Sections

Cybersecurity: It’s More Than Just Technology

Stefan Guertzgen

Last week I visited the ARC Forum in Orlando, and cybersecurity was one of the most prominent topics throughout the whole event. Here are some key lessons I learned:

There are different categories of cyberattacks. On one end are high-frequency attacks perpetuated by attackers with low-level skills. Those typically have a low impact on your company and its operations.

On the other end are less frequent but high-impact attacks that affect critical operations or that target high-value data. Such attacks require a high skill set on the attacker’s side.

How do you protect yourself and your company from both types of attacks?

The first category includes such things as spam, common viruses, or Trojans, most of which you can to fight with technology like spam filters or anti-virus software. However, the boundaries are blurring. The more the attacks move toward the high-impact category, the more you need resources with special skill sets that at least match those of the cyberattackers.

In other words, technology, skilled resources, and executive-level commitment and support must go hand-in-hand to build a resilient cybersecurity and threat protection system.

Sid Snitkin, from ARC, presented a five-stage maturity model comprising the following levels:

  • Secure
  • Defend
  • Contain
  • Manage
  • Anticipate

The higher you climb on this “maturity ladder,” the more skilled resources come into play, and the more you have to break up silos within and beyond your company boundaries. Dan Rosinski, from Dow Chemical, stated that “it takes more than a village” to establish a strong cybersecurity. Fostering collaboration between IT, engineering, operations, legal, safety, purchasing, and business is a critical success factor.

Also, cybersecurity is not a one-off exercise. As hacker’s skill sets grow exponentially, you need to dynamically revisit your strategy and tools. Increasingly, new hardware and software are developed with embedded security and self-protection, especially tools that are used at the perimeter of a company’s environment. Hence, cybersecurity should be considered as a journey that just has started.

Share your experiences and thoughts on cybersecurity with us!

For more insight on cybersecurity technology, see Machine Learning: The New High-Tech Focus For Cybersecurity.

Comments

About Stefan Guertzgen

Dr. Stefan Guertzgen is the Global Director of Industry Solution Marketing for Chemicals at SAP. He is responsible for driving Industry Thought Leadership, Positioning & Messaging and strategic Portfolio Decisions for Chemicals.

The Role Of AI In Financial Trading – It’s Not What You Think

Susan Galer

The financial industry has been all over artificial intelligence (AI) supporting front-end trading processes, leaving much of the rest of the business in the last century. That won’t be true for much longer if Bikram Singh, founder and CEO of EZOPS, has his way.

I caught up with Singh during the recent kick-off of the SAP Next-Gen Innovation Community for Financial Services at the SAP Leonardo Center in New York City.

“A lot of functions in the middle and back office typically have been neglected in the AI revolution, and we see a tremendous opportunity here to radically transform the landscape,” said Singh. “We are specializing in applying AI and machine learning to address use cases in the back office, including data reconciliation.”

According to Singh, up to 15% of a financial institution’s staff focused on trading are conducting repetitive, mundane tasks to reconcile data. He co-founded EZOPS three years ago to provide cloud-based, AI-fueled services that support these processes that take place after trading is done. Based in the United States with offices in Dublin and India, this fintech is designing a product called ARO to help companies predict and resolve breaks. The software can help institutions streamline operations, reduce risk, and redirect workers to higher-value responsibilities. It’s aimed at top-level asset managers and fund administrators in any financial institution involved with heavy trading volume, including equities, cash, and commodities at banks and insurance firms.

“Our passion is to connect with the C-suite, giving them the satisfaction that at the end of the day, after they have executed trades in the front office, they don’t have to worry about the back office,” said Singh. “Applying AI in the middle and back office has benefits up and down the entire value chain, and this is where the industry is headed.”

Time to trade up pre-2008 systems

Singh began his financial career at the trading desk, where he fell in love with the back-end processes. “I wasn’t a great trader, but loved processes and what happened on the back end, how if I pressed a certain button from the front office, everything fell into place through settlement. I’ve spent my entire career building products and services around that middle- and back-office spectrum.”

AI is tailor-made for a financial industry increasingly squeezed by new regulations on selling products and resultant decreasing revenues. Calculating ROI at a molecular level, meaning costs by trade against worker productivity, has become a must-have. That’s where AI comes in.

“You can’t have a back or middle office set up for pre-2008. Institutions must become more streamlined and nimble,” said Singh. “Banks are realizing even if policies change, certain regulations and cost pressures are here to stay. If they don’t adapt and be one of the first movers, someone else will do it.”

Singh said EZOPS is having serious conversations with several of the world’s largest banks about the company’s AI-based solution, now in proof of concept (POC), which runs machine learning algorithms on a cloud platform, and uses analytics for reporting.

