Sections

Cybersecurity: It’s More Than Just Technology

Stefan Guertzgen

Last week I visited the ARC Forum in Orlando, and cybersecurity was one of the most prominent topics throughout the whole event. Here are some key lessons I learned:

There are different categories of cyberattacks. On one end are high-frequency attacks perpetuated by attackers with low-level skills. Those typically have a low impact on your company and its operations.

On the other end are less frequent but high-impact attacks that affect critical operations or that target high-value data. Such attacks require a high skill set on the attacker’s side.

How do you protect yourself and your company from both types of attacks?

The first category includes such things as spam, common viruses, or Trojans, most of which you can to fight with technology like spam filters or anti-virus software. However, the boundaries are blurring. The more the attacks move toward the high-impact category, the more you need resources with special skill sets that at least match those of the cyberattackers.

In other words, technology, skilled resources, and executive-level commitment and support must go hand-in-hand to build a resilient cybersecurity and threat protection system.

Sid Snitkin, from ARC, presented a five-stage maturity model comprising the following levels:

  • Secure
  • Defend
  • Contain
  • Manage
  • Anticipate

The higher you climb on this “maturity ladder,” the more skilled resources come into play, and the more you have to break up silos within and beyond your company boundaries. Dan Rosinski, from Dow Chemical, stated that “it takes more than a village” to establish a strong cybersecurity. Fostering collaboration between IT, engineering, operations, legal, safety, purchasing, and business is a critical success factor.

Also, cybersecurity is not a one-off exercise. As hacker’s skill sets grow exponentially, you need to dynamically revisit your strategy and tools. Increasingly, new hardware and software are developed with embedded security and self-protection, especially tools that are used at the perimeter of a company’s environment. Hence, cybersecurity should be considered as a journey that just has started.

Share your experiences and thoughts on cybersecurity with us!

For more insight on cybersecurity technology, see Machine Learning: The New High-Tech Focus For Cybersecurity.

Comments

About Stefan Guertzgen

Dr. Stefan Guertzgen is the Global Director of Industry Solution Marketing for Chemicals at SAP. He is responsible for driving Industry Thought Leadership, Positioning & Messaging and strategic Portfolio Decisions for Chemicals.

Drones: Poised For Takeoff In The Digital Economy

Stefan Guertzgen

Drones have captured the popular imagination, making a splash on social media, in the popular press, and even on hit television shows. But drones can do a lot more than entertain. They are actually a core driver of transformation in the digital economy. Here are a few examples.

Precision farming

Using swarm intelligence, specialized drones home in on weed-infested areas to prevent invasive plants from encroaching on valuable crops. These drones can deliver pesticides only and precisely where they are needed, reducing the environmental impact and increasing crop yields. Drones can also measure soil conditions as well as health status of plants to deliver water, fertilizers, or other components to ensure optimum growth. The result is increased crop yields at lower cost and with reduced use of potentially dangerous pesticides, a concept known as digital farming.

Remote location inspection and maintenance

Pipelines, mining operations, offshore oil rigs, and railroad tracks are often located far from centers of commerce, yet it is imperative that they operate flawlessly. Drones can easily monitor even the most remote stretches and when signal repairs are needed or dangerous conditions are occurring.

Spare parts delivery

When machinery and equipment goes down, time is of the essence. Drones can quickly and efficiently deliver needed spare parts from manufacturers or 3D printers directly to the equipment’s location, saving time, preventing unnecessary downtime, and reducing investments in MRO inventory.

Military observation

Drones can keep track of weapon and troop deployments in military situations without endangering humans. They can also provide a complete view of any skirmish, creating a tactical advantage by eliminating the element of surprise.

Search and rescue

Search-and-rescue missions are expensive and time-consuming. Physical limitations such as fatigue, hunger, personal safety, and the need for light and visibility can delay or slow searches conducted by human rescuers. Drones can search wide areas under challenging conditions and instantly send data back to a central location. Once the search target is identified, rescue teams can set off with the right equipment, knowing exactly where to focus their search. This makes search-and-rescue operations faster, less costly, and more effective. Watch this video for more insight.

