Chain Of Tools: Lessons From The Front Lines

Eric Piscini , Gys Hyman and Wendy Henry

Do your customers trust you? And do you trust them? The emerging trust economy depends on each transacting party’s reputation and digital identity—and that’s where blockchain comes in. The technology behind digital contracts transforms reputation into a useful, manageable attribute.

Part 3 of a 5-part series. Read Part 1, Part 2, Part 4, and Part 5.

You can also read the full article or download a copy at Deloitte University Press.

In the greater context of the trust economy, blockchain is not a cure-all for the challenges of establishing and maintaining trust. As a technology, it is still maturing; standards and best practices do not yet exist. The very features that protect blockchain against theft and fraud could also drive overhead if not correctly implemented—a potential obstacle on the path toward individual deployment of the technology. Finally, legal recognition of contracts and digitally transferred assets is currently limited. The good news is that organizations can take steps now to mitigate, if not fully address, these challenges.

Some pundits are likening the emergence of blockchain technology to the early days of the World Wide Web, and for good reason. In 1991, the foundations for distributed, open communication were being laid—network infrastructure, protocols, and a variety of enabling technologies, from javascript to search engines to browsers. There were also new enterprise software suites that made it possible to take advantage of digital marketing, commerce, and linked supply networks, among countless other opportunities. Hyper-investment chased perceived opportunity, even as specific scenarios describing how the technology would change the world had not yet been defined.

Blockchain may lead to even greater disruption by becoming the new protocol for digital assets, exchanges, contracts, and perhaps most importantly, identity and trust. With efforts to create a new stack for all facets of blockchain attracting investment, the time is now for enterprises to explore the underlying technology, and to envision how blockchain may be used for more than just the easy use cases of cost savings and efficiency within their own boundaries. Take a hard look at your core business, surrounding ecosystems, and even the long-established mechanics of the way your industry operates, and then direct your experimentation toward a truly innovative path.

Smart play with smart contracts

Delaware, home to more than 60 percent of Fortune 500 firms, is teaming up with Symbiont, a distributed ledger and smart securities vendor, to launch a blockchain-based smart contracts system. Smart contracts are protocols that allow blockchain technology to record, manage, and update encrypted information in a distributed ledger automatically, without intermediaries.1 The system will enable participants to digitize incorporation procedures such as registering companies, tracking shares, and handling shareholder communications. For companies incorporated in Delaware, this could make registration and follow-up steps in the process faster, less expensive, and more transparent.

At the heart of Symbiont’s solution is an immutable, append-only database, which provides a single, global accounting ledger for system participants. Transaction history is appended and replicated across all network nodes, with access permissions restricted down to the specific organization or even user level. Each company registering with the state of Delaware signs in with a private key that verifies its identity to other participants. Autonomous recordkeeping will trigger notifications when actions are required, such as new filing requirements when thresholds are met or when documents approach expiration.

Project teams are taking a two-pronged approach to deployment. First, they will rebuild the public archives using a distributed ledger for storage and “smart records” to automate the control and encryption of public and private records. This critical step will make it possible for digital documents to be shared in multiple locations and, importantly, be recovered in the event of system failure.  Next, they will place incorporation and other legal documents on a smart contract-enabled blockchain and establish operational procedures for using and maintaining them.

This deployment is part of a larger effort called the Delaware Blockchain Initiative, which will lay the legal and technological groundwork needed to support blockchain-based systems going forward. The governor’s office is currently collaborating with the legislature to build the legal framework required to support blockchain-based incorporation processes and digitally originated securities.2 “We see companies allocate significant financial resources to correct and validate stock authorization and issuance errors that could have been correctly and seamlessly handled from the outset,” says Delaware Gov. Jack Markell. “Distributed ledger [transactions] hold the promise of immediate clearance, immediate settlement, and bring with them dramatic increases in efficiency and speed in sophisticated commercial transactions.”

Swift: From middleman to enabler

Blockchain has the potential to rewire the financial industry and beyond, generating cost savings and new revenue opportunities. Payment rails have been the subject of various blockchain-driven initiatives. Payment transaction firm SWIFT has been testing use cases to demonstrate how its 11,000-plus member financial institutions can optimize the technology’s transparency while maintaining the industry’s privacy requirements in the emerging trust economy.

The organization’s new R&D arm, SWIFT Innovation Labs, was launched with an eye on eventually providing distributor ledger technology (DLT)-based services that leverage its standards expertise, strong governance, and security track record. DLT, it says, would provide trust in a disseminated system, efficiency in broadcasting information, complete traceability of transactions, simplified reconciliation, and high resiliency.