“We are getting over 90% accuracy in predictions from our [proof of concept] in results that are off the charts,” he said. “Because of the intelligence in our algorithms, based on our understanding of the processes, we can deliver results that are immediately promising and translate into cost savings. For banks, we feel like we are their BFFs, providing them with results they can show their board and investors and benchmark against their peers.”

For more on the disruptive effects of AI, see Artificial Intelligence Will Require Very Real Brainpower In Finance.

Comments

How Digital Transformation Is Rewriting Business Models

Ginger Shimp

Everybody knows someone who has a stack of 3½-inch floppies in a desk drawer “just in case we may need them someday.” While that might be amusing, the truth is that relatively few people are confident that they’re making satisfactory progress on their digital journey. The boundaries between the digital and physical worlds continue to blur — with profound implications for the way we do business. Virtually every industry and every enterprise feels the effects of this ongoing digital transformation, whether from its own initiative or due to pressure from competitors.

What is digital transformation? It’s the wholesale reimagining and reinvention of how businesses operate, enabled by today’s advanced technology. Businesses have always changed with the times, but the confluence of technologies such as mobile, cloud, social, and Big Data analytics has accelerated the pace at which today’s businesses are evolving — and the degree to which they transform the way they innovate, operate, and serve customers.

The process of digital transformation began decades ago. Think back to how word processing fundamentally changed the way we write, or how email transformed the way we communicate. However, the scale of transformation currently underway is drastically more significant, with dramatically higher stakes. For some businesses, digital transformation is a disruptive force that leaves them playing catch-up. For others, it opens to door to unparalleled opportunities.

Upending traditional business models

To understand how the businesses that embrace digital transformation can ultimately benefit, it helps to look at the changes in business models currently in process.

Some of the more prominent examples include:

  • A focus on outcome-based models — Open the door to business value to customers as determined by the outcome or impact on the customer’s business.
  • Expansion into new industries and markets — Extend the business’ reach virtually anywhere — beyond strictly defined customer demographics, physical locations, and traditional market segments.
  • Pervasive digitization of products and services — Accelerate the way products and services are conceived, designed, and delivered with no barriers between customers and the businesses that serve them.
  • Ecosystem competition — Create a more compelling value proposition in new markets through connections with other companies to enhance the value available to the customer.
  • Access a shared economy — Realize more value from underutilized sources by extending access to other business entities and customers — with the ability to access the resources of others.
  • Realize value from digital platforms — Monetize the inherent, previously untapped value of customer relationships to improve customer experiences, collaborate more effectively with partners, and drive ongoing innovation in products and services,

In other words, the time-tested assumptions about how to identify customers, develop and market products and services, and manage organizations may no longer apply. Every aspect of business operations — from forecasting demand to sourcing materials to recruiting and training staff to balancing the books — is subject to this wave of reinvention.

The question is not if, but when

These new models aren’t predictions of what could happen. They’re already realities for innovative, fast-moving companies across the globe. In this environment, playing the role of late adopter can put a business at a serious disadvantage. Ready or not, digital transformation is coming — and it’s coming fast.

Is your company ready for this sea of change in business models? At SAP, we’ve helped thousands of organizations embrace digital transformation — and turn the threat of disruption into new opportunities for innovation and growth. We’d relish the opportunity to do the same for you. Our Digital Readiness Assessment can help you see where you are in the journey and map out the next steps you’ll need to take.

Up next I’ll discuss the impact of digital transformation on processes and work. Until then, you can read more on how digital transformation is impacting your industry.

Comments

About Ginger Shimp

With more than 20 years’ experience in marketing, Ginger Shimp has been with SAP since 2004. She has won numerous awards and honors at SAP, including being designated “Top Talent” for two consecutive years. Not only is she a Professional Certified Marketer with the American Marketing Association, but she's also earned her Connoisseur's Certificate in California Reds from the Chicago Wine School. She holds a bachelor's degree in journalism from the University of San Francisco, and an MBA in marketing and managerial economics from the Kellogg Graduate School of Management at Northwestern University. Personally, Ginger is the proud mother of a precocious son and happy wife of one of YouTube's 10 EDU Gurus, Ed Shimp.

