mapping, well and pipeline inspections, and security. Technology is being developed to enable drones to detect early methane leaks. In addition, one day, drones could be used to find oil and gas reservoirs underlying remote uninhabited regions, from the comfort of a warm office.

6. Remote logistics

As logistics to offshore locations is always a challenge, AI-enhanced drones can be used to deliver materials to remote offshore locations.

Current adoption of AI

Chevron is currently using AI to identify new well locations and simulation candidates in California. By using AI software to analyze the company’s large collection of historical well performance data, the company is drilling in better locations and has seen production rise 30% over conventional methods. Chevron is also using predictive models to analyze the performance of thousands of pieces of rotating equipment to detect failures before they occur. By addressing problems before they become critical, Chevron has avoided unplanned shutdowns and lowered repair expenses. Increased production and lower costs have translated to more profit per well.

Future journey

Today’s oil and gas industry has been transformed by two industry downturns in one decade. Although adoption of new hard technology such as directional drilling and hydraulic fracturing (fracking) has helped, the oil and gas industry needs to continue to innovate in today’s low-price market to survive. AI has the potential to differentiate companies that thrive and those that are left behind.

The promise of AI is already being realized in the oil and gas industry. Early adopters are taking advantage of their position  to get a head start on the competition and protect their assets. The industry has always leveraged technology to adapt to change, and early adopters have always benefited the most. As competition in the oil and gas industry continues to heat up, companies cannot afford to be left behind. For those that understand and seize the opportunities inherent in adopting cognitive technologies, the future looks bright.

For more insight on advanced technology in the energy sector, see How Digital Transformation Is Refueling The Energy Industry.

Comments

Anoop Srivastava

About Anoop Srivastava

Anoop Srivastava is Senior Director of the Energy and Natural Resources Industries at SAP Value Engineering in Middle East and North Africa. He advises clients on their digital transformation strategies and helps them align their business strategy with IT strategy leveraging digital technology innovations such as the Internet of Things, Big Data, Advanced Analytics, Cloud etc. He has 21+ years of work experience spanning across Oil& Gas Industry, Business Consulting, Industry Value Advisory and Digital Transformation.