SWIFT’s team of 10 experts in standards, securities, architecture, and application development built a bond lifecycle application that tracks and manages bonds from issuance to coupon payments to maturity at an ecosystem level rather than by individual company. SWIFT applied its own ISO 20022 methodology to DLT to gauge interoperability with legacy systems in cases where all stakeholders were not on the distributed ledger.

The bond lifecycle proof-of-concept was built using an Eris/Tendermint consensus engine to enable smart contracts written in Solidity, a language for the Ethereum blockchain. Monax’s Eris platform was chosen because it is open-source; it enables a permissioned blockchain that can only be viewed and accessed by the parties involved in the transaction; it supports smart contracts; and its consensus algorithm has better performance than Bitcoin’s blockchain.

SWIFT’s lab team set up five blockchain nodes (in its California office, at an account servicer in Virginia, and at investment banks in Brazil, Germany, and Australia) on a simulated network that implemented the ISO 20022 standard, which covers transaction data for banks, securities depositories, and high-value payments. The standard’s layered architecture consists of coded business concepts independent of any automation, which according to SWIFT “seems a good place to look for content that can be shared and re-used” via a distributed ledger.

“SWIFT has been targeted in the press as a legacy incumbent that will be doomed by DLT,” says Damien Vanderveken, head of R&D at SWIFT Innovation Labs. “But we believe SWIFT can leverage its unique set of capabilities to deliver a distinctive DLT platform offer for the [financial] community.”3 This could translate into cheaper, faster, and more accessible remittance and corporate disbursement services around the globe.

For more insight on blockchain, see In Blockchain We Trust.

Copyright ©2017 Deloitte Development LLC. All rights reserved. Reprinted by permission.

Endnotes:

1 – Ream, Chu, and Schatsky, Upgrading blockchains.

2 – Deloitte Center for Financial Services

3 – Finextra, “SOFE Berlin: Swift unveils blockchain proof-of-concept.”

Comments

Eric Piscini

About Eric Piscini

Eric is a Deloitte Consulting LLP principal serving the technology and banking practices with 20 years of experience defining IT strategies including M&A, technology infrastructure, IT operations, post-merger integrations, echannel strategies, payment, and digital transformations. In addition to serving financial institutions and banking regulators in core aspects of their technology environment, he also leads the Deloitte global cryptocurrency center serving financial institutions and retailers.

Gys Hyman

About Gys Hyman

Gys is a principal in Deloitte Consulting LLP’s Deloitte Digital practice, the world’s first creative digital consultancy. He is currently focused on the banking industry and has helped a number of organizations with large scale digital transformation efforts, ranging from designing, building, and implementing green field’s digital banking capabilities to large scale core banking systems transformation efforts.

Wendy Henry

About Wendy Henry

Wendy is a specialist leader in Deloitte Consulting LLP’s Federal Technology practice and works with clients to distill emerging technologies into simple business value discussions. An ever-curious individual, she thrives on understanding how emerging technologies can drive her clients’ business towards newly created value. She is a hands-on technologist with 30 years of large-scale, complex system integration experience across a wide variety of technologies, including blockchain, cloud, digital innovation, and location-based technologies.

Blockchain Meets Life Science: Where Trust Is A Matter Of Life Or Death

Susan Galer

Walt Disney, Bill Gates, and Shakespeare have more in common than anyone could imagine, united by the business imperatives embodied in the promise of blockchain technology.

This was just one of the things I learned after tuning into a recent SAP Game-Changers Radio broadcast entitled “Changing the Game in Life Sciences.” Host Bonnie D. Graham adroitly guided three experts through a fascinating exploration of blockchain’s potential to transform the life sciences industry with undreamed-of trust and efficiency for everything from drug discovery and tracking, to patient control of their own data.

Dream it, do it

Peter Ebert, senior vice president of business development and sales at Cryptowerk Corp., had every right to quote Walt Disney’s maxim, “If you can dream it, you can do it.” I saw proof of his company’s co-innovation during a VIDEO interview at SAP TechEd demonstrating a blockchain POC to help the pharmaceutical industry better track drugs. On the radio, Ebert was unsurprisingly optimistic, comparing Disney’s vision for Mickey Mouse in 1928 with blockchain’s potential to change people’s lives.

“Blockchain will not only be a technical technology or technical thing in our lives. It will impact all our experiences,” said Ebert. “If you go to the doctor and you’re getting blood drawn or you’re taking a pill…you want to make sure that this pill is not a counterfeit, that the technology around you and the devices are not counterfeit. Think about the doctor or other people treating you—you want to make sure that they have the education [and] the skills to treat you well and correctly.”