Scientific research

Drones can track animal migrations, report on weather patterns, and help discover rare and previously unknown plant and animal species.

Life sciences

Combining nanotechnology and drones enables technology first envisioned by science fiction in the 1960s. Tiny drones can now be injected into the body to perform potentially lifesaving tasks such as micro-surgery, clear blockages, inspect aneurisms, and deliver targeted chemotherapy drugs to cancer sites.

Drones are clearly powerful agents of change as we transform to a digital economy. In addition to the examples highlighted here, drones also play an important role in such industries as insurance risk and damage assessments, wholesale distribution and last-mile deliveries, and delivery and maintenance of essential infrastructure services such as Wi-Fi, Internet, and telephone for remote locations in emerging areas. As drone technology gets more sophisticated, industries of all types will find increasingly innovative ways to use them to increase business efficiency and bolster the digital economy.

For more on how advanced technology will impact our future, see 20 Technology Predictions To Keep Your Eye On In 2017.

Comments

About Stefan Guertzgen

Dr. Stefan Guertzgen is the Global Director of Industry Solution Marketing for Chemicals at SAP. He is responsible for driving Industry Thought Leadership, Positioning & Messaging and strategic Portfolio Decisions for Chemicals.

How 3D Printing Will Energize The Chemical Industry - Part 2: Commercial Implications And The Future

Stefan Guertzgen

In Part 1 of this blog, I discussed key opportunity areas for 3D printing in the chemical industry. Let’s now take a look at commercial implications and the future ahead.

Commercial benefits

3D printing promises to reduce supply chain costs across all industries. For example, the ability to print spare parts on demand can save money through improved asset uptime and more efficient workforce management. 3D printing also helps control costs with reduced waste and a smaller carbon footprint. In contrast to traditional “subtractive” manufacturing techniques in which raw material is removed, 3D printing is an additive process that uses only the amount of material that is needed. This can save significant amounts of raw materials. In the aerospace industry, for example, Airbus estimates 3D printing could reduce its raw material costs by up to 90 percent.

From a manufacturing perspective, 3D printing can streamline processes, accelerate design cycles, and add agility to operations. Printing prototypes on site speeds the R&D development cycle and shortens time to market. Researchers can make, test, and finalize prototypes in days instead of weeks. Also, the ability to print parts or equipment on demand will eliminate expensive inventory holding costs and restocking order requirements and free up floor space for other purposes.

Of course, as mentioned earlier, the primary benefit of 3D printing for the chemical industry is the market potential of developing innovative proprietary formulations for printer feeds and owning the corresponding intellectual property.

Obstacles to adoption

As with most new technology introductions, barriers must be overcome for this potential to fully be realized. A much-discussed but unresolved issue is intellectual property protection. Similar to the way digital music is shared, 3D printable digital blueprints could be shared illegally and/or unknowingly either within a company or by outside hackers.

In addition to digital files, users can print molds from a scanned object and use them to mass-produce exact replicas that are protected under copyright, trademark, and patent laws. The problem will continue to grow as companies move to an on-demand manufacturing network, requiring digital blueprints to be shared with independent fabricators. Gartner predicts that by 2018, 3D printing will result in the loss of at least $100 billion per year in intellectual property globally.

Regulatory issues are slowing the adoption of 3D printer applications. This is especially applicable in the medical and pharmaceutical industries, but has potential impact in many markets. For example, globally regulating what individuals will create with access to the Internet and a 3D chemical printer will be difficult. Also, as 3D printing drives small and customer-specific lot sizes, it will likely spur an explosion of proprietary bills of material and recipes, which will be hard to track and control under REACH or REACH-like regulations. Because this is a new frontier, many regulatory issues must be addressed.