Running Future Cities on Blockchain

Dan Wellers , Raimund Gross and Ulrich Scholl

Building on the Blockchain Framework

Some experts say these seemingly far-future speculations about the possibilities of combining technologies using blockchain are actually both inevitable and imminent:


Democratizing design and manufacturing by enabling individuals and small businesses to buy, sell, share, and digitally remix products affordably while protecting intellectual property rights.
Decentralizing warehousing and logistics by combining autonomous vehicles, 3D printers, and smart contracts to optimize delivery of products and materials, and even to create them on site as needed.
Distributing commerce by mixing virtual reality, 3D scanning and printing, self-driving vehicles, and artificial intelligence into immersive, personalized, on-demand shopping experiences that still protect buyers’ personal and proprietary data.

The City of the Future

Imagine that every agency, building, office, residence, and piece of infrastructure has an entry on a blockchain used as a city’s digital ledger. This “digital twin” could transform the delivery of city services.

For example:

  • Property owners could easily monetize assets by renting rooms, selling solar power back to the grid, and more.
  • Utilities could use customer data and AIs to make energy-saving recommendations, and smart contracts to automatically adjust power usage for greater efficiency.
  • Embedded sensors could sense problems (like a water main break) and alert an AI to send a technician with the right parts, tools, and training.
  • Autonomous vehicles could route themselves to open parking spaces or charging stations, and pay for services safely and automatically.
  • Cities could improve traffic monitoring and routing, saving commuters’ time and fuel while increasing productivity.

Every interaction would be transparent and verifiable, providing more data to analyze for future improvements.


Welcome to the Next Industrial Revolution

When exponential technologies intersect and combine, transformation happens on a massive scale. It’s time to start thinking through outcomes in a disciplined, proactive way to prepare for a future we’re only just beginning to imagine.

Download the executive brief Running Future Cities on Blockchain.


Read the full article Pulling Cities Into The Future With Blockchain

Comments

About Dan Wellers

Dan Wellers is founder and leader of Digital Futures at SAP, a strategic insights and thought leadership discipline that explores how digital technologies drive exponential change in business and society.

Raimund Gross

About Raimund Gross

Raimund Gross is a solution architect and futurist at SAP Innovation Center Network, where he evaluates emerging technologies and trends to address the challenges of businesses arising from digitization. He is currently evaluating the impact of blockchain for SAP and our enterprise customers.

Ulrich Scholl

About Ulrich Scholl

Ulrich Scholl is Vice President of Industry Cloud and Custom Development at SAP. In this role, Ulrich discovers and implements best practices to help further the understanding and adoption of the SAP portfolio of industry cloud innovations.

Tags:

Are AI And Machine Learning Killing Analytics As We Know It?

Joerg Koesters

According to IDC, artificial intelligence (AI) is expected to become pervasive across customer journeys, supply networks, merchandizing, and marketing and commerce because it provides better insights to optimize retail execution. For example, in the next two years:

  • 40% of digital transformation initiatives will be supported by cognitive computing and AI capabilities to provide critical, on-time insights for new operating and monetization models.
  • 30% of major retailers will adopt a retail omnichannel commerce platform that integrates a data analytics layer that centrally orchestrates omnichannel capabilities.

One thing is clear: new analytic technologies are expected to radically change analytics – and retail – as we know them.

AI and machine learning defined in the context of retail

AI is defined broadly as the ability of computers to mimic human thinking and logic. Machine learning is a subset of AI that focuses on how computers can learn from data without being programmed through the use of algorithms that adapt to change; in other words, they can “learn” continuously in response to new data. We’re seeing these breakthroughs now because of massive improvements in hardware (for example, GPUs and multicore processing) that can handle Big Data volumes and run deep learning algorithms needed to analyze and learn from the data.

Ivano Ortis, vice president at IDC, recently shared with me how he believes, “Artificial intelligence will take analytics to the next level and will be the foundation for retail innovation, as reported by one out of every two retailers globally. AI enables scale, automation, and unprecedented precision and will drive customer experience innovation when applied to both hyper micro customer segmentation and contextual interaction.”

Given the capabilities of AI and machine learning, it’s easy to see how they can be powerful tools for retailers. Now computers can read and listen to data, understand and learn from it, and instantly and accurately recommend the next best action without having to be explicitly programmed. This is a boon for retailers seeking to accurately predict demand, anticipate customer behavior, and optimize and personalize customer experiences.

For example, it can be used to automate:

  • Personalized product recommendations based on data about each customer’s unique interests and buying propensity
  • The selection of additional upsell and cross-sell options that drive greater customer value
  • Chat bots that can drive intelligent and meaningful engagement with customers
  • Recommendations on additional services and offerings based on past and current buying data and customer data
  • Planogram analyses, which support in-store merchandizing by telling people what’s missing, comparing sales to shelf space, and accelerating shelf replenishment by automating reorders
  • Pricing engines used to make tailored, situational pricing decisions

Particularly in the United States, retailers are already able to collect large volumes of transaction-based and behavioral data from their customers. And as data volumes grow and processing power improves, machine learning becomes increasingly applicable in a wider range of retail areas to further optimize business processes and drive more impactful personalized and contextual consumer experiences and products.