Blockchain’s trust has special significance to #lifescience where digital assets actually mean life or death @SAPRadio 

Ebert thought blockchain’s ability to prove authenticity to any digital asset had special significance to life sciences. “You can infuse this irrefutable trust into your supply chain of digital data assets,” said Ebert. “In life sciences, digital assets actually mean life or death. They’re not just any old assets; they are very precious data that relates to your life, to my life.”

Find blockchain architects for life science

While Deloitte reported 35 percent of surveyed health and life sciences organizations plan to deploy blockchain by 2018, Eric Piscini, principal, financial services practices, injected some caveats. His inspiration was a Bill Gates quote that stated, “We always overestimate the change that will occur in the next two years, and underestimate the change that will occur in the next 10. Don’t let yourself be lulled into inaction.”

“In the next two years we’ll talk about the blockchain, and 10 years from today we will not talk about blockchain anymore because blockchain will be embedded into everything that we do,” said Piscini.

The number-one challenge is finding people who understand both blockchain and life sciences.

“You need someone who understands what blockchain is capable of, the limitations, the challenges, and the opportunities from a technology point of view,” said Piscini. “You also need someone who can understand clinical trials, content management, and adverse effect management from a business point of view, and bring all of that together.”

Love all, trust a few

Joe Miles, global vice president of life sciences at SAP, turned to Shakespeare’s quote “Love all, but trust a few,” to describe how blockchain can deliver trust that helps patients and the medical industry.

“Blockchain is one of the many things that has a capability to really help simplify and automate trust,” he said. “To ensure that the appropriate people are seeing your information or your business information across all the different constituents that you deal with daily in a way that is productive and efficient.”

Miles thinks blockchain can streamline clinical trials, getting lifesaving products to market faster and more safely. “How do we reduce the time from compound to approval? How do we get this in the hands of the patients who need it to save lives all over? It’s expensive, it takes a lot of years,” he said. “Blockchain presents an opportunity to streamline that process to make it more transparent.”

Follow me on TwitterSAP Business Trends, or Facebook. Read all of my Forbes articles here.

Comments

How Will Digitization Effectively Transform Agriculture?

Cedrik Kern

“If you eat, you’re in agriculture.”

That old adage is more true today than ever before. It’s expected that by 2050 our world population will approach 10 billion. That’s double what it was only thirty years ago in 1987. Increased land, water, and resource use for the growing population competes directly with farming needs to feed that population. It’s fortunate that digitization is helping to connect agricultural concerns around the world. But what will the future of farming look like?

How will digitalization effectively transform agriculture?

Though robotic farming may seem far-fetched, it’s here today. Much like yesteryear’s use of satellites for precision agriculture, the additional data provided through the Internet of Things (IoT) allows us to grow more food with fewer resources on less land. With analytics, a farmer in Kenya uses a drone to release beneficial insects in a problem patch. A Kansas wheat farmer helps keep the water table pure by only fertilizing areas in need. Yields are boosted without waste through very specific irrigation management. Total corn production savings can reach 4.5% with yield mapping, 2.4% with GPS soil mapping and 2.7% with guidance systems. Here are some recent innovations we’ve helped bring to life.

What does palm oil’s future look like?

Planting a palm oil plantation requires strong long-term planning. But what does the future hold for this important crop? As palm oil’s popularity has grown, so have the industries it services. Biofuels, cosmetics, and other industries are all impacted by palm oil production in addition to its traditional uses in food. Fortunately, there’s a strong push to improve sustainability in the palm oil industry.

Most palm oil production in the past has been based on overall yields. But tomorrow’s plantation can determine production by every plant. IoT technology allows tracking the exact growing conditions of the palm tree. This means its exact needs are met to maximize yield and minimize waste. But how does this happen?

Aerial photos play a vital role in this process. Drones, planes, and satellites provide imagery to help producers make smart decisions in oil palm plantation management. Sensors provide climate, soil condition, and other data. This collection of data and strong analytics options let the producer manage stressed areas while boosting production in other parts of the plantation.

This process is being moved forward through collaboration across multiple sectors. Research, genetics, machinery, inputs, and the farmer all work hand-in-hand to provide more palm oil with less waste and a more sustainable environmental impact.