In addition to legal and regulatory challenges, the industry has a long way to go to reliably reproduce high-quality products. Until 3D printing can match the speed and quality output requirements of conventional manufacturing processes, it will likely be reserved for prototypes or small-sized lots.

3D printing: a new frontier

While 3D printing has not reached the point of use for large-scale production or to consistently make custom products, ongoing innovations drive high demand. Gartner’s 3D printer market forecast estimates that shipments of industrial 3D printers will grow at a compound annual growth rate (CAGR) of 72.8 percent through 2019 – from almost $944.3 million to more than $14.6 billion. The number of 3D printers purchased each year is expected to increase to more than 5.6 million units in 2019, a CAGR of 121.9 percent.

3D printing will initially help chemical companies increase profitability by lowering costs and improving operational efficiency. However, the industry-changing opportunity is the chance to develop new feeds and formulations. The most successful chemical companies of the future will be the ones with the vision to begin developing and implementing 3D printing solutions today.

How far are you in implementing 3D printing as part of your overall digital transformation strategy? Feel free to share your thoughts and ideas with us!

For more on the implications of 3D printing technology, see 6 Surprising Ways 3D Printing Will Disrupt Manufacturing.

Learn more about SAPPHIRENOW and secure your spot today!

Comments

About Stefan Guertzgen

Dr. Stefan Guertzgen is the Global Director of Industry Solution Marketing for Chemicals at SAP. He is responsible for driving Industry Thought Leadership, Positioning & Messaging and strategic Portfolio Decisions for Chemicals.

How Emotionally Aware Computing Can Bring Happiness to Your Organization

Christopher Koch


Do you feel me?

Just as once-novel voice recognition technology is now a ubiquitous part of human–machine relationships, so too could mood recognition technology (aka “affective computing”) soon pervade digital interactions.

Through the application of machine learning, Big Data inputs, image recognition, sensors, and in some cases robotics, artificially intelligent systems hunt for affective clues: widened eyes, quickened speech, and crossed arms, as well as heart rate or skin changes.




Emotions are big business

The global affective computing market is estimated to grow from just over US$9.3 billion a year in 2015 to more than $42.5 billion by 2020.

Source: “Affective Computing Market 2015 – Technology, Software, Hardware, Vertical, & Regional Forecasts to 2020 for the $42 Billion Industry” (Research and Markets, 2015)

Customer experience is the sweet spot

Forrester found that emotion was the number-one factor in determining customer loyalty in 17 out of the 18 industries it surveyed – far more important than the ease or effectiveness of customers’ interactions with a company.


Source: “You Can’t Afford to Overlook Your Customers’ Emotional Experience” (Forrester, 2015)


Humana gets an emotional clue

Source: “Artificial Intelligence Helps Humana Avoid Call Center Meltdowns” (The Wall Street Journal, October 27, 2016)

Insurer Humana uses artificial intelligence software that can detect conversational cues to guide call-center workers through difficult customer calls. The system recognizes that a steady rise in the pitch of a customer’s voice or instances of agent and customer talking over one another are causes for concern.

The system has led to hard results: Humana says it has seen an 28% improvement in customer satisfaction, a 63% improvement in agent engagement, and a 6% improvement in first-contact resolution.


Spread happiness across the organization

Source: “Happiness and Productivity” (University of Warwick, February 10, 2014)

Employers could monitor employee moods to make organizational adjustments that increase productivity, effectiveness, and satisfaction. Happy employees are around 12% more productive.




Walking on emotional eggshells

Whether customers and employees will be comfortable having their emotions logged and broadcast by companies is an open question. Customers may find some uses of affective computing creepy or, worse, predatory. Be sure to get their permission.


Other limiting factors

The availability of the data required to infer a person’s emotional state is still limited. Further, it can be difficult to capture all the physical cues that may be relevant to an interaction, such as facial expression, tone of voice, or posture.



Get a head start


Discover the data

Companies should determine what inferences about mental states they want the system to make and how accurately those inferences can be made using the inputs available.