The transformation of retail has already begun

The impacts of AI and machine learning are already being felt. For example:

  • Retailers are predicting demand with machine learning in combination with IoT technologies to optimize store businesses and relieve workforces
  • Advertisements are being personalized based on in-store camera detections and taking over semi-manual clienteling tasks of store employees
  • Retailers can monitor wait times in checkout lines to understand store traffic and merchandising effectiveness at the individual store level – and then tailor assortments and store layouts to maximize basket size, satisfaction, and sell through
  • Systems can now recognize and predict customer behavior and improve employee productivity by turning scheduled tasks into on-demand activities
  • Camera systems can detect the “fresh” status of perishable products before onsite employees can
  • Brick-and-mortar stores are automating operational tasks, such as setting shelf pricing, determining product assortments and mixes, and optimizing trade promotions
  • In-store apps can tell how long a customer has been in a certain aisle and deliver targeted offers and recommendations (via his or her mobile device) based on data about data about personal consumption histories and preferences

A recent McKinsey study provided examples that quantify the potential value of these technologies in transforming how retailers operate and compete. For example:

  • U.S. retailer supply chain operations that have adopted data and analytics have seen up to a 19% increase in operating margin over the last five years. Using data and analytics to improve merchandising, including pricing, assortment, and placement optimization, is leading to an additional 16% in operating margin improvement.
  • Personalizing advertising is one of the strongest use cases for machine learning today. Additional retail use cases with high potential include optimizing pricing, routing, and scheduling based on real-time data in travel and logistics, as well as optimizing merchandising strategies.

Exploiting the full value of data

Thin margins (especially in the grocery sector) and pressure from industry-leading early adopters such as Amazon and Walmart have created strong incentives to put customer data to work to improve everything from cross-selling additional products to reducing costs throughout the entire value chain. But McKinsey has assessed that the U.S. retail sector has realized only 30-40% of the potential margin improvements and productivity growth its analysts envisioned in 2011 – and a large share of the value of this growth has gone to consumers through lower prices. So thus far, only a fraction of the potential value from AI and machine learning has been realized.

According to Forbes, U.S. retailers have the potential to see a 60%+ increase in net margin and 0.5–1.0% annual productivity growth. But there are major barriers to realizing this value, including lack of analytical talent and siloed data within companies.

This is where machine learning and analytics kick in. AI and machine learning can help scale the repetitive analytics tasks required to drive leverage of the available data. When deployed on a companywide, real-time analytics platform, they can become the single source of truth that all enterprise functions rely on to make better decisions.

How will this change analytics?

So how will AI and machine learning change retail analytics? We expect that AI and machine learning will not kill analytics as we know it, but rather give it a new and even more impactful role in driving the future of retail. For example, we anticipate that:

  • Retailers will include machine learning algorithms as an additional factor in analyzing and  monitoring business outcomes in relation to machine learning algorithms
  • They will use AI and machine learning to sharpen analytic algorithms, detect more early warning signals, anticipate trends, and have accurate answers before competitors do
  • Analytics will happen in real time and act as the glue between all areas of the business
  • Analytics will increasingly focus on analyzing manufacturing machine behavior, not just business and consumer behavior

Ivano Ortis at IDC authored a recent report, “Why Retail Analytics are a Foundation for Retail Profits,” in which he provides further insights on this topic. He notes how retail leaders will use new kinds of analytics to drive greater profitability, further differentiate the customer experience, and compete more effectively, “In conclusion, commerce and technology will converge, enabling retailers to achieve short-term ROI objectives while discovering untapped demand. But implementing analytics will require coordination across key management roles and business processes up and down each retail organization. Early adopters are realizing demonstrably significant value from their initiatives – double-digit improvements in margins, same-store and e-commerce revenue, inventory positions and sell-through, and core marketing metrics. A huge opportunity awaits.”

So how do you see your retail business adopting advanced analytics like AI and machine learning? I encourage you to read IDC’s report in detail, as it provides valuable insights to help you invest in – and apply – new kinds of analytics that will be essential to profitable growth.

For more information, download IDC’s “Why Retail Analytics are a Foundation for Retail Profits.

Comments

About Joerg Koesters

Joerg Koesters is the Head of Retail Marketing and Communication at SAP. He is a Technology Marketing executive with 20 years of experience in Marketing, Sales and Consulting, Joerg has deep knowledge in retail and consumer products having worked both in the industry and in the technology sector.