The future is sweet with sugarcane production

Though it’s still one of the world’s top sweeteners, sugarcane has also branched out recently into the biofuel and electrical production sectors. A single ton of sugarcane produces 120 kilograms of sugar, 85 liters of ethanol and 25 kilowatt-hours of electricity. But the tropical origins of the plant means it’s always been planted in developing countries with plenty of land and labor. That made it a cheap crop to grow.

Today’s population growth is limiting sugarcane production. This means more care must be taken in crop techniques and inputs to provide maximum results on minimal land. To complicate matters even further, the land it is raised on is often very different. This requires different approaches to achieve these results.

Different climates require the use of different techniques and methods. Ratoon planting allows the crop to be grown from the prior year’s plant stubble. But the number of years can vary greatly. Production-leading Brazil replants new cane every 5 or 6 years. As second-highest producer, India’s climate demands planting new cane every two or three years.

Hand harvesting uses manpower and a sharp hand-tool while providing 500 kg per hour, with rising labor rates making this practice less profitable than in the past. Mechanizing the process allows manual labor to be focused in different area as a single harvester will handle 100 tons of sugarcane per hour. Except for on steep slopes, mechanical harvesting provides a more ecologically sound approach. Satellite-based tractor navigation uses permanent wheel tracks to maximize production while minimizing wasted time and fuel.

Combining sustainable farming practices with economical technological advancement allows us to grow as a people and as a planet. Smarter crop rotation, precision pesticide and fertilizer application, yield mapping and weed sensors are only a few of the advancements farmers will see in the years to come. IoT technology is expected to see a 20% annual compounded growth from 2015 to 2020. New agricultural business models are expected to see a 15%–25% growth in revenue above the industry average.

Farms that add IoT capabilities, Big Data analytics, and similar connected agriculture tools are making strong strides. Imagine yields 10%–20% higher than in the past. They’re also seeing an average increase in profits of 18%. Some farms have seen profit increases of up to 76%.

Learn how to bring new technologies and services together to power digital transformation by downloading The IoT Imperative for Consumer Industries. Explore how to bring Industry 4.0 insights into your business today by reading Industry 4.0: What’s Next?

Comments

Cedrik Kern

About Cedrik Kern

Cedrik Kern is Solution Owner of Digital Farming at SAP. He drives the development of the SAP platform for digital farming as a key innovation for agribusiness. Cedrik is part of the SAP solution management team for Agribusiness and Commodity Management. This team is responsible for defining our global strategy for agribusiness and commodity management. As an expert for agribusiness and commodity markets, he influences the SAP solution portfolio and has architected co-innovation solutions with global leaders in the commodity trading and consumer products industry. He is a regular speaker at events and conferences presenting SAP’s solution portfolio and innovations for this space.

Why Strategic Plans Need Multiple Futures

By Dan Wellers, Kai Goerlich, and Stephanie Overby , Kai Goerlich and Stephanie Overby

When members of Lowe’s Innovation Labs first began talking with the home improvement retailer’s senior executives about how disruptive technologies would affect the future, the presentations were well received but nothing stuck.

“We’d give a really great presentation and everyone would say, ‘Great job,’ but nothing would really happen,” says Amanda Manna, head of narratives and partnerships for the lab.

The team realized that it needed to ditch the PowerPoints and try something radical. The team’s leader, Kyle Nel, is a behavioral scientist by training. He knows people are wired to receive new information best through stories. Sharing far-future concepts through narrative, he surmised, could unlock hidden potential to drive meaningful change.

So Nel hired science fiction writers to pen the future in comic book format, with characters and a narrative arc revealed pane by pane.

The first storyline, written several years before Oculus Rift became a household name, told the tale of a couple envisioning their kitchen renovation using virtual reality headsets. The comic might have been fun and fanciful, but its intent was deadly serious. It was a vision of a future in which Lowe’s might solve one of its long-standing struggles: the approximately US$70 billion left on the table when people are unable to start a home improvement project because they can’t envision what it will look like.

When the lab presented leaders with the first comic, “it was like a light bulb went on,” says Manna. “Not only did they immediately understand the value of the concept, they were convinced that if we didn’t build it, someone else would.”

Today, Lowe’s customers in select stores can use the HoloRoom How To virtual reality tool to learn basic DIY skills in an interactive and immersive environment.

Other comics followed and were greeted with similar enthusiasm—and investment, where possible. One tells the story of robots that help customers navigate stores. That comic spawned the LoweBot, which roamed the aisles of several Lowe’s stores during a pilot program in California and is being evaluated to determine next steps.

And the comic about tools that can be 3D-printed in space? Last year, Lowe’s partnered with Made in Space, which specializes in making 3D printers that can operate in zero gravity, to install the first commercial 3D printer in the International Space Station, where it was used to make tools and parts for astronauts.