Work with IT

Involve IT and engineering groups to figure out the challenges of integrating with existing systems for collecting, assimilating, and analyzing large volumes of emotional data.


Consider the complexity

Some emotions may be more difficult to discern or respond to. Context is also key. An emotionally aware machine would need to respond differently to frustration in a user in an educational setting than to frustration in a user in a vehicle.

 


 

download arrowTo learn more about how affective computing can help your organization, read the feature story Empathy: The Killer App for Artificial Intelligence.


Comments

About Christopher Koch

Christopher Koch is the Editorial Director of the SAP Center for Business Insight. He is an experienced publishing professional, researcher, editor, and writer in business, technology, and B2B marketing. Share your thoughts with Chris on Twitter @Ckochster.

Tags:

In An Agile Environment, Revenue Models Are Flexible Too

Todd Wasserman

In 2012, Dollar Shave Club burst on the scene with a cheeky viral video that won praise for its creativity and marketing acumen. Less heralded at the time was the startup’s pricing model, which swapped traditional retail for subscriptions.

For as low as $1 a month (for five two-bladed cartridges), consumers got a package in the mail that saved them a trip to the pharmacy or grocery store. Dollar Shave Club received the ultimate vindication for the idea in 2016 when Unilever purchased the company for $1 billion.

As that example shows, new technology creates the possibility for new pricing models that can disrupt existing industries. The same phenomenon has occurred in software, in which the cloud and Web-based interfaces have ushered in Software as a Service (SaaS), which charges users on a monthly basis, like a utility, instead of the typical purchase-and-later-upgrade model.

Pricing, in other words, is a variable that can be used to disrupt industries. Other options include usage-based pricing and freemium.

Products as services, services as products

There are basically two ways that businesses can use pricing to disrupt the status quo: Turn products into services and turn services into products. Dollar Shave Club and SaaS are two examples of turning products into services.

Others include Amazon’s Dash, a bare-bones Internet of Things device that lets consumers reorder items ranging from Campbell’s Soup to Play-Doh. Another example is Rent the Runway, which rents high-end fashion items for a weekend rather than selling the items. Trunk Club offers a twist on this by sending items picked out by a stylist to users every month. Users pay for what they want and send back the rest.

The other option is productizing a service. Restaurant franchising is based on this model. While the restaurant offers food service to consumers, for entrepreneurs the franchise offers guidance and brand equity that can be condensed into a product format. For instance, a global HR firm called Littler has productized its offerings with Littler CaseSmart-Charges, which is designed for in-house attorneys and features software, project management tools, and access to flextime attorneys.

As that example shows, technology offers opportunities to try new revenue models. Another example is APIs, which have become a large source of revenue for companies. The monetization of APIs is often viewed as a side business that encompasses a wholly different pricing model that’s often engineered to create huge user bases with volume discounts.

Not a new idea

Though technology has opened up new vistas for businesses seeking alternate pricing models, Rajkumar Venkatesan, a marketing professor at University of Virginia’s Darden School of Business, points out that this isn’t necessarily a new idea. For instance, King Gillette made his fortune in the early part of the 20th Century by realizing that a cheap shaving device would pave the way for a recurring revenue stream via replacement razor blades.

“The new variation was the Keurig,” said Venkatesan, referring to the coffee machine that relies on replaceable cartridges. “It has started becoming more prevalent in the last 10 years, but the fundamental model has been there.” For businesses, this can be an attractive model not only for the recurring revenue but also for the ability to cross-sell new goods to existing customers, Venkatesan said.

Another benefit to a subscription model is that it can also supply first-party data that companies can use to better understand and market to their customers. Some believe that Dollar Shave Club’s close relationship with its young male user base was one reason for Unilever’s purchase, for instance. In such a cut-throat market, such relationships can fetch a high price.

To learn more about how you can monetize disruption, watch this video overview of the new SAP Hybris Revenue Cloud.

Comments