The comics are the result of sending writers out on an open-ended assignment, armed with trends, market research, and other input, to envision what home improvement planning might look like in the future or what the experience of shopping will be in 10 years. The writers come back with several potential story ideas in a given area and work collaboratively with lab team members to refine it over time.

The process of working with writers and business partners to develop the comics helps the future strategy team at Lowe’s, working under chief development officer Richard D. Maltsbarger, to inhabit that future. They can imagine how it might play out, what obstacles might surface, and what steps the company would need to take to bring that future to life.

Once the final vision hits the page, the lab team can clearly envision how to work backward to enable the innovation. Importantly, the narrative is shared not only within the company but also out in the world. It serves as a kind of “bat signal” to potential technology partners with capabilities that might be required to make it happen, says Manna. “It’s all part of our strategy for staking a claim in the future.”

Planning must become completely oriented toward—and sourced from—the future.

Companies like Lowe’s are realizing that standard ways of planning for the future won’t get them where they need to go. The problem with traditional strategic planning is that the approach, which dates back to the 1950s and has remained largely unchanged since then, is based on the company’s existing mission, resources, core competencies, and competitors.

Yet the future rarely looks like the past. What’s more, digital technology is now driving change at exponential rates. Companies must be able to analyze and assess the potential impacts of the many variables at play, determine the possible futures they want to pursue, and develop the agility to pivot as conditions change along the way.

This is why planning must become completely oriented toward—and sourced from—the future, rather than from the past or the present. “Every winning strategy is based on a compelling insight, but most strategic planning originates in today’s marketplace, which means the resulting plans are constrained to incremental innovation,” says Bob Johansen, distinguished fellow at the Institute for the Future. “Most corporate strategists and CEOs are just inching their way to the future.” (Read more from Bob Johansen in the Thinkers story, “Fear Factor.”)

Inching forward won’t cut it anymore. Half of the S&P 500 organizations will be replaced over the next decade, according to research company Innosight. The reason? They can’t see the portfolio of possible futures, they can’t act on them, or both. Indeed, when SAP conducts future planning workshops with clients, we find that they usually struggle to look beyond current models and assumptions and lack clear ideas about how to work toward radically different futures.

Companies that want to increase their chances of long-term survival are incorporating three steps: envisioning, planning for, and executing on possible futures. And doing so all while the actual future is unfolding in expected and unexpected ways.

Those that pull it off are rewarded. A 2017 benchmarking report from the Strategic Foresight Research Network (SFRN) revealed that vigilant companies (those with the most mature processes for identifying, interpreting, and responding to factors that induce change) achieved 200% greater market capitalization growth and 33% higher profitability than the average, while the least mature companies experienced negative market-cap growth and had 44% lower profitability.

Looking Outside the Margins

“Most organizations lack sufficient capacity to detect, interpret, and act on the critically important but weak and ambiguous signals of fresh threats or new opportunities that emerge on the periphery of their usual business environment,” write George S. Day and Paul J. H. Schoemaker in their book Peripheral Vision.

But that’s exactly where effective future planning begins: examining what is happening outside the margins of day-to-day business as usual in order to peer into the future.

Business leaders who take this approach understand that despite the uncertainties of the future there are drivers of change that can be identified and studied and actions that can be taken to better prepare for—and influence—how events unfold.

That starts with developing foresight, typically a decade out. Ten years, most future planners agree, is the sweet spot. “It is far enough out that it gives you a bit more latitude to come up with a broader way to the future, allowing for disruption and innovation,” says Brian David Johnson, former chief futurist for Intel and current futurist in residence at Arizona State University’s Center for Science and the Imagination. “But you can still see the light from it.”

The process involves gathering information about the factors and forces—technological, business, sociological, and industry or ecosystem trends—that are effecting change to envision a range of potential impacts.

Seeing New Worlds

Intel, for example, looks beyond its own industry boundaries to envision possible future developments in adjacent businesses in the larger ecosystem it operates in. In 2008, the Intel Labs team, led by anthropologist Genevieve Bell, determined that the introduction of flexible glass displays would open up a whole new category of foldable consumer electronic devices.

To take advantage of that advance, Intel would need to be able to make silicon small enough to fit into some imagined device of the future. By the time glass manufacturer Corning unveiled its ultra-slim, flexible glass surface for mobile devices, laptops, televisions, and other displays of the future in 2012, Intel had already created design prototypes and kicked its development into higher gear. “Because we had done the future casting, we were already imagining how people might use flexible glass to create consumer devices,” says Johnson.

Because future planning relies so heavily on the quality of the input it receives, bringing in experts can elevate the practice. They can come from inside an organization, but the most influential insight may come from the outside and span a wide range of disciplines, says Steve Brown, a futurist, consultant, and CEO of BaldFuturist.com who worked for Intel Labs from 2007 to 2016.

Companies may look to sociologists or behaviorists who have insight into the needs and wants of people and how that influences their actions. Some organizations bring in an applied futurist, skilled at scanning many different forces and factors likely to coalesce in important ways (see Do You Need a Futurist?).

Do You Need a Futurist?

Most organizations need an outsider to help envision their future. Futurists are good at looking beyond the big picture to the biggest picture.

Business leaders who want to be better prepared for an uncertain and disruptive future will build future planning as a strategic capability into their organizations and create an organizational culture that embraces the approach. But working with credible futurists, at least in the beginning, can jump-start the process.

“The present can be so noisy and business leaders are so close to it that it’s helpful to provide a fresh outside-in point of view,” says veteran futurist Bob Johansen.

To put it simply, futurists like Johansen are good at connecting dots—lots of them. They look beyond the boundaries of a single company or even an industry, incorporating into their work social science, technical research, cultural movements, economic data, trends, and the input of other experts.

They can also factor in the cultural history of the specific company with whom they’re working, says Brian David Johnson, futurist in residence at Arizona State University’s Center for Science and the Imagination. “These large corporations have processes and procedures in place—typically for good reasons,” Johnson explains. “But all of those reasons have everything to do with the past and nothing to do with the future. Looking at that is important so you can understand the inertia that you need to overcome.”

One thing the best futurists will say they can’t do: predict the future. That’s not the point. “The future punishes certainty,” Johansen says, “but it rewards clarity.” The methods futurists employ are designed to trigger discussions and considerations of possibilities corporate leaders might not otherwise consider.

You don’t even necessarily have to buy into all the foresight that results, says Johansen. Many leaders don’t. “Every forecast is debatable,” Johansen says. “Foresight is a way to provoke insight, even if you don’t believe it. The value is in letting yourself be provoked.”

External expert input serves several purposes. It brings everyone up to a common level of knowledge. It can stimulate and shift the thinking of participants by introducing them to new information or ideas. And it can challenge the status quo by illustrating how people and organizations in different sectors are harnessing emerging trends.

The goal is not to come up with one definitive future but multiple possibilities—positive and negative—along with a list of the likely obstacles or accelerants that could surface on the road ahead. The result: increased clarity—rather than certainty—in the face of the unknown that enables business decision makers to execute and refine business plans and strategy over time.

Plotting the Steps Along the Way

Coming up with potential trends is an important first step in futuring, but even more critical is figuring out what steps need to be taken along the way: eight years from now, four years from now, two years from now, and now. Considerations include technologies to develop, infrastructure to deploy, talent to hire, partnerships to forge, and acquisitions to make. Without this vital step, says Brown, everybody goes back to their day jobs and the new thinking generated by future planning is wasted. To work, the future steps must be tangible, concrete, and actionable.

Organizations must build a roadmap for the desired future state that anticipates both developments and detours, complete with signals that will let them know if they’re headed in the right direction. Brown works with corporate leaders to set indicator flags to look out for on the way to the anticipated future. “If we see these flagged events occurring in the ecosystem, they help to confirm the strength of our hypothesis that a particular imagined future is likely to occur,” he explains.

For example, one of Brown’s clients envisioned two potential futures: one in which gestural interfaces took hold and another in which voice control dominated. The team set a flag to look out for early examples of the interfaces that emerged in areas such as home appliances and automobiles. “Once you saw not just Amazon Echo but also Google Home and other copycat speakers, it would increase your confidence that you were moving more towards a voice-first era rather than a gesture-first era,” Brown says. “It doesn’t mean that gesture won’t happen, but it’s less likely to be the predominant modality for communication.”

How to Keep Experiments from Being Stifled

Once organizations have a vision for the future, making it a reality requires testing ideas in the marketplace and then scaling them across the enterprise. “There’s a huge change piece involved,”
says Frank Diana, futurist and global consultant with Tata Consultancy Services, “and that’s the place where most
businesses will fall down.”

Many large firms have forgotten what it’s like to experiment in several new markets on a small scale to determine what will stick and what won’t, says René Rohrbeck, professor of strategy at the Aarhus School of Business and Social Sciences. Companies must be able to fail quickly, bring the lessons learned back in, adapt, and try again.

Lowe’s increases its chances of success by creating master narratives across a number of different areas at once, such as robotics, mixed-reality tools, on-demand manufacturing, sustainability, and startup acceleration. The lab maps components of each by expected timelines: short, medium, and long term. “From there, we’ll try to build as many of them as quickly as we can,” says Manna. “And we’re always looking for that next suite of things that we should be working on.” Along the way certain innovations, like the HoloRoom How-To, become developed enough to integrate into the larger business as part of the core strategy.

One way Lowe’s accelerates the process of deciding what is ready to scale is by being open about its nascent plans with the world. “In the past, Lowe’s would never talk about projects that weren’t at scale,” says Manna. Now the company is sharing its future plans with the media and, as a result, attracting partners that can jump-start their realization.

Seeing a Lowe’s comic about employee exoskeletons, for example, led Virginia Tech engineering professor Alan Asbeck to the retailer. He helped develop a prototype for a three-month pilot with stock employees at a Christiansburg, Virginia, store.

The high-tech suit makes it easier to move heavy objects. Employees trying out the suits are also fitted with an EEG headset that the lab incorporates into all its pilots to gauge unstated, subconscious reactions. That direct feedback on the user experience helps the company refine its innovations over time.

Make the Future Part of the Culture

Regardless of whether all the elements of its master narratives come to pass, Lowe’s has already accomplished something important: It has embedded future thinking into the culture of the company.

Companies like Lowe’s constantly scan the environment for meaningful economic, technology, and cultural changes that could impact its future assessments and plans. “They can regularly draw on future planning to answer challenges,” says Rohrbeck. “This intensive, ongoing, agile strategizing is only possible because they’ve done their homework up front and they keep it updated.”

It’s impossible to predict what’s going to happen in the future, but companies can help to shape it, says Manna of Lowe’s. “It’s really about painting a picture of a preferred future state that we can try to achieve while being flexible and capable of change as we learn things along the way.” D!


About the Authors

Dan Wellers is Global Lead, Digital Futures, at SAP.

Kai Goerlich is Chief Futurist at SAP’s Innovation Center Network.

Stephanie Overby is a Boston-based business and technology journalist.


Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.

Comments

Dan Wellers

About Dan Wellers

Dan Wellers is founder and leader of Digital Futures at SAP, a strategic insights and thought leadership discipline that explores how digital technologies drive exponential change in business and society.

Kai Goerlich

About Kai Goerlich

Kai Goerlich is the Chief Futurist at SAP Innovation Center network His specialties include Competitive Intelligence, Market Intelligence, Corporate Foresight, Trends, Futuring and ideation.

Share your thoughts with Kai on Twitter @KaiGoe.heif Futu

About Stephanie Overby

Tags:

The Human Factor In An AI Future

Dan Wellers and Kai Goerlich

As artificial intelligence becomes more sophisticated and its ability to perform human tasks accelerates exponentially, we’re finally seeing some attempts to wrestle with what that means, not just for business, but for humanity as a whole.

From the first stone ax to the printing press to the latest ERP solution, technology that reduces or even eliminates physical and mental effort is as old as the human race itself. However, that doesn’t make each step forward any less uncomfortable for the people whose work is directly affected – and the rise of AI is qualitatively different from past developments.

Until now, we developed technology to handle specific routine tasks. A human needed to break down complex processes into their component tasks, determine how to automate each of those tasks, and finally create and refine the automation process. AI is different. Because AI can evaluate, select, act, and learn from its actions, it can be independent and self-sustaining.

Some people, like investor/inventor Elon Musk and Alibaba founder and chairman Jack Ma, are focusing intently on how AI will impact the labor market. It’s going to do far more than eliminate repetitive manual jobs like warehouse picking. Any job that involves routine problem-solving within existing structures, processes, and knowledge is ripe for handing over to a machine. Indeed, jobs like customer service, travel planning, medical diagnostics, stock trading, real estate, and even clothing design are already increasingly automated.

As for more complex problem-solving, we used to think it would take computers decades or even centuries to catch up to the nimble human mind, but we underestimated the exponential explosion of deep learning. IBM’s Watson trounced past Jeopardy champions in 2011 – and just last year, Google’s DeepMind AI beat the reigning European champion at Go, a game once thought too complex for even the most sophisticated computer.

Where does AI leave human?

This raises an urgent question for the future: How do human beings maintain our economic value in a world in which AI will keep getting better than us at more and more things?

The concept of the technological singularity – the point at which machines attain superhuman intelligence and permanently outpace the human mind – is based on the idea that human thinking can’t evolve fast enough to keep up with technology. However, the limits of human performance have yet to be found. It’s possible that people are only at risk of lagging behind machines because nothing has forced us to test ourselves at scale.

Other than a handful of notable individual thinkers, scientists, and artists, most of humanity has met survival-level needs through mostly repetitive tasks. Most people don’t have the time or energy for higher-level activities. But as the human race faces the unique challenge of imminent obsolescence, we need to think of those activities not as luxuries, but as necessities. As technology replaces our traditional economic value, the economic system may stop attaching value to us entirely unless we determine the unique value humanity offers – and what we can and must do to cultivate the uniquely human skills that deliver that value.

Honing the human advantage

As a species, humans are driven to push past boundaries, to try new things, to build something worthwhile, and to make a difference. We have strong instincts to explore and enjoy novelty and risk – but according to psychologist Mihaly Csikszentmihalyi, these instincts crumble if we don’t cultivate them.

AI is brilliant at automating routine knowledge work and generating new insights from existing data. What it can’t do is deduce the existence, or even the possibility, of information it isn’t already aware of. It can’t imagine radical new products and business models. Or ask previously unconceptualized questions. Or envision unimagined opportunities and achievements. AI doesn’t even have common sense! As theoretical physicist Michio Kaku says, a robot doesn’t know that water is wet or that strings can pull but not push. Nor can robots engage in what Kaku calls “intellectual capitalism” – activities that involve creativity, imagination, leadership, analysis, humor, and original thought.

At the moment, though, we don’t generally value these so-called “soft skills” enough to prioritize them. We expect people to develop their competency in emotional intelligence, cross-cultural awareness, curiosity, critical thinking, and persistence organically, as if these skills simply emerge on their own given enough time. But there’s nothing soft about these skills, and we can’t afford to leave them to chance.

Lessons in being human

To stay ahead of AI in an increasingly automated world, we need to start cultivating our most human abilities on a societal level – and to do so not just as soon as possible, but as early as possible.

Singularity University chairman Peter Diamandis, for example, advocates revamping the elementary school curriculum to nurture the critical skills of passion, curiosity, imagination, critical thinking, and persistence. He envisions a curriculum that, among other things, teaches kids to communicate, ask questions, solve problems with creativity, empathy, and ethics, and accept failure as an opportunity to try again. These concepts aren’t necessarily new – Waldorf and Montessori schools have been encouraging similar approaches for decades – but increasing automation and digitization make them newly relevant and urgent.

The Mastery Transcript Consortium is approaching the same problem from the opposite side, by starting with outcomes. This organization is pushing to redesign the secondary school transcript to better reflect whether and how high school students are acquiring the necessary combination of creative, critical, and analytical abilities. By measuring student achievement in a more nuanced way than through letter grades and test scores, the consortium’s approach would inherently require schools to reverse-engineer their curricula to emphasize those abilities.

Most critically, this isn’t simply a concern of high-tuition private schools and “good school districts” intended to create tomorrow’s executives and high-level knowledge workers. One critical aspect of the challenge we face is the assumption that the vast majority of people are inevitably destined for lives that don’t require creativity or critical thinking – that either they will somehow be able to thrive anyway or their inability to thrive isn’t a cause for concern. In the era of AI, no one will be able to thrive without these abilities, which means that everyone will need help acquiring them. For humanitarian, political, and economic reasons, we cannot just write off a large percentage of the population as disposable.

In the end, anything an AI does has to fit into a human-centered value system that takes our unique human abilities into account. Why would we want to give up our humanity in favor of letting machines determine whether or not an action or idea is valuable? Instead, while we let artificial intelligence get better at being what it is, we need to get better at being human. That’s how we’ll keep coming up with groundbreaking new ideas like jazz music, graphic novels, self-driving cars, blockchain, machine learning – and AI itself.

Read the executive brief Human Skills for the Digital Future.

Build an intelligent enterprise with AI and machine learning to unite human expertise and computer insights. Run live with SAP Leonardo.


Comments

Dan Wellers

About Dan Wellers

Dan Wellers is founder and leader of Digital Futures at SAP, a strategic insights and thought leadership discipline that explores how digital technologies drive exponential change in business and society.

Kai Goerlich

About Kai Goerlich

Kai Goerlich is the Chief Futurist at SAP Innovation Center network His specialties include Competitive Intelligence, Market Intelligence, Corporate Foresight, Trends, Futuring and ideation.

Share your thoughts with Kai on Twitter @KaiGoe.heif Futu